3

7
0

文字

分享

3
7
0

你家耐震嗎?房屋防震要點大揭密!——國研院國震中心專訪

科技大觀園_96
・2021/02/15 ・5557字 ・閱讀時間約 11 分鐘 ・SR值 538 ・八年級

在過年前進行全家大掃除,是我們多年來的傳統習俗,象徵除舊佈新、擺脫過去一年的穢氣與厄運,用煥然一新的家宅迎接新的一年,祈求能夠帶來好運。以往大掃除期間,大家的眼中釘不外乎是灰塵、污垢、垃圾,時逢新冠病毒疫情, 使得 2020 年對許多人來說,是充滿疾病、災厄的一年,想必今年大家會連肉眼看不見的病毒與細菌通通都考量在內,透過消毒、滅菌的行動,力求讓 2021 年的家人們一同遠離惡疾。然而,身為臺灣人可能面臨的危機可不僅如此,這樣的打掃還遠遠不夠!

請讓我們回到 5 年前—— 2016 年 2 月 6 日,除夕夜前一天,本該是團圓、溫馨而和樂的時刻,全臺卻在凌晨 3 點 57 分天搖地動,臺南維冠大樓轟然倒塌、奪去上百條生命,震撼全臺。 

臺灣島位處板塊交界處,作為土生土長的臺灣人,小地震對我們來說可謂是家常便飯,每過一段時間,更可能會發生致災性的大地震,奪去我們的生命與避風港,可惜的是,即使如此,「為地震做準備」卻甚少出現在我們過年前的檢查清單之中,讓我們無法用行動擺脫地震帶來的厄運。

2016 年因地震倒塌的維冠金龍大樓。圖/Wikimedia commons

這回,我們特別採訪了國家實驗研究院國家地震工程研究中心(以下簡稱國震中心)的鍾立來副主任與邱聰智副研究員,請他們與我們分享大掃除期間可以注意哪些小細節、如何檢視住宅的耐震力,讓我們有效遠離地震的危害!

過年大掃除,居家防震的黃金好時機

過年大掃除時,我們可以透過哪些小細節來提升住宅的安全呢?為了清除家中所有的灰塵,我們通常會重新整理屋裡的雜物,甚至改變所有家具的位置,因此大掃除是全盤檢視、改善居家防震安全的最佳時機。 首先,當我們將櫥櫃擦拭乾淨、準備將雜物放回櫃內時,大家務必謹記「重物放底層」的原則,藉此降低櫥櫃的重心、避免櫥櫃在搖晃中倒塌,同時也建議可以將櫥櫃固定在牆壁上,或使用支撐桿、訂製上層櫃,讓櫥櫃可以連接天花板與地板,讓櫃子更加穩固。

邱聰智表示,臺灣地震雖然頻繁,但致災型地震的發生機率並不高,只要建築符合政府擬定的規範,大部分的情況下,臺灣九成以上地震都不會讓房子損害、倒塌。 

但我們可以發現,房屋崩塌的消息不多,卻時常有天花板砸傷人、櫃子壓傷人的新聞。 

由此可知,傷害我們的通常不是房屋結構的本身,而是「非結構性的設備」,如天花板輕鋼架、管線系統、招牌、隔間牆、家具設備等等,因此,改善危險的非結構性設備就是最簡單、最快速有效的防震行動! 

邱聰智也介紹了國震中心與業者合作開發的防震家具,像是防震櫃、防震桌,這些特製家具的承載能力都非常高,能夠承受 100~200 噸的壓力都沒問題,即使不幸遇上致災性大地震,房屋塌陷,防震家具也可當作避難空間並減少傷亡!過年汰換老舊家具的同時,不妨可以參考參考,為自己的防震安全增添更多保障。

X、I?透過震後裂縫,讀懂屋子隱藏的密語!

當你挪開衣櫥、書櫃,露出背後的牆壁和梁柱時,上面是否出現各式各樣地震留下來的裂縫呢?若能判讀這些裂縫,就可以初步判斷房屋的損壞程度! 

