Loading [MathJax]/extensions/tex2jax.js

0

2
1

文字

分享

0
2
1

四維航跡操作真的能讓飛機完美飛行嗎?──《飛航管制的祕密世界》

臉譜出版_96
・2017/09/09 ・4051字 ・閱讀時間約 8 分鐘 ・SR值 519 ・六年級
相關標籤:

-----廣告,請繼續往下閱讀-----

  • 【科科愛看書】一直以來人們都渴望飛翔的滋味,但是,難道發明了飛機就能讓大家隨心所欲亂亂飛嗎?密如蜘蛛網的全球航線究竟是如何設計的?那麼多的飛機要怎樣才不會撞在一起?為什麼起降時要特別小心翼翼?快來一窺《飛航管制的祕密世界》,讓你知道空中飛人背後的團隊有多厲害!

完美掌握四個維度,飛機會聽話嗎?

艾姆斯研究中心有些研究員有自用飛機的駕駛執照,史帝夫.格林博士(Dr. Steve Green)就是其中一位。

史帝夫年紀與哈利相當,是年約五十的權威學者。1996 年時,他與哈利一起參與將 TMA 導入達拉斯/沃斯堡國際機場的計畫。做為專事飛航管制科學的研究領域創設初始成員之一,他深得海因茲的信賴。像是要表現他的姓氏「Green」一樣,史帝夫總是穿著招牌綠色襯衫。最初跟他搭話時,我的開場白便是:「不愧是格林先生,很適合綠色!」

2008 年,我和史帝夫在一場於西班牙塞維亞舉行的國際會議中相遇。會議的主題是在國際民航組織計畫於 2030 年正式投入使用的航機上,推行「四維航跡操作」(4-dimensional trajectory-based operation, 4DTBO)可能遇到的課題。

四維航跡操作真的能讓航管更順利嗎?圖/法新社

四維航跡是以時間(速度)、緯度、經度、高度四個維度所定義的航跡,四維航跡操作則是指操作航機沿航行效率良好的航跡飛行。航機依機種和風向等條件,存在可使燃料消耗量降至最低的「最適」四維航跡。航機從機場出發直到抵達目的地機場為止,如果引導航機沿航行成本最低、維持準點抵達的四維航跡飛行,將是理想的飛航管理,但在實際運用之前仍有幾個需探討的課題。

-----廣告,請繼續往下閱讀-----

課題之一是航機能否沿四維航跡飛行。要達成理想的航行,必須由機師等航空公司相關人員與管制員等飛航管制服務的提供者共同協商出四維航跡。然而,航機飛行中遇到天氣變化等情況,不得不變更原先規劃好的航跡。此時,駕駛艙內的電腦與地面的管制中心,兩者如何在分隔空地兩端的情況下,分享新的四維航跡資訊呢?縱使能利用新的數據鏈路通訊,問題又回到目前的航機有辦法沿規定的四維航跡飛行嗎?

只差了一度,飛機就飛走啦!

其實,我有個無論如何都想請教史帝夫的問題,所以常有意無意路過他的辦公室,但他好像很忙,不容易遇到。史帝夫的研究夥伴吉伯特(Gilbert)來向我搭話,我說明自己有事請教史帝夫。他告訴我說史帝夫最近異常忙碌,連他都很少見到,如果願意的話,可以先跟他商量。我想請教史帝夫的問題是:

「目前的航機有辦法遵循外部規定的下降路徑,持續下降直到降落跑道嗎?」

簡單舉個例子,航機從開始下降能夠保持三度的下降角度持續下降嗎,諸如此類的問題。理論上雖然可行,利用數學模型在電腦中建構的虛擬航機模擬可如此飛行,但實際上機師能否如實操作是另一回事,原因是機師在各自駕駛艙內所操作的機器規格不盡相同。這讓我們日復一日深陷在這樣棘手的問題中煩惱不已。

「嗯~我以前做過實驗,搭載在塞斯納飛機上的 FMS(Flight Management System,飛航管理系統)中,設有讓機師輸入下降角度的功能。也聽過波音 787 上的 FMS,具有讓機師輸入下降角度的功能。但波音 777、737 的 FMS 有沒有這樣的功能就不清楚了。」吉伯特歪著腦袋說。FMS 是統合掌控航機飛行的電腦等的系統,正是所謂高科技航空器的頭腦。

