0

1
1

文字

分享

0
1
1

人工智慧與深度學習,會把人類的工作搶走嗎?解析A.I.的深度學習

研之有物│中央研究院_96
・2017/08/26 ・6106字 ・閱讀時間約 12 分鐘 ・SR值 548 ・八年級

深度學習 (Deep Learning)

若將資料比喻為原料(data),機器學習就是處理器(processor), AI 人工智慧相當於結果(outcome)。而「深度學習」是機器學習的一種方式,讓電腦像長了神經網路般,可進行複雜的運算,展現擬人的判斷及行為,是現今 AI 人工智慧的主流技術。

許多人試著進入「深度學習」領域,卻發現教材明明都是中文字,卻完全看不懂。圖片來源/iStock、Nick Young;圖說重製/林婷嫻、張語辰

如果上圖有打中你,本文整理 2017 中央研究院 AI 月系列活動中,國內外專家分享的深度學習思維與應用。希望能讓深度學習成為各位小智的寶可夢,在人工智慧這條路上,走出樂趣與成就感。

深度學習:讓電腦長神經,教它判斷決策

1960 年代起,科學家就試著透過各種機器學習技術,教電腦擁有人工智慧,例如會下西洋跳棋的電腦程式。但這跟現在的 AlphaGo 相比似乎不算什麼?這部分拜賜於電腦運算效能大幅提升、大量供訓練使用的資料,以及深度學習技術近幾年的突破性進展。

人腦思考仰賴神經網路的運作,科學家也透過設計函數模組,在電腦中組成「類神經網路」,讓電腦藉由餵養的訓練資料,歸納出背後的規則,做出最適合的判斷。圖片來源/iStock;圖說設計/林婷嫻、張語辰

從上圖可以看到,這是深度學習與傳統機器學習技術的最大差別:電腦有了四通八達的神經網路!透過層層非線性函數組成的神經網路、及精心規劃的權重訓練過程,電腦學會在未曾經驗過的情境下做出最適當的反應。

訓練深度學習模型就像教小孩,給予足夠的人生經驗,透過神經網路學習,讓電腦未來自己判斷怎麼做比較好。

若將深度學習比喻為手拉坏,陶土就是資料,陶碗成品是電腦自動找出來的函數(function),而目前有的「拉坯機」為 TensorFlow、PyTorch、Microsoft CNTK、Keras 等程式庫,其中 Keras 算是 TensorFlow 的官方介面,比較容易上手、適合初學者。而核心處理器 GPU 就像拉坯機的電源,若是 GPU 強大又穩定,深度學習的運算速度會更快。但最重要的是,身為手拉坏師傅的你,要如何教導電腦這位學徒。

-----廣告,請繼續往下閱讀-----

「深度」在於神經網路的層層結構

小時候爸媽會拿著圖書,教你辨認 “1″ ,”2″, “3″ 每個數字的長相,若要教電腦辨識數字 “2” ,要先從該影像一個個像素 (pixel)開始分析,經由層層層層層層層層層層層層層層層層函數組成的神經網路運算,最後判斷出這個影像「最可能」為數字 “2” 。

先教電腦定義每個影像的值,再透過神經網路的層層非線性函數運算,判斷這個影像最可能為哪個數字,信心水準比值最高者為答案。資料來源/李宏毅;圖說重製/林婷嫻、張語辰

為了達到較高的信心水準,有兩個關鍵:給與足夠的訓練資料,以及設計出優秀的神經網路。

深度學習的神經網路結構,該長什麼模樣?目前主流作法有 CNN(Convolutional Neural Network)、RNN(Recurrent Neural Network)和 GAN(Generative Adversarial Network)等等 ,各有信徒支持的優點。

深度學習常使用的三種神經網路架構示意:CNN, RNN, GAN。資料來源/李宏毅;圖說重製/林婷嫻、張語辰

CNN 善於處理空間上連續的資料,例如影像辨識;RNN 適合處理有時間序列、語意結構的資料,例如分析 ptt 電影版的文章是好雷或負雷;而 GAN 生成器(generator)與鑑別器(discriminator)的對抗訓練模式可以輔佐電腦「觀全局」,不會忘記自己做過的步驟而發生窘況,像是教電腦自動畫皮卡丘時,忘記自己已經畫了一個頭,最後畫出兩個頭。

強大的 AlphaGo 如何深度學習?