鍾立來慎重地告訴我們,對一棟建築而言,建築結構的重要程度依序是:柱、梁、牆、板,一但柱子受到嚴重損害,將會提高建築全面崩塌的機率,而受損的橫梁則可能造成局部塌陷。

 邱聰智以兩種裂縫為例子,分享了這些裂縫背後隱含的關鍵意義。 

由於地震會讓柱子左、右雙向搖晃,因此將分別產生兩條斜向、45 度的縫隙,留下 X 型的形狀,而 X 型裂縫象徵著「脆性」的剪力裂縫,若柱子上出現嚴重、寬大的 X 型裂縫,通常代表柱子已經失去支撐的力量,必須立刻離開或是請專業技師前來處理。

大掃除時,也請大家細心檢查屋内的震後裂縫!圖/國震中心提供

針對橫梁上的垂直 I 型、柱子上的水平一字型裂縫,其裂縫都跟鋼筋走向垂直,專業上通常稱之為彎曲裂縫,若縫隙過於嚴重,也必須盡速通知專業技師。 

裂縫百百種,若你想知道各種裂縫代表的危急程度,歡迎前往國震中心網站的指引,為家裡進行簡單的屋舍震後檢查,但必須注意,即使有指引教學,判讀裂縫也不是件簡單的事情,沒有受過相關訓練的我們非常有可能被誤導,我們只要保持警覺,注意房屋的各種痕跡,再交由專業人員協助即可。

鍾立來舉例,辦公大樓常見的「輕隔間」就是容易讓民眾誤判的陷阱,甚至引起大家的恐慌,他提醒道,當輕隔間出現嚴重裂縫時,請不必太過驚慌,這種牆面本來就沒有提供支撐力,不會影響建築的穩固性。 

倘若你對家裡的耐震安全有疑慮,需要尋求專業人士的協助,邱聰智指出,合法開業的土木技師、結構技師或建築師都是非常適合的選擇,或是前往相關公會洽詢。

你知道自己的房子幾歲了嗎?

迎接新的一年,通常也代表你長大了一歲,然而,你曾經關心過每天陪伴你的屋子究竟幾歲了嗎?屋齡與建築耐震規範息息相關,想知道你的房子有沒有符合防震安全的保障?先讓我們一起來簡單回顧耐震規範的沿革

1974 年,臺灣擬定第一份耐震設計規定,規定了全臺各地建築的耐震係數,隨後歷經多次改版,不僅考量盆地、土壤液化的特殊情形,也催生了鋼筋混凝土的施工規定《混凝土結構設計規範》,我國耐震規範逐漸與國際同步,到了 1999 年左右更進行了大改版,《建築物耐震設計規範》脫胎換骨。 

可惜的是,《建築物耐震設計規範》更新不久,尚未開始大規模施行,臺灣就遇上了 921 大地震,不少老舊建築毀於一旦。

921 大地震後的石崗水壩。圖/pixabay

邱聰智表示,不少人都聽過「921 後蓋的房子比較耐震」、「老舊建築的定義是 921 地震以前蓋好的房子」的說法,初次聽到這個說法的人,可能會誤以為是因為 921 地震損害了臺灣的建物,使得讓建築變得脆弱,然而事實上,是因為 921 大地震與完善《建築物耐震設計規範》的時機相差無幾,才有了這樣的劃界。  

日前政府推動《都市危險及老舊建築物加速重建條例》時,也都是以 921 大地震為作為主要屋齡判准。因此,以今年(2021年)為例,如果你的房子年長於 47 歲,可能代表它是在沒有耐震規範的背景下誕生的,若大於 22 歲,則屬於較老舊的建築,可能並不符合最新的耐震規範,耐震能力也不一定符合當今科學界的規範和期待。 

當然, 921 大地震後防震法規也並非裹足不前,配合著斷層與相關研究的進步和更新,政府進行了多次的修訂,目前臺灣現行的規範是 2011 年的版本。

 邱聰智透露,這個規範至今已 10 年了,為了結合最新的知識與技術,近期之內,內政部營建署將會公佈新一版的《建築物耐震設計規範》

喔不!我家是高齡老屋,難道只能打掉重練嗎?

 如果你掐指一算,發現家裡的房子是個 45 歲的中年大叔,請不用緊張兮兮地立即舉家搬遷,因為,你並不孤單!事實上有將近一半臺灣人的家,都已經超過了而立之年。 

根據內政部不動產資訊平台 108 年的數據顯示,臺灣屋齡 30 歲以上的老屋高達 410 萬戶,佔全國 47%  左右,40 年以上也有 198 萬戶。想要把這些房屋全部拆除、重蓋?怎麼可能!

臺灣的老屋數量高得驚人!我們不可能全部拆除重建。圖/Pixabay 

政府多年來積極推動「建築物實施耐震能力評估及補強方案」,對建築進行耐震評估,請專人為老屋的耐震能力打分數,再來判斷究竟該補強,還是拆除。 

邱聰智將拆除老屋的情形大略分為兩種來介紹,首先是大規模的都市更新,例如整體社區的拆除重建,而都市更新需要凝聚整個地區居民的共識才可以達成,使其難度非常非常高;其次是個人住宅的危老重建,雖然難度較低,但對大部分民眾而言也並非簡單可行的方案,難以在臺灣大規模推廣。

 此外,因為不是所有 30 歲以上的住宅都危險到必須拆除,所以「補強」成為了適合多數民眾的選擇,只需要短短三個月到六個月的改造,就可以有效提升建築的防震安全。

除了拆牆、挑高、做裝潢,還有其他更重要的事! 