-----廣告,請繼續往下閱讀-----

「就是這樣呢。有沒有辦法從外部在 FMS 中輸入下降角度,也會影響未來的管制操作吧。」我學他歪著腦袋回應。

我的問題源自於,設想為實際運用能源效率佳的下降方式 CDO,固定下降角度是否可行。航機一旦開始下降即採 CDO,而不採水平飛行;然而,如果套用在高運量空域則會產生問題,因為依航機種類不同,燃料消耗效率最佳的 CDO 的下降角度也有差異。

在下圖 8-1 中,試著並列數架航機的 OPD(optimized profile descent,最佳軌跡下降)垂直路徑。雖然同時會受到風速和風向影響,但如波音 777 的下降角度多設在 2.5 度上下,就算最大也約莫是 3.5 度。升阻比(lift-drag ratio)優於波音 777 的波音 787,下降角度通常較平緩。升阻比是升力與阻力的比值,數值越大表示飛機越容易起飛。

固定下降角度是否可行?圖/《飛航管制的祕密世界》

雖然多數人可能會想,不過就是一度之差。實際上,一度之差確實會造成懸殊的結果。例如,當航機自 4 萬英尺處開始下降,下降角度設為 2 度或 3 度,這一度之差,會讓從下降開始的飛行距離差距約 63 海里(約 117 公里)。

-----廣告,請繼續往下閱讀-----

假如因為個別航機的航跡各異而連帶使得預測困難的話,管制員很可能為了確保安全,指示過於寬鬆的航機間隔距離,最終將縮減空域和跑道的容量,使得高運量空域無法付諸實現。

我的想法是如圖8-2,事先規劃指定下降角度的路徑,在確保準時抵達下控制速度沿該路徑飛行,如此一來,既讓管制員得以預測航機的四維航跡,某種程度亦促使航機以較佳的能源效率下降。雖然自認為這是不錯的概念,但實際上自動駕駛的飛機是否真能沿指定下降角度的四維航跡飛行卻不得而知。拜訪對航機自動化系統 FMS 的機制知之甚詳的史帝夫,正是想問他這個問題。

事先規劃指定下降角度的路徑,飛機真的會延軌跡飛行嗎?圖/《飛航管制的祕密世界》

固定航行角,讓下降更順利

「原來是這樣啊⋯⋯目前的航行中並未使用像這樣的固定航行角下降(fixed-flight path angle (FPA) descent)。的確,比起航空公司的機師,史帝夫或許知道得更多。」他接著說,他也對我的概念感興趣,想加入我們的討論,並承諾遇到史帝夫時會幫忙促成會面。

幾個月後,我幾乎忘記這件事時,史帝夫造訪了我的辦公室。 「聽說妳一直在找我。之前實在太忙了,雖然已經過了好一段時間,我這星期五的下午空著,如果妳有空的話,來我辦公室討論吧。」他說道。 週五午後,吉伯特和我一同前往了史帝夫的辦公室。

-----廣告,請繼續往下閱讀-----

史帝夫認真聽我們說話,一邊翻閱起波音公司的操作手冊。 「我查了下波音 777、737 上的 FMS 的設計,妳的想法是有可能實現的。但因為 FMS 不具有直接輸入下降角度的功能,必須由機師從座艙顯示器(cockpit display unit, CDU)設定並輸入假定航點(waypoint)和設定高度。」

史帝夫認為波音 777和737 上的 FMS 的設計可以實現理想。圖/By Ronnie Macdonald, CC BY 2.0, wikimedia commons

座艙顯示器是搭載在機長與副機長間的顯示器,機師可在顯示器輸入航點的位置和高度等,讓 FMS 記憶飛行路徑。開始下降後旋即經過的地點,由機師設定為假設航點並輸入顯示器,也就是以設定高度的方式讓航機自假設航點開始持續下降飛行。因為高度會反映在下降角度上,從開始下降的航點直到降落為止,設定航機途經的航點高度,等同於設定下降角度。

