Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

溪流的故事從河說起:有多久沒去水岸走走了?

eeft_96
・2017/10/24 ・3021字 ・閱讀時間約 6 分鐘 ・SR值 521 ・七年級

-----廣告,請繼續往下閱讀-----

作者提供
「看到出海口了!」幾個孩子爬上大石頭指著前方,像魯夫站在甲板上看見遠方新島嶼的興奮模樣。今天這群孩子像大人一樣,協助溪石下水生昆蟲的翻找調查;而同行的大人則成了小孩,趴在水面看魚來去穿梭,躺入水裡不想回到陸地的世界。

沒有下溪之前,你不會知道的事

我們都知道溪流最後匯集入海,但他入海前是跌宕地熱情投入,還是平緩地欲迎還拒?

40 年前,有座公路未開通前的臨海石拱橋,海邊的梯田人家會過橋跨溪交通、也沿著溪邊的圳溝取水灌溉,或許因為溪很小所以不被認為重要,所以這裡有什麼、住了誰,也不會有調查告訴我們,直到飛行攝影機被食蟹獴盯上、下溪經過潭邊岩壁看到紫嘯鶇的巢……

這兒有名的是海,有很多漁港、也有很多人浮潛。但如果沒有下溪,不會知道距海 200 公尺樹蔭茂密的溪谷裡,閃著藍紫光芒的鰕虎公魚護衛著繁殖地盤;被放流的笛鯛魚苗背著 T 型標記,在還沒長成一米身軀前,也會悠晃繞進溪裡。

-----廣告,請繼續往下閱讀-----
圖/作者提供

不同於兩座橋後的烤肉人潮,我們在這裡看見了既熟悉又陌生、和人類世界平行但共存的流域之生。這是貢寮小溪的日常,多樣的鄰居源自於她的自然不工整。而她曾經要被整治成平整的河岸、平緩的河床,因為很多因素,包括規劃者不知道這裡有這麼多些共生的鄰居們依賴著他的原始野貌。

隔山如隔行,規格化的治理行不通

我們和溪流的關係正被一步步規格化:戲水需要在工程整理過的整齊河岸,而近年流行的「生態藍帶」,常常把生態賴以累積的大小礫石和複雜植生剷平。

因為面對極端氣候的慌張和民意壓力,我們想用最快的方式宣告不再缺水、不再淹水,所以忽略了上游加速排水就會增加下游積水的可能,忘記了平時有水用,是因為大地像海綿一樣貯存天雨。甚至在美麗的原始河川泛舟做生意之後,開始嫌棄那刺激及風險,想要把太刺激的激流整平,忘了這些溪石都是秀姑巒溪之所以孕育文化並受遊客喜愛的主因。

在這些需要有效率有依據的規格化作業中,坐鎮中央的人會忘了不同的氣候造就河溪不同的豐枯節奏、不同的地質地形也早揭示了風險所在。

-----廣告,請繼續往下閱讀-----

更糟的是我們民眾都把河溪的事交給政府處理,而負責的主管機關專業可能只在排水或坡地安全,因而忘了河溪還有平時的生態功能,也忘了河溪附近生活的人們,最能蒐集她或溫柔或咆哮的不同面貌,最知道什麼季節坐在哪顆石上最安全舒服,最有機會察覺深潭或河灘有哪些動物會出沒。

圖/作者提供

Immersion+UX 環境治理也需要沈浸式和參與式設計

隔一座山,地質地形就不同,溪況魚況也會不一樣。專業資源多半跟著專案走,對於還沒有要治理的溪流少有資源會去瞭解,也沒有精準研究的目標。而一旦需要做了,時間又很倉促。

但當更多住在水邊的人,能長期地用感受觀察記錄,真實的現象及變化的節奏,有機會提供更多治理實作的元素。這就好比語言文化的「沈浸式」學習累積,只需要,有群線民常常走向一條溪。

台東荒野的「野溪調查小組」,算是台灣的先驅團隊,一條一條走,準備為台東的溪流立傳。而且,河溪如同其他環境資源,具有多功能的生態系服務(Ecosystem Services)。

