0

0
0

文字

分享

0
0
0

諾貝爾獎幕後:重力波的百年追尋,和為此困惑的愛因斯坦

歐柏昇
・2017/11/15 ・5425字 ・閱讀時間約 11 分鐘 ・SR值 541 ・八年級

最近,雷射干涉重力波天文台(Laser Interferometer Gravitational-Wave Observatory;簡稱 LIGO)真是好事成雙。先是在 2017 年 10 月 3 日,萊納‧魏斯(Rainer Weiss)、基普‧索恩(Kip Thorne)及巴里‧巴利許(Barry Barish)三位團隊成員獲頒諾貝爾獎。接著在10月16日,宣布了重大發現——首度看到重力波來源發出的光線,也是首度以重力波偵測到兩個中子星合併。

2017年諾貝爾物理學獎得主,由左至右依序為萊納‧魏斯(Rainer Weiss)、巴里‧巴利許(Barry Barish)及基普‧索恩(Kip Thorne),圖/作者提供。

經過整整 100 年才證實的大預言

觀測到重力波,有什麼了不起呢?我們要先從愛因斯坦開始講起。

2015 年,全世界都在紀念愛因斯坦的廣義相對論提出 100 週年。然而,那時候人們心中有一點小小的缺憾——廣義相對論的一項重要預言尚未直接證實,那就是重力波。也許愛因斯坦冥冥之中神來一筆,非常巧合地,正好在愛因斯坦提出廣義相對論的 100 年後,科學家終於證實了重力波的存在。就在 2015 年 9 月 14 日,LIGO 首度偵測到重力波的訊號,2016 年 2 月 11 日將結果揭櫫於世。

1921年的愛因斯坦,圖/作者提供。

天才愛因斯坦也有搞不懂的問題

重力波的預言,在百年之間經過十分顛簸的路。我們每次說到愛因斯坦,總是將他當作神來看待,其實他對於宇宙的法則也曾有深深的困惑。

-----廣告,請繼續往下閱讀-----

早在 1905 年,亨利‧龐加萊(Henri Poincaré)就提出重力波的說法——就像是電磁場可以造成光波(電磁波),重力場可以造成重力波。 1915 年,愛因斯坦發表廣義相對論,利用「時空曲率」的新觀念來解釋重力,並且預言了重力波存在。不過,許多方面都會讓人覺得不太對勁。例如,產生電磁波的一個簡單的方式,是透過震盪的成對正負電荷(電偶極)。然而,質量沒有負的,無法形成正負成對的偶極。

到底能不能形成重力波?連愛因斯坦也開始不太確定了。

愛因斯坦著手進行更深入的理論研究。不久之後,他發現只要選取了特定的座標系統,就可以從他的重力場方程式,找出一個能產生三種重力波的解。不過,這個說法很快就受到挑戰。

1922 年,愛丁頓發表了一篇文章,說明其中兩種重力波的形式都是座標選取的問題,且算出來的波速可為任意值,不一定是光速,而是依據選擇的座標系而定。他發覺,愛因斯坦選了一個本身就在波動的座標系,難怪會誤以為有波產生。也就是說,那是人工的數學操作造成的,並不是真正的波。但是話又說回來,愛因斯坦解出的第三種重力波就不一樣了,愛丁頓證明它不管在哪個座標系都以光速行進,所以沒有排除這真的是重力波的可能。

根據廣義相對論,兩個中子星或黑洞互繞,可以產生重力波,圖/by R. Hurt/Caltech-JPL。

後來,愛因斯坦自己也認為世界上不存在重力波了。1936 年,已經來到普林斯頓的愛因斯坦,投稿一篇文章到《物理評論》、準備要說明重力波並不存在。期刊編輯將文章拿給哈沃德‧羅伯森(Howard Roberson)審閱,並將其反駁的意見寄送給愛因斯坦。愛因斯坦立刻翻臉:怎麼可以未經作者同意,在出版前把文章內容拿給其他學者閱讀?

-----廣告,請繼續往下閱讀-----

然而不久之後,羅伯森的意見徹底動搖了愛因斯坦。這是由於愛因斯坦正好換了新的研究助理,助理和羅伯森針對重力波的問題討論了一陣子,並將意見轉知愛因斯坦。這時愛因斯坦已經在普林斯頓排好一場演講,題目就是「重力波不存在」,這下事情大條了!