「這麼說來,機師的確能夠事先在飛行路徑上設定新的航點。可以在設定時將高度一併輸入 FMS。」如此一來,自動駕駛能更新成新的飛行路徑。

「下降路徑是以直線連結每一航點的設定高度。在這樣的設定下,自動駕駛沿下降路徑引導航機飛行。」 史帝夫繼續說著,一邊開始在報告紙上振筆疾書。 「其實,我以前曾經想找個時間,在大型飛機上驗證固定下降角度的 CDO(FPA下降),只是礙於沒有時間。」他說完後,繼續在紙上寫著。

-----廣告,請繼續往下閱讀-----

「像是這樣,替巡航高度不同的航機,設定高度相異的閘口。FL360 以上的航機,從 FL350 進入 FPA 下降的路徑。只要提供幾個可供選擇的下降角度,就能配合風向及各機種的性能。順風較強的時候,降低下降角度。」〔譯注:FL為flight level(飛航空層)的縮寫,由一標準大氣壓所推算出的飛行高度,FL360(飛航空層360)代表 3 萬 6 千英尺〕史帝夫撕下那頁他手寫的備忘錄,朝我遞過來。

「能夠在航空公司的飛行模擬器上實驗就好了。妳有機會的話,請去驗證看看吧。」

我向史帝夫表示謝意,說著會把這當做未來的研究方向之一。正當我打算離開的時候,史帝夫微笑著對我說:「抱歉讓妳等這麼久。」

帶著備忘錄,再次起飛吧!

隔天,我一如往常在住家附近慢跑後回到家中,同住的 NASA 同事一臉嚴肅地等在餐廳。

-----廣告,請繼續往下閱讀-----

「就在剛剛接獲通知,史帝夫.格林過世了。」

我不敢相信,我們昨天才在一起討論而已。那天夜裡,我盯著史帝夫給我的備忘錄茫然不已。

簡單的備忘錄竟成遺言,但旅程尚未結束。圖/By congerdesign @Pixabay

 

週末過後的星期一,研究領域主任請我一起來到聚集史帝夫同事的會議室。「正如大家接到的通知,我們敬愛的史帝夫.格林驟逝。實在令人深感遺憾,讓我們一起來說說關於他的事,以追悼懷念他。」主任起頭說道。艾姆斯研究中心的同伴紛紛分享有關史帝夫的故事。待同事寬厚且深得大家信賴的史帝夫是何其出色的那些話語,讓溫暖的氛圍滿溢會議室。

正當我準備起身離席時,主任來到我的面前。「妳和吉伯特及史帝夫的討論,就這麼變成他最後一件工作。我想你們可能很震驚,心情如果無法平復的話,請找艾姆斯研究中心專屬的醫生談談,他可以幫你們做心理諮商。」

-----廣告,請繼續往下閱讀-----

約兩週後的某天,我來到吉伯特的辦公室探看,看到他一如往常坐在桌前的樣子,總算感到安心。「嗨,吉伯特。」打過招呼後,他落寞地述說自己仍處於混亂狀態。面對同事的英年早逝,確實使人難受,何況是長年共處同一研究團隊的人,益發令人悲慟難耐。

「吉伯特,我想再跟你商量一件事。史帝夫留給我的備忘錄,我該怎麼處理呢?感覺好像被託付了研究課題一樣。」

「那張備忘錄,史帝夫已經交給惠理了,希望妳能慎重對待。」吉伯特聽完,靜靜地回答。

那天晚上,我把已經變成遺言的史帝夫備忘錄,貼在預計帶回日本的研究筆記本上,決心要實際驗證史帝夫留下的想法。雖然他的時間已驟然停止,我的人生仍未止息。


本文摘自《飛航管制的祕密世界:從地面到天空,從管制台到駕駛艙,飛航第一線直擊全紀錄》臉譜出版。

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
臉譜出版_96
88 篇文章 ・ 255 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【成語科學】聞雞起舞:勤奮背後的生理時鐘
張之傑_96
・2025/07/05 ・1494字 ・閱讀時間約 3 分鐘