有了錢、有了時間,比起改善家裡的耐震安全,多數人更願意花錢重新裝潢,打掉大樓的牆壁、挑高天花板,用光鮮亮麗的室內設計,迎來嶄新的一年。 

殊不知,當我們買來耀眼、闊氣的室內裝潢時,失去的卻是生命財產的安危,讓整棟建築的筋骨壞光光 ,「最難說服大眾的是結構的問題」邱聰智感嘆的說。 

當年臺南維冠大樓崩毀的重要原因,就包含了 1 樓大廳過度挑高、牆壁數量不足,因此形成了軟弱底層,俗稱軟腳蝦,使得高樓在強震之下搖搖欲墜、轟然倒塌。花蓮統帥飯店、雲門翠堤大樓也是相同的道理。

日前國震中心大力推動「階段性補強」計畫,以私有建築物為主要改造對象,若是發現大樓的耐震力不足,即可以申請階段性補強,補救公寓大樓軟弱的底層。 

因低樓層通常都是公共空間,所以補強期間通常不會侵犯到大樓住戶的私人空間,大樓住戶比較容易形成共識,若經耐震評估發現大樓的耐震能力相當危險,政府最高可以補助 450 萬元(補助上限為總金額 85%),減輕所有住戶的負擔,在少少的經濟和時間成本之下,完成危老住宅的改造工程。

大部分人的擔憂:補強後,我家房價會不會下跌? 

有趣的是,在國震中心推廣此計畫過程中,大多數民眾最擔心的事情是:「補強老屋以後,房價會不會下跌?」民眾擔心補強大樓後,補強工程會給外界一種「這是危樓才需要補救」的錯誤印象。

「修復跟補強並不一樣!」邱聰智認為我們需要從法令、規範下手,才能有效扭轉這種錯誤的概念,舉例而言,若補強後的大樓在不動產聲明書能有相應的註記,藉此彰顯該大樓經過評估、補強,確定已達到耐震的標準,即可達到鼓勵的效果。 

實際上這樣的想法在其他國家已行之有年,以日本為例,若大樓完成耐震改善門口就有相應的告示牌,反之紐西蘭則會在危樓門口貼上警示牌,限期改善。邱聰智表示各國國情不同,他國的作法不一定能照單全收,近年來,國震中心也積極擬定和準備推動相關法令的修訂。 

有不少國家也因地震所苦(如:日本、美國、澳大利亞)並各自發展出相關的建築政策,我們應該互相觀摩、參考並且因地制宜。圖/Pixabay

臺灣階段性補強計畫自 2019 年開始正式地大力推廣,而美國、日本、紐西蘭早已實施補強政策長達數十年,因此各國有許多經驗和政策都相得值得臺灣借鏡,以建築條款為例,在推行補強政策期間,各國相關建築條款通常都會有相應的鬆綁,以免住戶申請了階段性補強補助後,卻因老屋不符合最新的建築規範,反而被稽查、檢舉。

若相應法規沒有鬆綁,民眾不僅需要花錢進行耐震補強,可能還會面臨老屋違規的相關罰款,得不償失,大大降低居民申請的意願。

新年心技能,一起學會面對地震的兩大心法! 

我們必須做足心理準備,一起面對可能充滿機運、挑戰和危險的新年。

住在臺灣,地震是難以預料也難以避免的天災,我們究竟該如何調整心態才能面對突發的地震呢?身為國震中心的資深學者,鍾立來用他的經驗總結出了兩大心法:謙卑與自信。

首先,臺灣位處於板塊交界地帶,我們無法百分之百排除這樣的災害,面對大自然的力量,我們必須習得謙卑,不得無視來自地震的威脅。 

然而謙卑並不等於屈服,如果有所作為、努力求知的話,我們就能夠有效減緩地震的災害,有自信的、有骨氣的發揮屬於人類的力量,舉凡研發地震預警系統、改善耐震建築的規範、不要過度貪心的裝潢、違法擴建,致力住宅防震與補強,都是努力生存下去的作為。

參考資料

  1. 國家地震工程研究中心 – 居家耐震安全自主檢查
  2. 國家地震工程研究中心 – 居家抗震
  3. 國家地震工程研究中心 – 街屋耐震資訊網
  4. 國家地震工程研究中心 – 科普系列


數感宇宙探索課程,現正募資中!

文章難易度
所有討論 3
科技大觀園_96
82 篇文章 ・ 1090 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。


2

8
3

文字

分享

2
8
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 16 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook