Loading [MathJax]/jax/output/HTML-CSS/config.js

0

1
1

文字

分享

0
1
1

人工智慧與深度學習,會把人類的工作搶走嗎?解析A.I.的深度學習

研之有物│中央研究院_96
・2017/08/26 ・6106字 ・閱讀時間約 12 分鐘 ・SR值 548 ・八年級

-----廣告,請繼續往下閱讀-----

深度學習 (Deep Learning)

若將資料比喻為原料(data),機器學習就是處理器(processor), AI 人工智慧相當於結果(outcome)。而「深度學習」是機器學習的一種方式,讓電腦像長了神經網路般,可進行複雜的運算,展現擬人的判斷及行為,是現今 AI 人工智慧的主流技術。

許多人試著進入「深度學習」領域,卻發現教材明明都是中文字,卻完全看不懂。圖片來源/iStock、Nick Young;圖說重製/林婷嫻、張語辰

如果上圖有打中你,本文整理 2017 中央研究院 AI 月系列活動中,國內外專家分享的深度學習思維與應用。希望能讓深度學習成為各位小智的寶可夢,在人工智慧這條路上,走出樂趣與成就感。

深度學習:讓電腦長神經,教它判斷決策

1960 年代起,科學家就試著透過各種機器學習技術,教電腦擁有人工智慧,例如會下西洋跳棋的電腦程式。但這跟現在的 AlphaGo 相比似乎不算什麼?這部分拜賜於電腦運算效能大幅提升、大量供訓練使用的資料,以及深度學習技術近幾年的突破性進展。

人腦思考仰賴神經網路的運作,科學家也透過設計函數模組,在電腦中組成「類神經網路」,讓電腦藉由餵養的訓練資料,歸納出背後的規則,做出最適合的判斷。圖片來源/iStock;圖說設計/林婷嫻、張語辰

從上圖可以看到,這是深度學習與傳統機器學習技術的最大差別:電腦有了四通八達的神經網路!透過層層非線性函數組成的神經網路、及精心規劃的權重訓練過程,電腦學會在未曾經驗過的情境下做出最適當的反應。

訓練深度學習模型就像教小孩,給予足夠的人生經驗,透過神經網路學習,讓電腦未來自己判斷怎麼做比較好。

若將深度學習比喻為手拉坏,陶土就是資料,陶碗成品是電腦自動找出來的函數(function),而目前有的「拉坯機」為 TensorFlow、PyTorch、Microsoft CNTK、Keras 等程式庫,其中 Keras 算是 TensorFlow 的官方介面,比較容易上手、適合初學者。而核心處理器 GPU 就像拉坯機的電源,若是 GPU 強大又穩定,深度學習的運算速度會更快。但最重要的是,身為手拉坏師傅的你,要如何教導電腦這位學徒。

-----廣告,請繼續往下閱讀-----

「深度」在於神經網路的層層結構

小時候爸媽會拿著圖書,教你辨認 “1″ ,”2″, “3″ 每個數字的長相,若要教電腦辨識數字 “2” ,要先從該影像一個個像素 (pixel)開始分析,經由層層層層層層層層層層層層層層層層函數組成的神經網路運算,最後判斷出這個影像「最可能」為數字 “2” 。

先教電腦定義每個影像的值,再透過神經網路的層層非線性函數運算,判斷這個影像最可能為哪個數字,信心水準比值最高者為答案。資料來源/李宏毅;圖說重製/林婷嫻、張語辰

為了達到較高的信心水準,有兩個關鍵:給與足夠的訓練資料,以及設計出優秀的神經網路。

深度學習的神經網路結構,該長什麼模樣?目前主流作法有 CNN(Convolutional Neural Network)、RNN(Recurrent Neural Network)和 GAN(Generative Adversarial Network)等等 ,各有信徒支持的優點。

深度學習常使用的三種神經網路架構示意:CNN, RNN, GAN。資料來源/李宏毅;圖說重製/林婷嫻、張語辰

CNN 善於處理空間上連續的資料,例如影像辨識;RNN 適合處理有時間序列、語意結構的資料,例如分析 ptt 電影版的文章是好雷或負雷;而 GAN 生成器(generator)與鑑別器(discriminator)的對抗訓練模式可以輔佐電腦「觀全局」,不會忘記自己做過的步驟而發生窘況,像是教電腦自動畫皮卡丘時,忘記自己已經畫了一個頭,最後畫出兩個頭。

強大的 AlphaGo 如何深度學習?