愛因斯坦承認自己犯下錯誤,卻來不及取消演講,於是在演講上這樣說:

「如果你問我有沒有重力波,我必須回答:『我不知道!』」

真是驚天一語,二十世紀最偉大的物理學家之一,終究對重力波的問題困惑不解。

開始尋找重力波的蹤跡

愛因斯坦的時代過去了,但是他留下的神祕預言,仍然困惑著物理學家。

-----廣告,請繼續往下閱讀-----

直到 1956 年,菲立克斯‧皮拉尼(Felix A. E. Pirani)提出了一套數學形式,可避開愛因斯坦煩惱甚久的座標系轉換問題,說明重力波的存在。1957 年則是重力波理論的關鍵時刻,史上第一次針對重力波的會議——教堂山會議(Chapel Hill Conference)召開了。會議上,理查‧費曼(Richard Feynman)提出了「黏串珠」假想實驗,說服了許多物理學家,相信重力波真的存在。

馬里蘭大學教授約瑟夫‧韋伯(Joseph Weber)也出席了教堂山會議。會後,他決定開始動身尋找重力波。1966 年,他設計出一種尋找重力波的儀器,在相隔一千公里的兩個真空室裡各懸掛一個大鋁管,測量鋁管的震動。幾年後,他號稱收到了重力波的訊號。不過很快地,其他科學家證實他的實驗結果是錯誤的。

約瑟夫‧韋伯是第一位動身製作重力波探測儀器的科學家。 圖/by Special Collections and University Archives, University of Maryland Libraries。

直接探測重力波踢到鐵板,不如旁敲側擊吧!1974 年,拉塞爾‧赫爾斯(Russel Hulse)和約瑟夫‧泰勒(Joseph Taylor)首度發現「雙中子星」系統。這個天體名稱為 PSR B1913+16,是兩個大約都是 1.4 倍太陽質量的中子星,互相繞轉而構成。他們發現,兩個中子星互繞的週期越來越短,也就是它們彼此越靠越近、越轉越快!

為什麼兩個中子星越靠越近呢?顯然是有能量釋放出去了。把愛因斯坦的廣義相對論搬出來一算,雙中子星系統釋放能量的功率,竟然與重力波釋放能量的功率一致!這就表示,雙中子星互繞,很可能是透過重力波釋放能量,於是越靠越近。這項發現間接證實了重力波存在,也讓赫爾斯與泰勒在 1993 年奪得了諾貝爾物理學獎。

-----廣告,請繼續往下閱讀-----
1993年諾貝爾物理學獎得主,左為拉塞爾‧赫爾斯(Russel Hulse),右為約瑟夫‧泰勒(Joseph Taylor),圖/作者提供。

雷射光干涉儀技術——尋找重力波的一道曙光

你以為得了一次諾貝爾獎,尋找重力波的故事就結束了嗎?科學家可不是這樣就罷休了。

這個故事又說來話長。在約瑟夫‧韋伯的實驗之後,有一些科學家試著改進韋伯的儀器,另外有些科學家考慮利用一個新方法,來直接偵測重力波,那就是「雷射光干涉儀」。

干涉儀是什麼玩意兒呢?利用分光鏡,可將一道光線分成兩束,其中一束光往北邊走,另一束光往東邊走。如果我們在兩道光束行走的路上,分別放個鏡子,那這兩束光就都可以「浪子回頭」,回來相遇、重逢。因為光線有「波」的性質,兩束光相遇的時候,它們的振幅可以相加,結合成一道光,這稱為「干涉」現象。

干涉儀基本構造,圖/LIGO 網站圖片重製。

科學家要仔細校準儀器,讓兩道光束行經的距離相同,於是回來相遇那一刻,我的波峰就會正好對上你的波谷,兩道光束恰好抵銷,偵測不到任何光。但是如果某一方向光束行經的距離被拉長,那打回來的光線,波峰沒辦法剛好對上波谷了,「干涉」後的光線就會被偵測到。這就好比兩塊相鄰的拼圖,位置恰好對了就可以拼上,但是位置稍微偏掉一點,就拼不上了。如果利用偵測器,測量干涉後的光線的變化,就能得知光束行經距離如何被拉長。

-----廣告,請繼續往下閱讀-----
  • 影片說明:如果空間被重力波扭曲,干涉儀可以偵測到訊號。

假使沒有人為操縱,在什麼情況下,兩道光束行經距離會變得不一致呢?重力波可以辦到這件事。重力波通過時,會反覆讓空間變形,例如先把南北方向空間拉長,東西方向空間縮短;接著把東西方向空間拉長,南北方向空間縮短。這些變化實在太微弱,一般來說,讓空間伸縮的比例大約只有 10 的負 21 次方。但是如果能把光束行經的距離拉到夠長,同樣伸縮比例相應的實際長度變化就夠大,那就有機會測出重力波的訊號。

科學家發覺,利用雷射光干涉儀,有望做出高靈敏度的偵測儀器。

索恩沒訂到旅館,反而促成偉大計畫誕生

事實上,韋伯也有考慮過干涉儀的方法,不過沒有親自實行。第一個付諸實行的是羅伯特‧福沃德(Robert Forward),他在 1971 年設計出第一個用來偵測重力波的雷射干涉儀。福沃德的論文中提到,他受到萊納‧魏斯的幫助。