-----廣告,請繼續往下閱讀-----

當治理需對多元需求的使用者交代,可以透過參與式設計蒐集不同的「使用者經驗」。河溪的多元使用者包括那些不會說話的生物們,等到他們用滅絕來表達就來不及了,透過長期的觀察記錄,或許我們也都能幫魚蝦說話。

當更多住在水邊的人,能長期地用感受觀察記錄,真實的現象及變化的節奏,有機會提供更多治理實作的元素。圖/作者提供

他山之石:借鏡日本經驗,作自己的溪流管家

環境條件相似的日本常有我們可借鏡之處。最近為人津津樂道的經典,在靜岡縣三島市,從有豐富湧泉的源兵衛川開始,一連串一條接一條河溪的守護行動。

其起心動念只是想恢復梅花藻下有魚兒穿梭的景象,從撿垃圾開始,將熟悉傳統的老人、朝氣蓬勃的孩子、青少年的學習,都結合在一起;這當中還有不同專業的企業投入、對城鎮有整合發展想法的公部門投入制度與資金的支援。

因而一條曾受污染的河川,重新成為可以散步想要親近的帶狀有機體。近期「社區大學全國促進會」參訪交流「Groundwork三島」數次,可以期待他們後續的報導。

-----廣告,請繼續往下閱讀-----
「日本水大賞」鼓勵地方政府、學界、民間團體提案守護河溪從產業再興到瀕危生物保護等不同面向。圖/日本水大賞官網

日本的生態復育、觀光推動及地域學習,很注重在「水邊的景觀和體驗」。

全國各地都有「水辺の楽校」,長期帶動市民參與水邊的觀察,並且透過臉書部落格等讓市民看到這條溪上的季節種種及變化。並加入河溪棲地的整備營造。國土交通省也與民間學界合作,持續辦理「日本水大賞」,到今年已是第 20 回,鼓勵地方政府、學界、民間團體提案,守護河溪從產業再興,到瀕危生物保護等不同面向。

這些行動的背後都還有環境省自然環境局的資源監測投入,紮實地把河溪生態視為整個社會重要的自然資本。

如果我們不開始行動,有一天,會讓身邊的河溪只剩下排水的功能,而失去那些灌溉生命和生活經驗的多元豐饒。圖/作者提供

其實日本經歷過很長一段時間,在都市發展及災害治理中讓河溪越來越人工化,一樣降低了生態的豐富度,在漫畫《魚河岸三代目》描述洄游漁業資源的凋零時都有翔實的批判,知名兒童文學作家阿部夏丸的小說,也從生活在溪邊的孩子眼中深刻描繪【註 1】。

-----廣告,請繼續往下閱讀-----

挽救這些環境資本的覺知,透過從小情感的連結而被喚醒,因而當接近城市的次生自然地區的生態水準降低時,日本開始確保不要再有更多損失,並且在更少人煙的自然裡投入更多的保育支持。

每月一次來巡溪

每個月有一天「巡溪日」,從擁有十多條有名字的溪流的貢寮區開始,一起探索、記錄溪裡的發現及溪岸的環境,就算一起走走水岸也好。圖/作者提供

這些支持,不是固定形式的四處沿用,而是從生物的角度觀察與瞭解自然系統要如何運作,再試著把這樣的運作力還給自然。在多樣性更高的台灣,山高雨狂,一條河溪的恩賜和肆虐,每每變換著面貌,影響著我們的生活。

如果我們不開始行動,會因為瞭解和想像越來越少,有一天,會讓身邊的河溪只剩下排水的功能,而失去那些灌溉生命和生活經驗的多元豐饒。

所以,從守護水廊道的和禾水梯田的「保育和夥人」開始,我們寫下:

-----廣告,請繼續往下閱讀-----

「是的,我們有點貪心,巡了上游的田水,還想找你們一起巡下游的溪!」、「說真的,我們不去看看,就沒有人知道所有的這些影響及季節節奏如何發生著!」

於是每個月有一天「巡溪日」,從擁有十多條有名字溪流的貢寮區開始,一起探索、記錄溪裡的發現及溪岸的環境,就算一起走走水岸也好。【從河說起】,未來不一定在哪裡,我們將在這裡邀請雞婆的你加入!

