0

0
0

文字

分享

0
0
0

令人難以置信的大陸漂移說–魏格納誕辰|科學史上的今天:11/1

張瑞棋_96
・2015/11/01 ・1180字 ・閱讀時間約 2 分鐘 ・SR值 531 ・七年級

-----廣告,請繼續往下閱讀-----

多年以後,當德國氣象學家魏格納格最後一次在陵蘭島面對暴風雪侵襲時,將會想起26歲那年,初次跟著探險隊踏上冰天雪地的格陵蘭島時心中的悸動。那次他留在基地建造氣象觀測站,隊長與兩名隊員出外探勘人類足跡尚未抵達之處,卻就此一去不回,命喪冰原。那是他初瞥死神的陰影,但這並未令他打退堂鼓,否則他就不會一而再、再而三的來到格陵蘭島。只是這一次,死神似乎終於來到他面前……。

魏格納。圖片來源:wikipedia

魏格納雖然是氣象學家,但卻不是為了研究氣象才重返格陵蘭島,而是為了蒐集證據,向世人證明他於1912年就提出的大膽理論:大陸漂移說。他相信遠古時期地球只有一片完整的盤古大陸,後來破裂漂移才形成現今的七大洲和五大洋。這個主張聽起來一點兒也不像科學假說,反倒比較像是妄想的古老神話,難怪飽受嘲諷。

盤古大陸破裂飄移示意圖。圖片來源:Tbower@wikipedia

魏格納當然有其根據,最明顯直觀的線索就在地圖上。看看南美洲東邊與非洲西邊的海岸線是如此吻合,絕不可能是巧合,甚至其它大陸也大致可以湊在一起。這絕不是異想天開的拼圖遊戲,因為還有其它許多現象唯有用這個理論才說得通。例如各大陸冰河期的冰川從南北兩極往前延伸,照理說最前緣都應該會推進到氣溫相當之處,也就是緯度位置應該差不多,但實際上卻相差甚大。如果把這些大陸拼湊在一起,冰川前緣就都落在約莫相同的緯度了。

還有化石證據。一些被大海阻隔的大陸都出現相同的動植物化石,而其中許多根本是無法飛翔或不會游泳的物種,若非這些大陸以前彼此相連,它們如何擴散出去呢?1912年,英國探險家史考特(Robert Falcon Scott)在南極找到舌羊齒植物化石,更可證明這一點。但這些證據仍不足以令學界信服,他們寧願相信曾經存在橫越大洋的陸橋將各大陸連接起來。

-----廣告,請繼續往下閱讀-----

魏格納的大陸漂移說之所以無法令世人接受,在於他無法提出一套理論,解釋是怎樣的動力機制竟能使大陸移動。限於當時的科學知識,的確找不出有說服力的解釋,但魏格納仍堅持信念,他決定測量格陵蘭島相對於歐洲大陸的位移,直接證明大陸真的會移動。於是他於1930年第四度來到格陵蘭島,但卻被困在風雪之中……。

魏格納終究沒有機會提出證明了。就在他剛過五十歲生日的第二天,魏格納死於冰天雪地之中。他的屍體半年後才被發現,但他的大陸漂移說卻深埋逾三十年,直到海底擴張的現象被證實後,才終於獲得平反。

延伸閱讀:史考特誕辰|科學史上的今天:6/6

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
0

文字

分享

1
2
0
你知道「地圈」嗎?承載無數生命的「地圈」是如何形成與變動的?——《丈量人類世》
商周出版_96
・2022/10/10 ・3062字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者:陳竹亭

雅典娜的智慧與暴力:地圈

不時變動的地殼,就像希臘神話中兼具智慧與暴力的雅典娜(Athena),是她一體的兩面,從出生時就驚動了大地之母蓋婭,長成後卻又聰明地藉其暴力之美形塑、震撼了大地。