與 AlphaGo 對弈的柯潔曾表示:「與人類相比,我感覺不到它(AlphaGo)對圍棋的熱情和熱愛。我會我用所有的熱情去與它做最後的對決」。若以情感面來探討,確實為難 AlphaGo 。

因為在 AlphaGo 深度學習的過程中,訓練的資料並沒有任何熱血動漫或情書情歌,而是一張又一張專業的棋譜影像資料。台大電機系李宏毅教授以《棋靈王》漫畫的棋譜比喻說明,請見下圖。

透過眾多棋譜影像訓練,電腦可以學會根據目前棋盤上的局面,判斷下一步應該落棋於何處。本圖以《棋靈王》漫畫情節來比喻。資料來源/《棋靈王》漫畫、李宏毅提供;圖說重製/林婷嫻、張語辰

異質神經網路 (HIN):教電腦找到不同種資料的關連

除了「深度」,也別忘了「廣度」,把不同類型的資料整合在一起,可讓分析結果更精準。

來自伊利諾伊大學芝加哥校區的俞士綸教授點出,通常企業機關擁有的數據,是從各種不同管道蒐集而來,往往屬於不同型態。例如 Google 呈現搜尋結果建議時,除了看搜尋的關鍵字,也會參考使用者平常 Gmail 常用哪些字,或使用者正位於 Google Map 上的哪個位置。

這需要透過 HIN 異質神經網路(Heterogeneous Information Networks)技術,來理解並串連不同種類資料之間的關係。

俞士綸教授以藥物研發為例,在藥物合成或試驗前,可先透過深度學習分析相關資料,瞭解化合物的藥效會控制哪個基因、該基因和哪個通道有關係,或了解某個副作用會由哪兩種化合物引起 (註一)。這些深度學習的分析結果,再搭配和生醫或化學專家討論,有助縮減研發藥物的時間和花費。

透過深度學習,幫助判斷哪個藥物研發路徑比較重要(不同顏色的箭頭),及預測某個藥物能不能治療某種疾病。資料來源/俞士綸;圖說重製/林婷嫻、張語辰

深度學習,超幅提升電腦視覺能力

1960 年代,人工智慧先驅者 MIT 教授 Marvin Minsky 曾說「給我三個月,還有一位大學生,我要讓電腦可以辨識影像」,但當時電腦的聰明程度只會畫一些簡單的圓形、正方形,後來 Marvin Minsky 和學生 Gerald Sussman 宣告這個挑戰失敗。

到了 1990 年代,電腦視覺(Computer Vision)有更進步的發展,例如由 David Lowe 發表的 SIFT(Scale-Invariant Feature Transform)演算法,用來描述影像中的局部特徵,藉以偵測影像或影片在位置、尺度、角度上的對應及變異。

SIFT 電腦視覺演算法:先算出影像中每一個小區塊的方向性與梯度變化,再整合成各大區塊的方向性與梯度變化,降低資料的維度和雜訊,以利後續應用。資料來源/陳彥呈

現在大家常用的 panorama 全景攝影、3D 模型建立、VR 影像縫合等技術,皆應用到 SIFT 或類似的演算法;而 NASA 在外太空拍下火星地景照片時,也是透過 SIFT 演算法來比對地景特徵。

NASA 在外太空以俯視及平視兩種角度拍下火星地景,再透過 SIFT 演算法,辨認出同區域的視覺特徵(照片中的彩色小圓圈)。資料來源/陳彥呈提供

時間來到 2017 年,受惠於深度學習的進展,電腦視覺技術彷彿從單細胞生物進化到智人,發展出優異的影像辨識及理解技術,並成功應用於各行業與生活中。例如:在生產線上辨識紡織品花紋的瑕疵,以及網美愛用的修圖 APP ──辨識痘痘的位置並套上讓肌膚平滑的濾鏡。

影像辨識技術:早期演算法只能辨識一些簡單的特徵,現在透過深度學習,電腦可以辨識看到的汽車、自行車、行人等等,算出相對應的距離,並判斷哪些目標需要注意。資料來源/Nvidia launches Drive – the computer self-driving cars have been crying out for