萊納‧魏斯就是 2017 年諾貝爾獎得主之一。在 1970 年代,他就積極研究建造探測重力波的雷射干涉儀。起初,他在麻省理工學院可利用軍事經費建造儀器。然而,不久之後,美國嚴格限制軍事經費的運用範圍,魏斯也就沒錢建造儀器了。經過幾番波折,魏斯才得到研究經費,繼續研究重力波的偵測儀。

魏斯還做出一項重要的貢獻,他在一個巧合的機緣下,將基普‧索恩「推坑」成功。沒錯,這位索恩教授,就是催生電影《星際效應》的那位索恩教授。他不但因為電影一炮而紅,現在還成了諾貝爾獎得主。

-----廣告,請繼續往下閱讀-----
基普‧索恩是《星際效應》的科學顧問,如今還成了諾貝爾獎得主,圖/作者提供。

1975 年,在華盛頓特區有一個學術會議,由於遊客太多,索恩沒有訂到旅館,魏斯就讓索恩跟他合住一房。那個晚上,他們兩人徹夜未眠、暢談宇宙。經過這一晚,索恩便決定在加州理工學院展開雷射光干涉儀的重力波探測。

索恩是理論科學家,他需要實驗科學家的幫忙,才能夠把儀器建造起來。於是,索恩找了朗納‧德瑞福(Ronald Drever)到加州理工學院。附帶一提,德瑞福 2016 年和魏斯、索恩共同獲得天文學極高的榮譽「邵逸夫獎」,但可惜在 2017 年 3 月,諾貝爾獎頒發給魏斯等人的幾個月之前,德瑞福已經離開人世。

1980 年前後,魏斯的團隊,以及索恩、德瑞福的團隊,分別獨立進行雷射光干涉儀的研究,都發展出能夠提高靈敏度的技術。不過,真正要建造能夠派上用場的大型儀器,需要大量的經費,美國政府不可能同時批准兩個團隊的研究計畫。於是,兩個團隊開始磨合,最後整合為「加州理工——麻省理工」合作計畫,計畫名稱就定為 LIGO。

LIGO 計畫開始之初,進展並不是很順利。魏斯與德瑞福經常意見不合,由索恩從中調停。到了 1992 年,德瑞福黯然離開 LIGO 團隊。1994 年,同樣在今年獲得諾貝爾獎的巴里‧巴利許,取代羅克斯‧沃格特(Rochus Vogt),出任計畫主持人。他是一個富有行政經驗的人物,於是重新將 LIGO 計畫整頓,並且爭取到不少經費。

-----廣告,請繼續往下閱讀-----

巴利許的計畫分成兩個階段。第一階段是「初始」的計畫「iLIGO」,試驗儀器,並一點機會偵測到重力波;第二階段是「進階」計畫「aLIGO」,這時候的儀器就很有機會偵測到重力波。第一階段計畫從 2002 年運作到 2010 年,並沒有偵測到任何一次重力波事件。2010 年,設備開始升級,耗費了 5 年的工程。

LIGO 在華盛頓的觀測站。圖/by Caltech/MIT/LIGO Lab。

大事總在意想不到的時間來臨

2015 年 2 月,進階版本「aLIGO」終於測試階段,預計 9 月 18 日正式啟用。沒想到,人算不如天算,就在正式啟用前四天,9 月 14 日,大事發生了!

那時候,LIGO 團隊成員忙著做最後的測試,忙到凌晨 4 點才回家。就在當地時間凌晨 4 點 50 分,重力波的訊號悄悄通過 LIGO 的偵測器。

發生在正式啟用前四天,這個時間實在太巧了!科學家們一開始直覺認為,這顯然是團隊中有人設定的測試訊號。因為在 LIGO 團隊中,少數人士有權力暗中放入人工訊號,來測試大家收到訊號時反應。既然團隊準備正式上工了,放個逼真的測試訊號,誰也不覺得奇怪吧?

但是 LIGO 團隊的科學家知道,人工的測試訊號一定會在數據中露出馬尾。經過一整天的分析、討論,確認找不到任何人為操作的蹤跡,他們終於開始相信,那可能真的是重力波的訊號,也就是失落的聖杯,終於找到了!

不過,他們決定讓改裝好的 LIGO,正式運作一個月,再來綜合分析觀測到的資料。在研究成果發表之前,團隊要對這個重大消息保密。索恩說,那天他意識到,自己 40 年的夢想成真了,但是晚上回家,他唯一的慶祝方式,是對著自己微笑——因為這項機密消息,那時連自己的老婆都不能說。

百年追尋,終於證實重力波存在

2016 年 2 月 11 日, LIGO 終於宣布重大消息——愛因斯坦廣義相對論預言的重力波,他們真的找到了!

2016 年 2 月 11 日,LIGO 正式宣布找到重力波,魏斯與索恩擁抱慶祝。圖/by Kathy Svitil/Caltech。

首次發現的重力波事件,依照日期命名為「GW150914」。LIGO 在路易斯安那與華盛頓的兩個觀測站,都接收到此事件,並且經過嚴格的科學檢驗,證實不是其他因素造成的訊號。科學家分析這些訊號,發現和愛因斯坦的理論預測完全吻合!