註釋

  • 【註 1】魚河岸三代目《vol.7一尺香的眼淚》、《vol.10充滿希望的鰻魚》;阿部夏丸《說謊的阿大》、《不會哭泣的魚》,在台灣都有出版。很生動地描述了日本受治理影響的河溪生態。
-----廣告,請繼續往下閱讀-----
文章難易度
eeft_96
10 篇文章 ・ 0 位粉絲
人禾環境倫理發展基金會成立於2007年,以「推動體制內環境教育的落實」、「推動環境學習中心的建構」和「擴大社會對永續環境議題的關注和參與」為願景,持續致力於各式環境學習中心場域之教育推廣與經營管理工作,運用各種媒介平台,向大眾推廣大自然服務及水資源等主題的重要性,並持續累積發展不同主題之環境教育教材供教育單位使用。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

4
5

文字

分享

3
4
5
酸雨可能會讓森林更「口渴」?
阿咏_96
・2021/01/18 ・2724字 ・閱讀時間約 5 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

近年來,酸雨已經變成大家所熟悉的空氣污染問題,酸雨不僅對建築物、古蹟和金屬物質產生嚴重腐蝕,導致人類經濟與文化資產的損失,同時也會對整個環境及生態系造成影響。

被酸雨腐蝕的石像。圖/Wikimedia common

近期美國來德大學 (Rider University) 發表一項酸雨影響森林的研究結果,這是一項在阿帕拉契山脈進行十年的實驗,從 1989 年開始,美國林業局每年固定三次,在一片面積 34 公頃的森林澆灌酸化硫酸銨肥料。

結果發現,以酸化硫酸銨肥料(作為模擬酸雨)澆灌的森林,與未經酸化處理的森林相比,每年吸收的水分大約多了 5%,並在兩年中增加了 10%,經過處理的流域每年平均要增加大約 1,360 萬升水。而在研究期間,他們還發現,滲透到被酸化森林土壤水裡的鈣濃度也下降了,這可能是森林耗水增加的原因之一。

圖一:酸化影響森林每年蒸發水分的量。酸化處理過的蒸發量與對照組(未酸化)的差異,正值表示酸化組的蒸發量高於對照組。灰色框為預處理階段,2004 年未納入統計,因那年對照組的植物生長異常高。圖/原始文獻2

這究竟是怎麼回事?酸雨對森林的影響真的這麼大嗎?帶走土壤裡的鈣和森林「口渴」的關係是什麼呢?

-----廣告,請繼續往下閱讀-----

要奪~酸才可以叫做「酸雨」?

根據環保署的資料,過去各國多將 pH 值小於 5.6 的雨水界定為酸雨,那 pH 值 5.6 這個數字又是怎麼來的?事實上,pH值 5.6 是大氣中二氧化碳含量為 330ppm 時,純水之酸鹼度的平衡值。

BUT!好像有哪裡怪怪的⋯⋯

因為自然界中也有其他酸性物質會影響雨水的 pH 值,例如甲酸等其他有機酸,所以大氣中即使是未受人為污染的雨水,pH 值也會介於 4.7 至 5.3 之間(也就是說,「基本款」的雨水就已經比原本的酸雨標準 pH 值 5.6 還要酸了!)。

因此從 1990 年開始,許多國家及科學機構逐漸改變酸雨的定義為,pH 值小於 5.0 的雨水,目前我國也以此作為判斷標準。

-----廣告,請繼續往下閱讀-----
後來,各國與科學機構逐漸調整酸雨的定義。圖/Bibhukalyan Acharya

而我們常說的「酸雨」其實是「酸性沉降 (acidic deposition)」的俗稱,因為除了下雨之外,還有其他形式的沉降,可以區分為「濕沉降」和「乾沉降」,前者指的是空氣中氣狀或粒狀污染物隨雪、雹、雨等降水型態落至地面,而後者則是空中掉下的落塵帶來的酸性物質。

那些讓雨變酸的東東

酸雨的化學組成中,包括 Cl、NO3、SO42-、NH4+、K+、Na+、Ca2+ 及 Mg2+ 等,來源包括自然現象及人類活動。其中硝酸鹽 NO3 及硫酸鹽 SO42- 是讓雨水變酸的「罪魁禍首」,那它們是怎麼來的呢?