奧地利國會大廈前的雅典娜雕像。圖/Wikipedia

地球的陸地地景十分多樣,有高山峽谷,有平原沙漠;地表並不平靜,事實上是活力十足,有火山、熔岩,有地震,有風暴⋯⋯與無聲無息的寧靜月球形成強烈的對比。

地球屬於石質行星,「地圈」指的是地球外部固體的部分,包括地殼(crust)和上部地函(mantle)。地球中央是由地核(core)組成,這種不連續的分層結構,表示行星在形成過程中可能發生過化學凝析作用(chemical condensation),也就是從一種勻相經由溫度變化分成不同相的過程。重的元素以凝態往地心下沈,輕的物質向地表上升,甚至形成氣體。

地球半徑約 6,380 公里,有分層的結構及磁場分布。地震波(seismic wave) 顯示地下 2,900 公里處有不連續面。2,900 公里以上壓縮波(compression wave)和剪切波(shear wave)均可穿透,屬於固態結構。2,900 公里以下只有壓縮波能穿過, 且波速慢, 表示是液態物質。所以分層顯示 2,900 公里以上是鎂矽酸鹽地質,2,900 公里以下則是高壓熔融鐵,密度大的鐵核可能從熔融的矽酸鹽沉入地心。新的震波探測還顯示地核可能有液態、軟結構和硬結構,相關研究仍在進行中。

-----廣告,請繼續往下閱讀-----

鐵元素在地球上的分布, 包括地核中有 1.87×109 兆噸,地函中有 4.11×109 兆噸,地殼及海洋中約為 0.01×109 兆噸。從岩漿的分析來看,鐵佔了 8%,但是佔地球 1/3 的液態鐵是集中在地核,可能是吸收了週期表中相鄰或附近的貴重金屬元素,而下沉至地核中,所以地表存量反而較為稀少。

「地圈」指的是地球外部固體的部分,包括地殼和上部地函。圖/Wikipedia

地殼的成分

從地質化學的觀點,鐵、鎂、矽、氧組成的礦石主要有氧化鐵、橄欖石和輝石,這些礦石的含鐵量依次遞減。不含金屬的氧化矽晶體就是石英。鐵元素不僅形成地核,也改變了地函礦物的種類,同時也影響微量金屬的分布及地殼的成分。

地質學上,根據特定元素及放射性同位素存量的比例,可估計地核及地函形成的時間。目前科學家相信:如果地球是獨自形成,地球的分層,大約是發生在地球形成約 1 億年以內的最初期。

地球的上部地函,就是地球地殼至外核之間的部分,約在地殼以下到深度 400 公里處, 包含部分岩石圈(lithosphere)及軟流圈(asthenosphere)。岩石圈部分厚約 100 公里。地球內部放射性元素的衰變,應當是重要的能源之一。這種高溫可能使地函成為一個富彈性、易變形的半凝固地質,能夠產生對流。

-----廣告,請繼續往下閱讀-----

海洋地殼(ocean crust)是玄武岩岩石層,也就是沉積岩,由密度較大的矽鎂質的岩石構成,矽酸鹽成分較少,偏鹼性。現存海洋地殼年齡都在 200 百萬年之內,相對而言十分年輕。

編按:內文誤植,玄武岩岩石層,應為火成岩,而非沉積岩

陸地的花崗岩(continental crust)即為火成岩,是岩石圈的一部分,由岩漿冷卻形成花崗岩石。結晶性高,和海洋地殼共同成為地球的最外層,主要由含較輕之矽鋁質的岩石,富鋁、鈉和鉀。鐵和鎂反而較少,偏酸性。密度較海洋地殼小。

上部地函,就是地球地殼至外核之間的部分,約在地殼以下到深度 400 公里處, 包含部分岩石圈及軟流圈。圖/Wikipedia

變動的地殼:分裂的大西洋脊與大陸飄移

大陸地殼浮在地函之上,厚度在 20 至 80 公里之間,約有 38 億年的壽命。地殼的變動是海洋隱沒帶(subduction zone)延伸入大陸地殼下方,沉積物帶入地函,變質、分解釋出二氧化碳,讓海洋生物可以再利用。