LIGO 的兩個觀測站,皆偵測到 GW150914 的訊號。圖/LIGO。

經過推算,這次重力波事件,應來自兩個黑洞相撞。兩個分別為 36 和 29 倍太陽質量的黑洞,越靠越近,最後相撞、合併在一起。黑洞的合併過程,扭曲附近的時空,放出重力波。這道重力波在宇宙中行走了 13 億年,終於被地球人捕捉到。

重力波天文學的故事正要開始

有關重力波的第二次諾貝爾獎到手,故事結束了嗎?沒有,而且這只是故事的開端。

現在,重力波成為科學家研究宇宙的有用工具。隨著 LIGO 的成功發展,「重力波天文學」誕生了。偵測到重力波,不僅是驗證愛因斯坦的偉大預言,還揭露了意想不到的現象:怎麼會出現這麼大的黑洞?怎麼會有兩個黑洞這麼麻吉,硬要繞著彼此轉,變成「雙黑洞」系統?

  • 影片說明:電腦模擬兩個黑洞的合併。

LIGO 至今已經偵測到五次重力波事件。2017 年 10 月 16 日公布的 GW170817,是首度找到的雙中子星對撞的重力波事件。而且,這起重力波事件,與 1.7 秒後發生的「伽瑪射線爆」GRB170817A,應該是來自同一事件。

重力波與光線,可以看到同一起雙中子星對撞事件的不同面向,圖/作者提供。

GW170817 的重大意義,是人們首度接收到重力波事件相對應的光線。這意味著我們「看」到了重力波的來源,眼見為憑,它「是真的」!此外,科學家研究這次事件,證實中子星合併可以產生貴金屬,而這種「千倍新星(kilonova)」事件,很可能就是宇宙中的煉金術師,「係金ㄟ」!

我們相信,重力波的觀測還會造就更多勁爆的消息,故事才剛開始而已,下集待續。

參考資料

  1. Castelvecchi, D. “Gravitational waves: How LIGO forged the path to victory.” Nature 2016, 530, 261-62.
  2. Castelvecchi, D.; Witze, A. “Einstein’s gravitational waves found at last.” Nature News. doi:10.1038/nature.2016.19361. Retrieved 20 October 2017.
  3. Cervantes-Cota, J.; Galindo-Uribarri, S.; Smoot, G. “A Brief History of Gravitational Waves.” Universe 2016, 2, 22.

 

-----廣告,請繼續往下閱讀-----
文章難易度
歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
愛因斯坦的光速魔術
賴昭正_96
・2024/10/05 ・7055字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

起初神創造了天地。大地空虛混沌; 深淵的表面一片黑暗;神的靈運行在水面上。神說,「讓它有光」,於是就有了光。 神看見光是好的;神將光明與黑暗分開。 -創世紀 1:3

1905 年愛因斯坦在題為「關於運動物體的電動力學」(On the Electrodynamics of Moving Bodies)的論文引言裡謂:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與它不調和(irreconcilable)的公設,即光在真空中的傳播速率為一與發射體運動狀態無關的定值 c。這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威(James Maxwell)理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

愛因斯坦真大膽:一個可以用實驗來確定的光速,怎麼可以定為「公設」呢?光速與發射體運動狀態無關不是完全違反了我們日常生活的經驗(如聲速)嗎?

更令人難以相信的是:當時的物理與天文學家因為馬克斯威方程式(Maxwell Equation)的成功,都認為空間充滿了絕對靜止的「以太」,「光速為定值」僅是相對於這一固定的「以太」而言;而愛因斯坦竟初生之犢不畏虎,開宗明義地謂不要爭辯了,我們將光在真空中的速度「公訂」為與發射體運動狀態無關的定值 c!幸運地,在「立即引起了我的熱烈關注」下,當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)立即在柏林大學開始講授相對論,並公開為愛因斯坦的抽象概念理論辯護!由於普朗克的影響,這篇愛因斯坦根本沒想到是「革命性的」、完全改變牛頓之時空觀念的論文終於與量子力學一起開創了近代物理學。

當然,我們現在知道實驗上已經證明了這一「公設」的正確性;愛因斯坦怎麼那麼「神」呢?

-----廣告,請繼續往下閱讀-----
愛因斯坦以大膽創新思維,突破常規,開創物理學新紀元。 圖/wikimedia

「光」逐流

第二次世界大戰結束後不久,愛因斯坦受邀在「在世哲學家圖書館」(Library of Living Philosophers)撰寫一篇知識分子自傳(註一)。在該《自傳筆記》(Autobiographical Notes)裡,愛因斯坦開張寫道:「我坐在這裡是為了在 67 歲時寫一些類似於我自己之訃文的東西」,然後以無與倫比的溫暖和清晰解釋了他的思想路徑:從年輕時對幾何的興趣,轉向馬克斯威、馬赫(Ernst Mach)、和波爾(Niels Bohr)等哲學、科學家對他自己之理論發展的影響。此書是愛因斯坦留給我們的唯一個人自傳筆記,為科學史上的一部經典著作。

在講述導致狹義相對論的發展時,愛因斯坦在《自傳筆記》中回憶道:

…..我在十六歲時就已經遇到了一個悖論:如果我以速度c(真空中的光速)追逐上一束光,我應該觀察到其電磁場將是靜止不前進,只是在空間上振盪而已。然而,無論是根據經驗,還是根據馬克斯威方程組,這現象似乎不存在。(因此)從一開始,我就直覺地清楚看到,從這樣一個觀察者的角度來看,一切都必須按照與相對於地球靜止的觀察者相同的定律發生。第一個觀察者如何知道或能夠確定他處於一快速、等速的運動狀態?從這個悖論中可以看出,狹義相對論的種子已經包含在內。

愛因斯坦如何解決這悖論呢?

一場風暴

愛因斯坦在瑞士專利局任職時,經常與「奧林匹亞學院」(Olympia Academy)的成員討論光速之謎。1905 年 5 月中旬,他突然想到光速之謎的答案就隱藏在用於測量時間的程序中,他回憶說:「我的腦海中掀起了一場風暴」。隔天一大早碰到一位工程師同事就迫不及待地告訴說:「我已經徹底解決了這個問題。對時間概念的分析是我的解決方案:時間不能是絕對的,時間和訊號速度之間存在著密不可分的關係。」

-----廣告,請繼續往下閱讀-----

在風暴中,愛因斯坦匆匆忙忙地在數週內完成了那革命性的狹義相對論論文。在此讓我們看看為什麼他認為「時間和訊號速度之間存在著密不可分的關係」。

愛因斯坦同步程序

要測量光速,必須讓光訊號在已知距離內從一個位置跑到另一個位置,然後透過起點和終點的時鐘讀數之差異來確定傳播時間。因此用於測量傳播時間的時鐘必須同步,否則它們之讀數差異將毫無意義。可是我們卻需要利用光速來同步化兩個不同地方之時鐘,這顯然是「雞生蛋、蛋生雞」的循環邏輯問題。

愛因斯坦的風暴就是他終於想出了可以避免循環邏輯的同步化假想實驗:在 tA 時從 A 發出一道光線,當它在 tB 到達 B 時立刻讓它反射回去,於 t’A 時到達 A;如果

則我們稱 A、B 兩地的時鐘精確地同步化了。例如 A 在 1:00 發出光信號,1:10 收到反射回來的光信號,如果 B 收到光信號的時刻是 1:05(或者將它調到 1:05),那麼 A、B 兩地的時鐘便是同步。今天的物理學家將此方法稱為「愛因斯坦同步程序」( Einstein Synchronization Procedure )。

-----廣告,請繼續往下閱讀-----

光速定值的「公

愛因斯坦接著說:「另外,根據經驗,我們進一步要求

為普適常數(真空中的光速)。」這是根據經驗計算光在兩點間之平均速度的方法,毫不起眼,但卻隱藏著一個非常不尋常的「陰謀」?

邏輯告訴我們:如果我們用另一毫不起眼的 tB 定義去測單方向的光速(A 到 B或 B 到 A),其值一定是 c ( 註二 )!因此愛因斯坦說:「…我們根據定義確定,光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間。」也就是說愛因斯坦在這裡從「平均速度」及「愛因斯坦同步程序」的定義,魔術般地導入了他的公設:光在任何方向的速度都是一樣的 c 值!

為什麼這是個「陰謀」呢?在愛因斯坦的假想實驗中,我們既然不需要知道光的速度,為什麼不用聲音呢?答案很簡單:因為我們知道聲速會受到 A、B 兩點與空氣之相對速度的影響;如果風從 A 吹到 B,那麼 B 收到聲音的時間將比愛因斯坦之 tB 早! 可是那時候幾乎所有的物理學家都相信光是在「乙太」中傳播的(見後),愛因斯坦怎麼知道光速不會受到 A、B 兩點與「乙太」之相對速度的影響?

-----廣告,請繼續往下閱讀-----
愛因斯坦透過同步程序巧妙定義光速,避開了「乙太」的影響。圖/wikimedia

歷史上最「失敗」的實驗

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式━「馬克斯威方程式」━闡釋了當時已知的電磁現象。1865 年,馬克斯威透過其方程式導出電磁波的存在,並證明光事實上就是一種電磁波!光既然是一種波動,那像水波及聲波一樣應該有傳播的媒體(介質),物理學家開始尋找這一稱為「乙太」的媒體,並測試地球在這一媒體中的運動狀態。

這些實驗中最有名的是後來被稱為歷史上最「失敗」的實驗:1887 年,邁克爾森(Albert Michelson)與莫利(Edward Morley)用光干涉儀測量地球與乙太的相對運動速率。邁克爾遜和莫利預計會發現:分道揚鑣的兩道光束在不同時間回到探測器,從而可以計算出地球在乙太中的運動速度。但他們非常失望地發現:無論光向哪個方向傳播,它總是以相同的速度移動,因此下結論説:如果乙太存在,地球與乙太的相對運動速率為零!他們認為這有兩種可能的解釋:(1) 在地球表面之乙太被地球拖著走;或 (2) 根本沒有乙太(參見「乙太存在與否的爭辯」)。但更簡單的解釋應該就是愛因斯坦的不要爭辯「公設」;可是誰敢提出這種違反常識的論調呢?或許只有當時還是默默無聞的瑞士專利局小職員吧?

可是愛因斯坦回憶說:「在我自己的發展中,邁克爾遜的結果並沒有(對我)產生很大的影響。我甚至不記得當我寫第一篇關於這個主題的論文時(1905 年),我是否知道它。」然而愛因斯坦也在許多場合中曾經反覆使用「可忽略不計」、「間接」、「非決定性」等詞彙來形容邁克爾遜實驗對他思想的影響…。看來「愛因斯坦當時是否知道邁克爾遜實驗結果」這個問題將永遠是個懸案。但可以肯定的似乎是:即使愛因斯坦知道邁克爾遜的結果,它對愛因斯坦理論的起源貢獻應該是非常小和間接的,絕對不是他發現相對論的主要推動因素。

事實上前面提到:愛因斯坦根本可以不需要知道,因為在他的時鐘同步程序下,光速一定是定值,與實驗結果或「乙太」是否存在無關。相反地,如果愛因斯坦清楚不用時鐘同步化的邁克爾遜-莫利實驗,那風暴可能就不會產生了!

-----廣告,請繼續往下閱讀-----

時鐘同步化與光速無關

測量單方向光速實際上並不需要同步化的兩個時鐘(即沒有循環論證的問題)。例如 A、B 兩地皆在赤道上,A 在 1:00 發出光信號,B 在收到光信號後等 12 小時再發射回去,如果 A 在收到 B 光信號的時間是 13:04,那麼因為地球 24 小時自轉一次的關係,AB 距離除以 0.02 便是光單方向(相對於宇宙)的速度。在這一個實驗中,A、B 兩地的時鐘根本不必要同步化,只要它們的精確度是一樣就可以了。

人類早在 18 世紀初就已經知道如何製造相當精確及穩定的時鐘:哈里森(John Harrison)是英國的一名木匠,自學了鐘錶製作;在 1720 年代中期,他設計了一系列卓越的精密長殼時鐘,其精確度已經高達一個月僅差一秒(註三)。我們可以將兩個 Harrison-IV 時鐘在 A 處校正,然後慢慢(原則上無限地慢)將其中一個移到它處,不但可以用它來同步化這些地點的時鐘,還可以用來直接測量單方向的光速。

還有,首次確鑿證明地球在動的布拉德利(James Bradley)早在 1729 年就已經透過「星光像差」(stellar aberration)測得高達 0.4% 精確度的光速;而發明「傅科擺」(Foucault pendulum)來證明地球在自轉的傅科(Léon Foucault)則在1862年透過旋轉鏡與單鐘測得 0.6% 精確度的光速。

馬克斯威方程式也告訴我們,不需要使用任何時鐘,透過測量自由空間的磁導率和介電常數即可間接計算光速,完全避開愛因斯坦的循環論證邏輯。事實上馬克斯威 1865 年就是用這兩個實驗數據計算出電磁波的傳播速度為每秒鐘 310740000 公尺,接近當時光速的(傅科)實驗值。馬克斯威認為這不會是巧合,謂:「我們幾乎無法避免這樣的結論:光存在於同一介質的橫向波動中,這是電和磁現象的原因」,因此他預測光是一種電磁波。

-----廣告,請繼續往下閱讀-----

上面這些說明了 20 世紀黎明前,科學家就已經知道了:時間(校時)和訊號速度之間並不存在著密不可分的關係。事實上愛因斯坦更應該知道,因為當他被問到是否站在牛頓的肩膀上時,他回答說:「不,是站在馬克斯威的肩膀上!」所以不知道愛因斯坦是否故意沒想到這些,以便透過陰謀來創造相對論?在今天,愛因斯坦那篇沒有任何參考資料的相對論論文是不可能被接受發表的!

愛因斯坦的規定

在愛因斯坦同步程序下,無論光的實際速度是多少,光速測量起來總是定值 c。難道愛因斯坦不知道這「魔術」充滿了漏洞嗎?一個可能的解釋是 19 世紀末電報線和鐵路將整個歐洲連接成一個巨大的網絡,為了以確保訊息、乘客、和貨物的順利流動,同步時鐘是非常實際的考慮;愛因斯坦是專利局電訊操作設備的技術專家,負責審查時鐘同步的網路電磁設備之專利申請,因此他一定在思考時鐘同步問題,加上經年累月地為光速所困,似乎很自然地便往這牛角尖裡鑽。

愛因斯坦或許因長期研究時鐘同步問題,導致忽視光速測量的漏洞。圖/wikimedia

我們知道魔術是騙人耳目與大腦的,不能用在科學上。光速是可以量的,怎麼可以根據定義確定(光從 A 傳播到 B 所需的時間等於光從 B 傳播到 A 所需的時間)?因此在其 1916 年之科普《相對論:狹義理論與廣義理論》一書中,愛因斯坦辯說:「(假設 M 在 A、B 兩處之正中間)實際上光需要相同的時間穿過路徑 AM 和穿過路徑 BM,這既不是關於光之物理性質的假設(supposition)、也不是假說(hypothesis,註四),而是我可以根據自己的自由意志做出的規定(stipulation),以便得出同時性的定義(註五)」。換句話說,愛因斯坦認為光速恆定是一種「規定」,與物理無關,無需解釋其真偽(註六)。且聽「創相對論紀 1:3」道來:

19 世紀中旬馬克斯威創造了馬克斯威方程式。大地充滿了乙太;深淵的裡面測不出地球的運動;愛因斯坦的靈運行在其中。愛因斯坦說,「讓光速為定值」,於是光就依定值傳播。愛因斯坦看見定速是好的;愛因斯坦將定速與乙太分開。

圖/作者提供

結論

從上面的分析看來,愛因斯坦這「光速為定值的規定」似乎是建基於錯誤的認知上,所以顯然愛因斯坦其實沒有那麼神

-----廣告,請繼續往下閱讀-----

開玩笑的,事實上愛因斯坦是筆者佩服的極少數科學家之一!在「思考別人沒有想到的東西──誰發現量子力學?」一文裡,筆者指出:當普朗克還一直在努力地想讓他的量子解釋能容於古典力學時,愛因斯坦已認識到量子不連續性是普朗克黑體輻射理論的重要組成部分!也只有愛因斯坦能看出波思(Satyendra Bose)一篇被英國名物理雜誌退稿、題為「普朗克定律及光量子的假設」的重要性,開創了量子統計力學!更奇怪的是:他被證明是錯的「EPR 悖論(EPR Paradox)」竟推動了許多如量子密碼學、量子計算機、量子資訊理論、量子遠程傳送等的研究;而他自認是一生中最大錯誤的「宇宙論常數」則成為研究近代宇宙的主要工具。……因此筆者總覺得愛因斯坦雖然像常人一樣犯錯,但對物理卻具有一般人所沒有的第六感!或許愛因斯坦心裡早就預感光速應該是定值(註七),其同步程序只是設計出來「證明」光速恆定的妙計?

雖然以卓越教學而備受讚賞的慕尼黑大學理論物理學教授薩默費爾德 ( Arnold Summerfeld ) 曾於 1907 年對愛因斯坦的公設提出「微辭」,但現在物理學家從未公開批評該相對論公設,只是默默地屏棄此一公設,改採將光速恆定作為可以實驗驗證的物理定律(經驗基礎):光速恆定不是規定,而是根基於實驗的自然界基本定律。

如果光相對於愛因斯坦的速度永遠為c, 那麼他將永遠無法隨「光」逐流看到光駐波,愛因斯坦不但終於解決了他16歲時所迷惑的悖論,還開創了相對論!

註釋

(註一)《世哲學家圖書館》系列的第七卷(Paul Arthur Schilpp編輯,美國紐約市 MJF Books 出版,2001 年元月一日重印版)。單行本:《阿爾伯特·愛因斯坦:哲學家-科學家》(Albert Einstein: Philosopher-Scientist;Open Court,3rd edition,December 30, 1998)。

(註二)筆者讀過多次愛因斯坦同步程序,從沒想到被騙;視而不思,真是書呆子一個!

(註三)2023 年初可攜帶型的商業原子鐘精確度高達 10-11%。

(註四)大英百科全書:科學假設是對自然界中觀察到的現像或一組狹窄現象提出初步解釋的想法。

(註五)參見『不用數學就可以解釋──相對論的著名想像實驗「雙胞胎悖論」』。

(註六)這種不顧物理的隨心所欲「規定」使筆者想到了波爾於 1913 年提出的:「電子雖然如行星繞日,但它的軌道卻不能隨便,而必須適合一個新的條件,即量子條件(quantum condition)。在這種軌道條件下的電子是穩定的,它可不服從電磁理論,因此也就不須放射出電磁波。」波爾輕而易舉地用「規定」的方法解決了拉塞福 ( Rutherford ) 原子模型與電磁理論的衝突(參見「原子的構造」)。當然,波爾原子模型的成就不只解決這衝突而已,它事實上解釋了當時存在的部份光譜問題,推動了新力學的迅速發展。同樣地,愛因斯坦的規定不只提出了「同時」是相對的觀念,還開創出一個新的力學。