首先,工業活動或交通工具排放含有氮氧化物的廢氣,這些氮氧化物接著和空氣中的氧 O2 及水反應形成硝酸 HNO3 ,在水中可以解離成硝酸根離子和氫離子。

HNO3(aq) → H+ + NO3

-----廣告,請繼續往下閱讀-----
交通工具會排放含有氮氧化物的廢氣。圖/Kaique Rocha

而硫酸鹽SO42-的形成過程長得跟硝酸鹽的很像,石化燃料及火力發電廠燃燒含硫有機物,釋放出二氧化硫 SO2,接著和空氣中的氧 O2 及水反應形成硫酸 H2SO4,硫酸在水中可以解離成硫酸根離子和氫離子,導致氫離子濃度升高。

H2SO4(aq) → HSO4 + H+        HSO4 → SO42-+H+

硝酸及硫酸在降雨初期就被雨水吸收,或直接隨雨滴落到地面,都會增加雨水的酸度,造成酸雨。雖然自然界中的一些現象本來就會產生酸性物質,例如火山爆發噴出的硫化氫、高空閃電導致的氮氧化物5等等,但事實上,有超過 90% 的氮氧化物及硫氧化物是因人類活動排放的!

自然界中的一些現象本來就會產生酸性物質。圖/Andre Furtado

真相,永遠只有一個!(指)

-----廣告,請繼續往下閱讀-----

ㄟ~那關「鈣」什麼事?

從生理的角度來看,植物需要陽離子作為訊號傳遞、調節等功能,因此,土壤中陽離子減少會導致生產力降低。而鈣便是大多數植物必需元素之一,在植物生理扮演著重要角色。

其中一個作用便是水分調節,鈣像是一個負責通風報信的使者。植物的氣孔孔徑是由周圍的保衛細胞控制的,經由一連串複雜的反應調節,而這些反應共同的終點都是「鈣」進入保衛細胞。水分不足時,通常細胞之間的鈣濃度上升時,會讓通往細胞內的鉀離子通道關閉(也就是不讓水進入),接著活化細胞通往外界的鉀離子通道,降低保衛細胞的含水量,使氣孔關閉。

土壤中陽離子減少會導致生產力降低。圖/Crusenho Agus Hennihuno

而這個研究的假說之一,便是鈣會從酸化處理後的森林土壤浸出,可能引起植被用水量增加,因為鈣能夠調節氣孔關閉,缺鈣可能會造成蒸散作用增加。

結果顯示,酸化處理的確改變了處理流域的鹼性陰離子交換、土壤中的陽離子浸出,以及溪流 pH 值等,渗透到酸化森林土壤中的水中鈣含量也有所下降,證明酸雨改變土壤中鈣的供應,會顯著增加植被用水量。

-----廣告,請繼續往下閱讀-----

進行此研究的學者表示,自己也沒想到植物對酸化的反應會這麼劇烈。如果想了解酸雨對森林以及植物用水量的後續影響,還需要更多的研究證實。

雖然我們仍不確定,酸雨對於其他類型的森林是否會有相同的影響,不過,這項研究可以提醒我們的是,生態系統是這樣的環環相扣,我們所做的任何一個決定,都可能以我們不知道的方式在影響整個環境。

  1. Decades of dumping acid suggest acid rain may make trees thirstier
  2. Lanning, M., Wang, L., Scanlon, T. M., Vadeboncoeur, M. A., Adams, M. B., Epstein, H. E., & Druckenbrod, D. (2019). Intensified vegetation water use under acid deposition. Science Advances, 5(7), eaav5168.
  3. McAinsh, M. R., Brownlee, C., & Hetherington, A. M. (1997). Calcium ions as second messengers in guard cell signal transduction. Physiologia Plantarum, 100(1), 16-29.
  4. Debnath, B., & Ahammed, G. J. (2020). Effect of Acid Rain on Plant Growth and Development: Physiological and Molecular Interventions. In Contaminants in Agriculture (pp. 103-114). Springer, Cham.
  5. 酸雨 (acid rain) :組成和途徑
  6. 行政院環境保護署環境資源資料庫
  7. The Encyclopedia of Earth (EoE)
  8. Casiday, R., & Frey, R. (1998). Acid rain. Inorganic Reactions Experiment, Washington University, Word Wide Web Address: http://www. chemistry. wustl. edu/∼ edudev/LabTutorials/Water/FreshWater/acidrain. html.
  9. McLaughlin, S. B., & Wimmer, R. (1999). Calcium physiology and terrestrial ecosystem processes. Tansley Review No. 104. New Phytol, 142, 373-417.
-----廣告,請繼續往下閱讀-----
所有討論 3