中大西洋洋脊(mid-Atlantic ridge)是一個縱切大西洋及北冰洋、大部分位於海底的活火山山脈。由北緯 87 度縱貫延伸至南緯 54 度,恰好是地質板塊邊界(plate boundary)的交會處。

-----廣告,請繼續往下閱讀-----
中大西洋洋脊(圖中間縱向黃綠色處)的測深圖。圖/Wikipedia

地球內部放出的熱,對地表溫度幾乎沒有影響,但是地函的對流能使地表沉積物拉入地函中,再分解出二氧化碳,最後由火山噴出。熔岩與火山顯示地函的溫度應該仍然非常高,超過 1000 ℃,岩漿的運動提供了地球表面「建造」地殼的活力。自然界地表的地質傾軋與角力,可能是地球生機乍現的起點。

「海底擴張」(oceanic spreading)的活動,主要是由中洋脊的地底火山自海底的地殼中央噴射而出,形成了新地殼。地殼向東西兩側邊延伸,每年以 40-90 毫米(mm/yr)的速率擴展,至今仍然在持續進行,這也是大陸飄移理論最好的證據。

1915 年, 德國的偉格納(Alfred Lothar Wegener, 1880-1930)提出「大陸漂移說」(continental drift theory),認為大陸地塊會隨地質年代而漂移,這個假說在當時很少人真正給予重視。直到 1950-60 年代,放射性定年法的技術大為改進,才使得研究地球古岩石或沉積磁性的古地磁學異軍突起。

1959 年, 美國地質調查局(USGS) 和澳洲國立大學(ANU)的科學家競相發表大西洋脊兩側海底沈積岩對稱的註記了過去世代的「地磁反轉」(geomagnetic reversal)尺標。地球磁場在地球歷史中,南北極有非週期性的變換現象,可由大西洋海底地殼的磁性隨地質年代的變化獲得。地磁反轉的清晰磁條可以準確地推算出地質年代,再測量其到中洋脊心的距離,就可以估計當時海洋擴展的速率。

-----廣告,請繼續往下閱讀-----
圖/商周出版提供

1963 年,英國的維尼(Frederick John Vine, 1939-)和馬太(Drummond Hoyle Mathews, 1931-1997)結合了地磁反轉和海洋擴張來支持大陸漂移說(continental drift theory)。加拿大的莫雷(Lawrence Whitaker Morley, 1920-2013)也同時獨立發表了相同的學說,但他提出發表的論文遭到拒絕,數年後才正式出版。

根據大陸漂移的理論,上部地函及地殼的岩圈分裂成幾塊「板塊」,這些板塊相互的傾軋運動,決定了地殼板塊邊緣的聚合或分離、造山運動或是海溝形成(trench formation)、還有轉形斷層(transformation fault)、地震或是火山活動。這些現象必然都和地函的對流運動之動力變化有關,但是理論有很多種,研究也都還在進行中。

宏觀來看,不僅地圈的一顰一動都與陸地生命體息息相關。地圈、水圈與氣圈的對流層也緊緊地和生物圈結合在一起,其構成多樣多姿的行星生命世界,是最令人屏息的宇宙景象。

台灣島的生成

台灣島正好地處於地質活躍帶上,西為歐亞板塊、東北是琉球板塊、東鄰菲律賓板塊及南方的巽他板塊的交界處。是世界上最頻繁的地震活動地區之一。台灣島的中央山脈主要是由 600 萬年前的蓬萊造山運動—菲律賓板塊向西擠壓歐亞大陸板塊而形成。至今,菲律賓板塊仍以每年 8.2 公分的超高速度持續向西北移動。