晉朝分為西晉和東晉兩個階段。西晉末期,二十來歲的祖逖和劉琨,在京城洛陽當個小官,兩人是很要好的朋友。當時內憂外患不斷,兩人都有大志,一心報效國家。

祖逖和劉琨經常住在一起,天將亮時,一聽到雞叫聲,就起來舞劍,希望能文能武。這就是成語「聞雞起舞」的由來。因此聞雞起舞,比喻勤奮向上、努力不懈。

晉朝祖逖劉琨聞雞鳴,共舞劍,立志勤奮。後世也以聞雞起舞,形容一個人勤奮、努力不懈。圖 / unsplash

西元 311 年,匈奴人攻入洛陽,北方大亂。317 年,琅琊王司馬睿(晉元帝)在建康(今南京)即位,史稱東晉。在這之前,史稱西晉。當北方陷入混亂時,祖逖率領一批人南下,輔佐晉元帝,封為鎮西將軍。劉琨留在北方抗擊異族,做到都督。兩人都發揮了各自的文韜武略。

談到這裡,該造兩個句了:

-----廣告,請繼續往下閱讀-----

我們要有光明的前程,就要學習聞雞起舞的精神,勤奮學習。

他天一亮,就起來鍛鍊身體,這種聞雞起舞的精神令人欽佩。

接下去要談談這個成語的科學意涵了。公雞之所以在破曉時啼叫,主要是「生物鐘」的關係。生物的生長和作息,都有一定的規律,這就是生物鐘。譬如牽牛花都是早上開花,蟋蟀傍晚後才會鳴叫,類似的例子不勝枚舉。

公雞呢?脊椎動物的大腦與小腦間,有個內分泌器官,叫做松果腺。晝行性動物,到了晚上松果腺會分泌褪黑激素,讓動物安然入睡。天亮時受到光線的刺激,褪黑激素分泌減少,動物就會醒來。公雞對光線的變化特別敏感,破曉時的微弱光線變化,也會讓牠醒過來,昂首啼叫。人們聽到公雞叫聲,就知道天要亮了。

公雞的大腦裡有松果腺,能感受破曉的微光變化,天一亮就減少褪黑激素分泌,牠便會醒過來,昂首啼叫。圖 / unsplash

公雞一般在天剛亮時啼叫,夏天在四、五點鐘,冬天在五、六點鐘。在沒有鐘錶的時代,公雞報曉是人們的重要時間指標。章老師小時候家裡沒有鐘錶,主要靠公雞啼叫,和固定時間前來叫賣的小販吆喝聲,知道大概是什麼時候了。

那麼,公雞醒來為什麼啼叫?雞是一種群居性動物,每個群體由一隻強壯威武的公雞當領袖。啼叫主要是宣示領域,也就是告訴其他雞群,這個地盤是我的,你們不要進來。

-----廣告,請繼續往下閱讀-----

因此,破曉時一隻公雞啼叫,附近的公雞就會跟著啼叫,都是宣示領域的意思。既然公雞啼叫是一種領域行為,所以公雞白天也會啼叫。小朋友,你到動物園的兒童動物區遊玩,聽過大白天公雞啼叫嗎?

寫到這裡,還有點空間,順便介紹另一個成語——擊楫中流。祖逖率軍北伐,渡過長江,船到中流時,他慷慨激昂的擊打著船槳,立誓恢復中原。這個成語用來比喻:成就一件事的決心和激情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
藥雖然少療效卻不差!多發性硬化症治療新策略,生活不再被病耽誤
careonline_96
・2025/07/04 ・2627字 ・閱讀時間約 5 分鐘

藥少不等於效果差!多元的治療選擇讓多發性硬化症患者 生活不再被病耽誤
圖 / 照護線上

多發性硬化症(Multiple Sclerosis, MS)是一種反覆發作、易造成神經損傷的中樞神經系統自體免疫疾病,好發於 20 至 40 歲青壯年,影響範圍涵蓋視力、運動神經、知覺、認知與生活功能。過去許多病友需要長期規律治療與密切追蹤,難免會對「是不是要一輩子吃藥」感到焦慮,也常覺得生活節奏受到限制。隨著醫療照護方式的進步,如今治療策略更強調個別化與提升生活品質,讓病友在兼顧療效的同時,也能擁有更多掌握與選擇的空間。

多發性硬化症中樞神經受影響
圖 / 照護線上

資訊透明、參與治療選擇 提升患者依從性與心理安全感

亞東紀念醫院神經醫學部朱昱誠醫師表示,多發性硬化症治療的核心目標包括減少復發次數、減少將來的失能以及維護認知功能,這三大面向也是病人最關心的生活關鍵。由於多發性硬化症好發於 20 至 40 歲的青壯年族群,患者常正處於職涯、婚姻、生育等重要階段,因此治療不只要有效,也要能融入生活節奏。