0

1
1

文字

分享

0
1
1
後宮淨水記:這水竟然有毒?別怕,濾個水就沒事了
鳥苷三磷酸 (PanSci Promo)_96
・2019/04/12 ・4259字 ・閱讀時間約 8 分鐘 ・SR值 564 ・九年級

本文由益之源贊助,泛科學企劃執行

  • 文/李赫

這日,太醫照例進宮中替娘娘診平安脈。但見娘娘身體康健、臉色紅潤,對著娘娘身旁的小宮女交代了幾句平時保養的注意事項,原本就是熟慣了的流程,太醫行了禮即盤算著告退。

但見娘娘的臉色和悅:「勞煩太醫了,新春的貢茶剛剛分派份例,兄長並於終南山新得泉水一處,今早剛剛也送了進來。請太醫一同品茶吧。」,這太醫原本極嗜品茶是眾人皆知之事,聞言只妥妥謝了恩,等著品好茶。

娘娘並非精擅茶道之人,只吩咐了身旁的宮女好好沏茶。

-----廣告,請繼續往下閱讀-----

客氣接過了茶水的太醫欲言又止「這個茶……」。

喝個茶,難道也被暗算了嗎?圖/pixabay

娘娘反而緊張了起來:「這茶可有不妥?我想著是慣常的份例,也就沒有特意著人探看,該不會反而遭了哪個黑心的毒手。早知道就不該太輕信了這些奴才,這宮裡頭的人情來往……以下腦補一千字內心戲。」

「茶是好茶。」太醫掐著娘娘一串未完喘氣的空檔插話:「是水有不妥。」他讓娘娘指使宮女將所謂的「泉水」提進來。

-----廣告,請繼續往下閱讀-----

「可……可那是兄長送來的啊!怎麼可能有差錯,莫不是家裡人居然讓人插了奸細,這該怎麼可好?」娘娘揪著小手帕力求鎮靜,眼看一杯茶引發的外戚國舅家腥風血雨即將開場。

「啟稟娘娘,水應當沒教人做了手腳。」太醫看了眼來自遠方的泉水,嘆了口氣:「娘娘有所不知,無論來自何方,水中本來就很多雜質!」

最佳的溶劑,水中有哪些雜質?

眼看娘娘仍是一臉茫然,太醫只得細細解釋:「水可載舟亦可覆舟,我們日常那些髒污既然是用水清洗了,那麼不管哪樣來由的水,裡面都有可能有雜質,這個是當然。

水中的雜質如果依據顆粒大小可以分成三大類:可分成懸浮物質、膠體和溶解物質三大類。渾濁的水就充滿了懸浮物質,其大小肉眼可見,主要是由泥沙、粘土、原生動物、藻類、細菌、病毒、以及高分子有機物等組成,常常懸浮在水流之中,也都是由此類物質所造成。其次為膠體,是許多離子和分子的集合物。天然水中的無機礦物質膠體主要是鐵、鋁和矽的化合物,有機膠體物質則主要是腐殖質。而更小的雜質就是所謂的溶解物質了,主要是溶解於水中的低分子量分子、鹽類、離子和氣體。

-----廣告,請繼續往下閱讀-----

水中雜質含量甚是多元,固然有許多是好的,像是許多名泉之所以起來格外甘甜,無外乎是由於泉水中含有特定礦物質,娘娘想必也知。礦物質是對身體有好處的。但水裡也會有許多雜質可能有致病的風險,如果不過濾直接喝下,假以時日必定會對身體造成危害。」