與 AlphaGo 對弈的柯潔曾表示:「與人類相比,我感覺不到它(AlphaGo)對圍棋的熱情和熱愛。我會我用所有的熱情去與它做最後的對決」。若以情感面來探討,確實為難 AlphaGo 。

因為在 AlphaGo 深度學習的過程中,訓練的資料並沒有任何熱血動漫或情書情歌,而是一張又一張專業的棋譜影像資料。台大電機系李宏毅教授以《棋靈王》漫畫的棋譜比喻說明,請見下圖。

透過眾多棋譜影像訓練,電腦可以學會根據目前棋盤上的局面,判斷下一步應該落棋於何處。本圖以《棋靈王》漫畫情節來比喻。資料來源/《棋靈王》漫畫、李宏毅提供;圖說重製/林婷嫻、張語辰

異質神經網路 (HIN):教電腦找到不同種資料的關連

除了「深度」,也別忘了「廣度」,把不同類型的資料整合在一起,可讓分析結果更精準。

來自伊利諾伊大學芝加哥校區的俞士綸教授點出,通常企業機關擁有的數據,是從各種不同管道蒐集而來,往往屬於不同型態。例如 Google 呈現搜尋結果建議時,除了看搜尋的關鍵字,也會參考使用者平常 Gmail 常用哪些字,或使用者正位於 Google Map 上的哪個位置。

這需要透過 HIN 異質神經網路(Heterogeneous Information Networks)技術,來理解並串連不同種類資料之間的關係。

俞士綸教授以藥物研發為例,在藥物合成或試驗前,可先透過深度學習分析相關資料,瞭解化合物的藥效會控制哪個基因、該基因和哪個通道有關係,或了解某個副作用會由哪兩種化合物引起 (註一)。這些深度學習的分析結果,再搭配和生醫或化學專家討論,有助縮減研發藥物的時間和花費。

透過深度學習,幫助判斷哪個藥物研發路徑比較重要(不同顏色的箭頭),及預測某個藥物能不能治療某種疾病。資料來源/俞士綸;圖說重製/林婷嫻、張語辰

深度學習,超幅提升電腦視覺能力

1960 年代,人工智慧先驅者 MIT 教授 Marvin Minsky 曾說「給我三個月,還有一位大學生,我要讓電腦可以辨識影像」,但當時電腦的聰明程度只會畫一些簡單的圓形、正方形,後來 Marvin Minsky 和學生 Gerald Sussman 宣告這個挑戰失敗。

到了 1990 年代,電腦視覺(Computer Vision)有更進步的發展,例如由 David Lowe 發表的 SIFT(Scale-Invariant Feature Transform)演算法,用來描述影像中的局部特徵,藉以偵測影像或影片在位置、尺度、角度上的對應及變異。

SIFT 電腦視覺演算法:先算出影像中每一個小區塊的方向性與梯度變化,再整合成各大區塊的方向性與梯度變化,降低資料的維度和雜訊,以利後續應用。資料來源/陳彥呈

現在大家常用的 panorama 全景攝影、3D 模型建立、VR 影像縫合等技術,皆應用到 SIFT 或類似的演算法;而 NASA 在外太空拍下火星地景照片時,也是透過 SIFT 演算法來比對地景特徵。

NASA 在外太空以俯視及平視兩種角度拍下火星地景,再透過 SIFT 演算法,辨認出同區域的視覺特徵(照片中的彩色小圓圈)。資料來源/陳彥呈提供

時間來到 2017 年,受惠於深度學習的進展,電腦視覺技術彷彿從單細胞生物進化到智人,發展出優異的影像辨識及理解技術,並成功應用於各行業與生活中。例如:在生產線上辨識紡織品花紋的瑕疵,以及網美愛用的修圖 APP ──辨識痘痘的位置並套上讓肌膚平滑的濾鏡。

影像辨識技術:早期演算法只能辨識一些簡單的特徵,現在透過深度學習,電腦可以辨識看到的汽車、自行車、行人等等,算出相對應的距離,並判斷哪些目標需要注意。資料來源/Nvidia launches Drive – the computer self-driving cars have been crying out for

運用深度學習教電腦辨識視覺特徵,發展到極致可望革新人類的生活。Viscovery 研發副總裁陳彥呈博士在演講中分享,現今 NVIDIA 的自動駕駛系統,從頭到尾只教電腦一件事:「辨認哪裡還有路可以開,才不會撞上」。秉持這個單純的概念,擴增訓練的影像資料、優化深度學習的神經網路,NVIDIA 自動駕駛系統的影像辨識正確性、反應速度和駕駛時速,不斷提升到可以上路的程度。

NVIDIA 自動駕駛系統:用深度學習,教電腦辨認哪裡有路可走,才不會撞上任何障礙物。資料來源/Volvo Cars and Autoliv Select NVIDIA DRIVE PX Platform for Self-Driving Cars

但自動駕駛車上路後,有哪些變因是神經網路算不出來的?陳彥呈舉例,當交通信號燈從黃燈變為紅燈時,自動駕駛系統會辨認燈色,並判斷該剎車停下來。但若這時後方一輛人類駕駛的車輛,可能趕時間認為應該要闖黃燈,就會撞上自動駕駛車。這該優化的是電腦的判斷力呢?還是人類的判斷力呢?