多發性硬化症警訊
圖 / 照護線上

朱昱誠醫師強調資訊透明是關鍵,在診斷初期詳細說明病灶位置、目前健保給付的治療選項與相關藥物治療方式,從每日注射、每兩週注射,到口服藥物甚至單株抗體等,每種藥物的頻率、副作用與便利性都有所差異。朱醫師認為:「讓病人參與治療選擇,能提升順從性與自我掌控感,也能減輕對疾病的焦慮。」

有些患者會擔心復發時無法即時處理,醫師會視個別情況開立口服類固醇作為備用藥物,協助病人在出現初步復發症狀時可以立即應對,增加對疾病的掌握感與心理安全感。朱醫師也指出,治療依從性與病人的理解和參與密切相關,當病人清楚知道目前使用的藥物機轉與理由時,往往更能穩定持續治療。目前也有部分藥物屬於低頻率給藥的治療選擇,可穩定控制病情長達數年,不過這類藥物多屬健保第二線使用範圍,需依病況變化與審查制度申請。除了藥物,醫病關係的建立與心理照護有同等重要,多發性硬化症病友常常面對反覆復發的不確定性而感到孤立或焦慮,醫師會視個案狀況轉介身心科諮詢,或鼓勵病人參與病友團體,從他人經驗中獲得支持與希望,初次治療經驗若順利、反應良好,常能增強病友面對疾病的信心。

-----廣告,請繼續往下閱讀-----
多發性硬化症規律運動有幫助
圖 / 照護線上

朱昱誠醫師也提到,規律運動在多發性硬化症的治療中扮演重要角色。根據世界衛生組織(WHO)建議,患者每週應進行 300 分鐘的中度的有氧運動或進行 150 分鐘高強度有氧運動、兩次重量訓練與三次平衡與柔軟度訓練,對改善身體機能有實證效益。朱醫師分享:「個案一旦確診就停止運動,反而更容易退化。我會鼓勵病友重新建立運動習慣,因為這對身心都是正向的支持。」

充足溝通與特別門診 病友在信任中找到最適合的治療節奏

「用藥的選擇是一個重大的決定。」輔大醫院神經內科林柏辰醫師表示,在開始治療前,需要與患者了解對疾病的想法、目前的生活型態與未來規劃,再根據藥物使用方式與病人對治療的期待,共同決定後續的治療方向。林柏辰醫師提到,病人能否長期配合與穩定用藥,往往不只是取決於藥效本身,而是來自於能否理解與信任整個治療過程,多發性硬化症的治療是一條長遠的路,特別重視生活品質的病友,常會傾向選擇使用方式簡單、頻率較低的口服藥物,以降低對日常作息的干擾。

多發性硬化症及早介入
圖 / 照護線上

林柏辰醫師說明,許多患者在面對治療時,除了擔心病情本身,更常同時承受來自職場、生涯規劃與心理層面的壓力,這些情緒若沒有被適時理解與釐清,往往會影響後續的治療選擇與配合度,林醫師進一步指出,門診中最容易被忽略、卻也最關鍵的資源是「時間」,只有在充分的溝通下,病人才有機會安心做出適合自己的決定,有些病人只是沒機會完整說明自己的情況或對藥物有疑問卻不敢問,結果變得越來越焦慮,進而影響對治療的配合。

為了讓病人能安心做選擇,醫師會安排病人至多發性硬化症的「特別門診」,看診時有較充裕的時間協助病人釐清疑問、說明治療方式,避免單次看診匆促而錯過病人最真實的聲音。只要病人能清楚知道治療目的,了解哪些藥是安全、可執行的,依從性自然會提升,心理負擔也會跟著減輕。

-----廣告,請繼續往下閱讀-----

越早介入越能穩定 與多發性硬化症和平共處並非不可能

多發性硬化症雖為罕病,但並非絕症。隨著醫療進展與健保制度支持,病友已有更多低頻率、高效能的藥物選擇,只要及早介入、正確配合,病情可以被長期穩定控制,甚至達到近似緩解的狀態。醫師也提醒社會大眾,多發性硬化症不只是「疲倦與眼花」,更不該被誤解或輕視,透過醫療、心理與生活三方並進,病友依然可以活出自主、穩定且充實的人生。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。