娘娘一邊聽著一邊點頭:「幸好太醫留心,本宮獲益良多啊!那不好的雜質會有些害處呢?」

「若論水中會危害人體的雜質,大約也可以分成三類:有機物、無機物以及微生物。

有機物最有影響的種類就是農藥了。聯合國相關機構研究證實,有機磷農藥特別對兒童的神經系統有嚴重影響。而長時間低劑量的農藥累積,最終會造成內分泌系統受化學物質嚴重干擾、神經系統損傷、甚至增加致癌風險。

-----廣告,請繼續往下閱讀-----

而無機物中,危害最重的莫過於重金屬物質,即使在低濃度的情況下,就足以對身體構成損害。最嚴重的是會影響生殖系統和胚胎發展,因為胎盤無法隔絕重金屬,胚胎就會直接受到影響。而婦女受重金屬影響,可引致不、流產、荷爾蒙失調及誕下胎。

最後,許多疫病就是由沒有處理妥當的水源傳染的,以水為傳播媒介的病源包括細菌性的傷寒桿菌、副傷寒桿菌、霍亂弧菌、痢疾桿菌等;病毒型的疾病甲型肝炎病毒、脊髓灰質炎病毒、柯薩奇病毒和腺病毒等;甚至水中的原蟲如賈第氏蟲、溶組織阿米巴原蟲、血吸蟲等。因此水中的微生物也切莫小看啊!」

娘娘點點頭,沒有了稍早的慌張,臉色沉靜了下來:「那再請教太醫,水裡頭這麼多叫人不知不覺卻又有害的雜質,本宮到底該如何是好?」

太醫笑了笑,這娘娘果然是個有腦袋的:「既然知道有害,那就想辦法除掉便是了,倒也用不著慌張。」

-----廣告,請繼續往下閱讀-----

乾淨的水,有哪些講究呢?圖/pixabay

如何過濾得到乾淨的水?

水要能夠飲用,那就必須除去水中之細菌、病毒,有機物以及重金屬。一般常用的淨水的方式包含:活性碳過濾、逆滲透過濾、陰陽離子交換樹酯過濾與 UV 殺菌。

其中,活性碳過濾藉由高吸附量的活性碳吸附水中的雜質,除了可以吸收殘留於水中之氯離子之外,也可以吸收小分子以及大分子之有機物(三氯甲烷、農藥), 以及部分的重金屬物質(鉛、汞)。活性碳製造可分爲碳化活化兩個過程,碳化是將木材等原料在缺氧的高溫 500 – 750 ℃ 的條件下,熱裂解形成多裂孔性的碳結構體。在這個碳化過程中,大部分的非碳元素,如氫、氧元素藉由原料之裂解成揮發氣體而被去除。如此碳化産物碳原子包含芳香環之片狀結構,由於非常不規則,故會形成一些裂隙,這些裂隙將會在活化過程中,形成更多的微孔結構。活化則利用高溫蒸汽(800-1000℃)或化學物質(500-800℃)來清除碳化過程中存在於孔隙結構中的焦油、裂解産物,以擴大碳化材料孔隙及創造微孔,來提高孔洞、體積或比表面積,産生高吸附量的活性碳。而活化之後的活性碳,由於孔道暢通、表面積比例增加。經過活化的碳才能稱為活性碳──活化處理前後的效率差了 10-20 倍。

逆滲透過濾則是以半透膜進行過濾,由於溶解在水中的溶質無法穿透半透膜,因此只要由有雜質的一方施壓超過滲透壓(osmotic pressure),就可使水分穿過半透膜,得到乾淨的水啦。逆滲透的純化效果可以達到離子的層面,取決於滲透膜的孔隙及特性,對於離子的排除率可達 90%-98%。但逆滲透須持續耗能,且如果逆滲透設備沒有作好保養處理,則滲透膜上容易有污物堆積,造成逆滲透功能的下降。另外有些逆滲透使用的半透膜容易被氯與氯氨所破壞,因此在逆滲透膜之前,也須經活性碳及軟化器等前置處理。