雖然將深度學習應用到電腦視覺領域,看來走在時代最前端,可以幫人類完成許多事,但陳彥呈以黑客松 (hackathon)競賽的範例來提醒,人們在進行深度學習研究時經常忽略的考量。

黑客松競賽中,學員提出用深度學習教電腦辨認「機車違規亂停」,幫助解決街道亂象。圖說設計/林婷嫻、張語辰

用 100 張違規停車的照片,加上 100 張依規停車的照片,透過 150 層的 ResNet 深度神經網路來訓練電腦,辨認出違規停車。聽起來是很棒的點子。

陳彥呈以過來人的經驗分享,這最大的挑戰在於:第一層輸入訓練電腦的影像資料中,「機車」和「腳踏車」的視覺特徵變異,遠大於地上「白線」和「紅線」的視覺特徵變異,會讓電腦誤以為要學習辨認「機車」和「腳踏車」的不同,而無法辨認出「白線」和「紅線」。

就像要教小狗「坐下」,但卻說了很多不同語言的「坐下」,或同時伴隨華麗的手勢,會混淆小狗究竟該辨認哪個特徵,無法做出正確的反應。

一開始準備訓練深度學習模型的資料時,就要處理乾淨,有助於後續神經網路的運算表現。

深度學習:一天 24 小時不夠用 QQ

中研院資訊所陳昇瑋研究員在演講中說明:深度學習讓電腦具備從繁雜資料中歸納規則的能力,但電腦畢竟不像人腦直覺,過程中還要教電腦處理各層函數的權重(weights)與偏差(bias)。

台大電機系李宏毅教授分享教電腦辨識 ”2” 的經驗,需要餵給電腦一萬張以上的手寫數字影像資料。而若要訓練電腦自動畫出二次元人物頭像,為了達到看起來會想戀愛的精美程度,至少要運算 5 萬回合(epoch),而每跑 100 回合可能就耗費大半天光陰。

透過 GAN 生成式對抗網路,跑了 5 萬回合後,教電腦自動畫出二次元頭像的成果。某幾個頭像是否看了感到心動?資料來源/GAN学习指南:从原理入门到制作生成Demo、李宏毅提供

打算將鐵杵磨成繡花針的老婆婆,曾經感動李白奮發向上,而若李白來到這個時代,看到電腦科學家不屈不撓的「深度學習」精神可能會雙膝一軟。若您是某企業的高階長官,千萬別對軟體工程師說:「這有資料,現在深度學習不是很紅嗎?試試看,一個禮拜後報告。」任何人工智慧技術,都需要時間淬煉。

XXX 工作會消失?天網會消滅人類?

左圖:中間高台的人正在唸故事給工作的人們聽;右圖:拿著竹竿敲窗戶的 morning call 服務。圖片來源/陳彥呈提供

隨著科技發展,現在有音樂串流平台,可以排解工作煩悶。早上也能透過智慧手機鬧鐘,讓自己在降低起床氣的旋律中睜開眼睛。這些是在留聲機及鬧鐘尚未出現前,曾經有的人工服務,但現在圖中的工作都已經消失了。

「唯一不變的,是變的本身。」 (Change is the only constant.) -- 古希臘哲學家 Heraclitus

幫助人們完成做不到的任務、解決心有餘而力不足的問題,這是自始至終發展人工智慧的目標。

以中研院「106 年度資料科學種子研究計畫」正在進行的研究為例 (註二),人工智慧可望幫忙解決生活中許多問題,包含:透過行動上網訊號來觀測人口流動,並預測傳染病的傳染區域途徑;藉由分析近年來交通事故的地方法院民事判決,歸納出法官如何衡量肇事責任的分配;亦可透過電腦視覺分析蛾類的體色,了解體色變化與氣候變異的關係。

現階段人工智慧受惠於深度學習,雖然相當強大,但尚有許多限制有待突破,電腦科學家們仍在蒐集訓練資料、優化神經網路、改善運算效能這條路上馬不停蹄。對於想踏入深度學習領域的初心者,李宏毅教授在演講中說出相當真實的心聲:

你看別人做手拉坏好像很容易,但自己做下去會有各種崩潰,深度學習也是一樣。心法在於你要相信自己一定做得出來!

2017 中央研究院 AI 月活動現場,講師正在向大家說明,如何建構精巧的深度神經網路。攝影/張語辰

看完這篇文章,當媒體下標天網要消滅人類、機器人發展自己的語言嚇壞工程師時,相信你已了解深度學習的能力與發展可能性。來自美國南加州大學的郭宗杰教授,在演講中笑著說:「因為不懂,會把它(深度學習)講得非常強;但如果懂了,就會知道它其實相當地有限,不要被外行人的說法嚇到。」

無論何種身分,若對於人工智慧和深度學習的最新發展感興趣,後續中央研究院資料科學種子研究群的活動現場有個位子,留給未來的你。

延伸閱讀

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3644 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2406 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。