-----廣告,請繼續往下閱讀-----

相對於 46 億年的地球,600 萬年的台灣是非常年輕的島嶼,那時古猿人才剛在非洲大陸出現呢。我們身在這個蓊鬱之島上,不能不知道和她有關的地質、地理與自然生態,當然還有人文、歷史及社會的形成過程。

——本文摘自《丈量人類世:從宇宙大霹靂到人類文明的科學世界觀》,2022 年 9 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
119 篇文章 ・ 362 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

0
0

文字

分享

0
0
0
令人難以置信的大陸漂移說–魏格納誕辰|科學史上的今天:11/1
張瑞棋_96
・2015/11/01 ・1180字 ・閱讀時間約 2 分鐘 ・SR值 531 ・七年級

多年以後,當德國氣象學家魏格納格最後一次在陵蘭島面對暴風雪侵襲時,將會想起26歲那年,初次跟著探險隊踏上冰天雪地的格陵蘭島時心中的悸動。那次他留在基地建造氣象觀測站,隊長與兩名隊員出外探勘人類足跡尚未抵達之處,卻就此一去不回,命喪冰原。那是他初瞥死神的陰影,但這並未令他打退堂鼓,否則他就不會一而再、再而三的來到格陵蘭島。只是這一次,死神似乎終於來到他面前……。

魏格納。圖片來源:wikipedia

魏格納雖然是氣象學家,但卻不是為了研究氣象才重返格陵蘭島,而是為了蒐集證據,向世人證明他於1912年就提出的大膽理論:大陸漂移說。他相信遠古時期地球只有一片完整的盤古大陸,後來破裂漂移才形成現今的七大洲和五大洋。這個主張聽起來一點兒也不像科學假說,反倒比較像是妄想的古老神話,難怪飽受嘲諷。

盤古大陸破裂飄移示意圖。圖片來源:Tbower@wikipedia

-----廣告,請繼續往下閱讀-----

魏格納當然有其根據,最明顯直觀的線索就在地圖上。看看南美洲東邊與非洲西邊的海岸線是如此吻合,絕不可能是巧合,甚至其它大陸也大致可以湊在一起。這絕不是異想天開的拼圖遊戲,因為還有其它許多現象唯有用這個理論才說得通。例如各大陸冰河期的冰川從南北兩極往前延伸,照理說最前緣都應該會推進到氣溫相當之處,也就是緯度位置應該差不多,但實際上卻相差甚大。如果把這些大陸拼湊在一起,冰川前緣就都落在約莫相同的緯度了。

還有化石證據。一些被大海阻隔的大陸都出現相同的動植物化石,而其中許多根本是無法飛翔或不會游泳的物種,若非這些大陸以前彼此相連,它們如何擴散出去呢?1912年,英國探險家史考特(Robert Falcon Scott)在南極找到舌羊齒植物化石,更可證明這一點。但這些證據仍不足以令學界信服,他們寧願相信曾經存在橫越大洋的陸橋將各大陸連接起來。

魏格納的大陸漂移說之所以無法令世人接受,在於他無法提出一套理論,解釋是怎樣的動力機制竟能使大陸移動。限於當時的科學知識,的確找不出有說服力的解釋,但魏格納仍堅持信念,他決定測量格陵蘭島相對於歐洲大陸的位移,直接證明大陸真的會移動。於是他於1930年第四度來到格陵蘭島,但卻被困在風雪之中……。

魏格納終究沒有機會提出證明了。就在他剛過五十歲生日的第二天,魏格納死於冰天雪地之中。他的屍體半年後才被發現,但他的大陸漂移說卻深埋逾三十年,直到海底擴張的現象被證實後,才終於獲得平反。

-----廣告,請繼續往下閱讀-----

延伸閱讀:史考特誕辰|科學史上的今天:6/6

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

-----廣告,請繼續往下閱讀-----
文章難易度
張瑞棋_96
423 篇文章 ・ 1016 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。