-----廣告,請繼續往下閱讀-----

離子交換樹酯可分成陰、陽兩種:陽離子交換樹脂利用氫離子(H+)來交換水中的陽離子;而陰離子交換樹酯則利用氫氧根離子(OH-)來交換陰離子。氫離子與氫氧根離子互相結合成中性水。但不同的陰/陽離子交換樹酯的化學官能基 ,對陰/陽的交換能力皆有所不同。另外,如果離子交換樹脂可用於交換的位置達到飽和,淨水能力就會下降,設備就必須進行更換。

逆滲透過濾則是以半透膜進行過濾,溶質無法穿過,就如森森宮門。圖/pixabay

這時娘娘沉思了一會,又問道「所以太醫,我說那個細菌和病毒呢?」

只見太醫不疾不徐地又說了下去:

-----廣告,請繼續往下閱讀-----

「過濾掉雜質之後,還有一種專門用來對付病源的淨水法子,則是 UV 殺菌。UV 就是紫外線,波長範圍大約從 400 nm 至 230 nm ,如果劑量夠大,能破壞生物體的蛋白質與遺傳物質,使得微生物細胞死亡。1965 年 Sykes 等人發現波長介於 240-280 nm 之間的紫外線殺菌的效果最好。紫外線照射除去細菌、病毒與其能量劑量強度(功率)有關,對於除去不同的細菌、病毒所需求的強度並不相同,所以使用的紫外線燈管必須有一定的能量強度。」

水要過濾到甚麼程度喝起來才健康?

「本宮收穫良多啊!既是如此,我這就稟了皇上,把這些設備通通弄來一套!」娘娘大喜。

「那大可不必,裡面有些設備著時昂貴呢。一般喝水用水只要安全衛生,其實不需要講究著高級豪奢,這就像每府有每府的份例安排,強求太好反而徒然浪費了。」太醫頓了頓,接著說明:

如果想將用水處理至超純水的等級,光設備就要花費數十萬以上。但基本上一般用水的過濾系統目的只有一個,就是喝健康和安心挑選濾水器時可以參考相關的認證,如非營利單位美國國家衛生基金會的 NSF 認證(註1)等,喝得更安心。

日常使用的自來水從自來水廠送出時就已做過基本過濾,但水中仍有雜質。其中對我們最容易構成傷害的不外乎懸浮物、農藥、有機藥物、細菌病毒、重金屬、水中餘氯等等。懸浮物因為其顆粒大,是最容易處理的,可以經由簡單的纖維質過濾,使大顆粒卡在纖維質中而除去。至於除去農藥、藥物、重金屬、水中餘氯,可以在前面提及的幾種過濾方法中擇一,考慮到更換成本上,以活性碳進行過濾是最為划算的。至於對付細菌、病毒最好的方式則是經由 UV 殺菌,因為紫外光能徹底摧毀細菌、病毒的 DNA,讓它喪失活性。

只要透過濾水器過濾,並搭配 UV 殺菌的方式,就可以確保飲用水的健康,而且同時兼顧環保。但基本上每一道程序使用的耗材都必須定期更換,才能達到安全的功效。」

「因此娘娘這杯茶,我就心領了。」太醫拱了拱手,將沒有沾唇的茶水放回小茶几上:「娘娘的待人慈藹,這宮裡宮外眼看沒有人算計,但日常起居用水,本來就要當心啊!」

「本宮省得,之後日常用水必不會叫她們這麼輕待了。」娘娘抬手示意把新貢茶賜給了太醫。這次就未遭推辭了,大夥和樂融融安穩行禮告退。


註1:美國國家衛生基金會(NSF)成立於1944年,是一個以科學研究為基礎的民間非營利組織集結專業技術人員致力於公共衛生、安全、環境保護領域的標準制訂以及管理規劃。目前也是世界衛生組織(WHO)在食品安全與飲用水安全與處理方面的指定合作中心。(資料來源:MBA 智庫百科

參考文獻:

  1. Activated Carbon Filters
  2. What is Reverse Osmosis?
  3. Purified vs Distilled vs Regular Water: What’ s the Difference?
  4. 淺析超純水、去離子水、RO水、蒸餾水、雙蒸水的區別 !
-----廣告,請繼續往下閱讀-----