(註七)用兩個簡單的公設就可推導出當時已知的洛倫茲轉換方程式(Lorentz transformation)、時間膨脹(time dilation)、洛倫茲—傅玆久拉空間收縮(Lorentz-FitzGerald contraction )等公式,這絕對不可能是一個巧合。

延伸閱讀

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
44 篇文章 ・ 58 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

101
2

文字

分享

0
101
2
時間與空間的顛覆!如何用簡單的方式了解「相對論」?——《物理角色圖鑑》
azothbooks_96
・2024/09/16 ・2086字 ・閱讀時間約 4 分鐘

時間不再絕對?牛頓與愛因斯坦的時間觀差異

川村老師,請用簡單的方式告訴我「相對論」是什麼?

圖/《物理角色圖鑑》

老師:狹義相對論源自相對性原理(Principle of relativity,指物理定律〔Physical law〕適用於所有以等速直線運動的物體) 與光速恆定原理。根據這個理論,時間是相對的,依不同觀察者而有所差異。牛頓力學中的時間是絕對的,愛因斯坦則認為,可依不同的觀察者位置對時間進行不同定義。

圖/《物理角色圖鑑》

老師:之前在討論「力」時,也提過離心力。離心力是「慣性力」的一種,慣性力指物體在加速運動時感受到的與加速方向相反的力。置身在沒有窗戶的電梯中,當電梯向上加速,電梯內的人會受到向下的慣性力(譯注:因看不到外面,使得他無法判斷電梯的運動情況)。若加速度為 g,物體質量為 m,則物體所受慣性力為 mg,與在地面所受的重力 mg 相同。愛因斯坦無法區別這兩種 mg 的差異,所以視為等效。但無論慣性力的方向為何,物體都會往向量合成後的視重力場方向掉落。

時間在任何地方都固定不變嗎?

世界上最快的速度是光速。物體的移動速度若接近光速,它的時間進程就會變慢。也就是說,在接近光速的太空船上,時間會變得悠長。而且,接近光速的物體長度會朝行進方向收縮。

物體只要具有質量,即使在靜止狀態依然擁有能量(其能量 E mc2,稱為靜止能量(Rest energy)。

-----廣告,請繼續往下閱讀-----

提到光的運動,我們已經知道光的路徑會彎曲。

1919 年,天文學家觀測到恆星發出的光線在經過太陽附近時被偏折,這種現象稱為「重力透鏡效應」(Gravitational lens),有助於了解黑洞等宇宙中質量分布的情況。此外,天體物理學家也觀測到時間的延遲。簡而言之,接近地面的時鐘行進速度會比高處的時鐘慢,GPS 也是依據這種效應來進行校正。

圖/《物理角色圖鑑》
圖/《物理角色圖鑑》

時間

牛頓力學中的「時間」(也就是我們一般理解的時間)和相對論中的時間大異其趣。牛頓在《自然哲學的數學原理》(Philosophiæ Naturalis Principia Mathematica,1687)中,假設空間是均勻平坦的;從過去到未來,在任何地方都平均延伸。在牛頓力學中,全宇宙的時間一致。

但相對論否定了這一點。

-----廣告,請繼續往下閱讀-----
圖/《物理角色圖鑑》

光速恆定原理指出,光的速度是固定不變的。這種狀況下,空間中不同地點發生的兩件事,對某個觀測者來說是同時發生,但對另一參考系的觀測者而言則非同時發生。也就是說,時間的前進速度並非在任何地方都相同。因此,時間和空間不能視為各自獨立的兩回事,應該一體化,視為四維空間(時空,Spacetime)。

不過,這是指物體移動速度接近光速時的情況。日常生活中,使用過去的時間觀不會有任何問題。

黑洞

黑洞(Black hole)是一種天體,因為密度極高,重力極強, 不只物質,連光都會被吸進去,無法逃逸。天體是宇宙中所有物體的總稱,具體來說,指太陽、恆星、行星、星團、星雲等。從相對論來看,黑洞周圍空間是扭曲的。照以下方式想像應該會比較容易理解:

把重物放在一大塊展開的薄橡皮布上,放置處就會凹下去,而這塊凹陷會影響到周圍。同樣的,黑洞所在之處會發生猛烈的空間扭曲,經過附近的天體會被極強的重力吸引,落入其中,連光也難逃魔掌。

-----廣告,請繼續往下閱讀-----

銀河系有許多黑洞,但具體數字不詳。2019 年,一個跨國研究計畫團隊首次拍攝到黑洞的「影子」,掀起一陣討論熱潮。

——本文摘自《物理角色圖鑑:用35個萌角色掌握最重要的物理觀念,秒懂生活中的科普知識》,2024 年 9 月,漫遊者文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。