運用深度學習教電腦辨識視覺特徵,發展到極致可望革新人類的生活。Viscovery 研發副總裁陳彥呈博士在演講中分享,現今 NVIDIA 的自動駕駛系統,從頭到尾只教電腦一件事:「辨認哪裡還有路可以開,才不會撞上」。秉持這個單純的概念,擴增訓練的影像資料、優化深度學習的神經網路,NVIDIA 自動駕駛系統的影像辨識正確性、反應速度和駕駛時速,不斷提升到可以上路的程度。

NVIDIA 自動駕駛系統:用深度學習,教電腦辨認哪裡有路可走,才不會撞上任何障礙物。資料來源/Volvo Cars and Autoliv Select NVIDIA DRIVE PX Platform for Self-Driving Cars

但自動駕駛車上路後,有哪些變因是神經網路算不出來的?陳彥呈舉例,當交通信號燈從黃燈變為紅燈時,自動駕駛系統會辨認燈色,並判斷該剎車停下來。但若這時後方一輛人類駕駛的車輛,可能趕時間認為應該要闖黃燈,就會撞上自動駕駛車。這該優化的是電腦的判斷力呢?還是人類的判斷力呢?

雖然將深度學習應用到電腦視覺領域,看來走在時代最前端,可以幫人類完成許多事,但陳彥呈以黑客松 (hackathon)競賽的範例來提醒,人們在進行深度學習研究時經常忽略的考量。

黑客松競賽中,學員提出用深度學習教電腦辨認「機車違規亂停」,幫助解決街道亂象。圖說設計/林婷嫻、張語辰

用 100 張違規停車的照片,加上 100 張依規停車的照片,透過 150 層的 ResNet 深度神經網路來訓練電腦,辨認出違規停車。聽起來是很棒的點子。

陳彥呈以過來人的經驗分享,這最大的挑戰在於:第一層輸入訓練電腦的影像資料中,「機車」和「腳踏車」的視覺特徵變異,遠大於地上「白線」和「紅線」的視覺特徵變異,會讓電腦誤以為要學習辨認「機車」和「腳踏車」的不同,而無法辨認出「白線」和「紅線」。

就像要教小狗「坐下」,但卻說了很多不同語言的「坐下」,或同時伴隨華麗的手勢,會混淆小狗究竟該辨認哪個特徵,無法做出正確的反應。

一開始準備訓練深度學習模型的資料時,就要處理乾淨,有助於後續神經網路的運算表現。

深度學習:一天 24 小時不夠用 QQ

中研院資訊所陳昇瑋研究員在演講中說明:深度學習讓電腦具備從繁雜資料中歸納規則的能力,但電腦畢竟不像人腦直覺,過程中還要教電腦處理各層函數的權重(weights)與偏差(bias)。

台大電機系李宏毅教授分享教電腦辨識 ”2” 的經驗,需要餵給電腦一萬張以上的手寫數字影像資料。而若要訓練電腦自動畫出二次元人物頭像,為了達到看起來會想戀愛的精美程度,至少要運算 5 萬回合(epoch),而每跑 100 回合可能就耗費大半天光陰。

透過 GAN 生成式對抗網路,跑了 5 萬回合後,教電腦自動畫出二次元頭像的成果。某幾個頭像是否看了感到心動?資料來源/GAN学习指南:从原理入门到制作生成Demo、李宏毅提供

打算將鐵杵磨成繡花針的老婆婆,曾經感動李白奮發向上,而若李白來到這個時代,看到電腦科學家不屈不撓的「深度學習」精神可能會雙膝一軟。若您是某企業的高階長官,千萬別對軟體工程師說:「這有資料,現在深度學習不是很紅嗎?試試看,一個禮拜後報告。」任何人工智慧技術,都需要時間淬煉。

XXX 工作會消失?天網會消滅人類?

左圖:中間高台的人正在唸故事給工作的人們聽;右圖:拿著竹竿敲窗戶的 morning call 服務。圖片來源/陳彥呈提供

隨著科技發展,現在有音樂串流平台,可以排解工作煩悶。早上也能透過智慧手機鬧鐘,讓自己在降低起床氣的旋律中睜開眼睛。這些是在留聲機及鬧鐘尚未出現前,曾經有的人工服務,但現在圖中的工作都已經消失了。

「唯一不變的,是變的本身。」 (Change is the only constant.) -- 古希臘哲學家 Heraclitus

幫助人們完成做不到的任務、解決心有餘而力不足的問題,這是自始至終發展人工智慧的目標。

以中研院「106 年度資料科學種子研究計畫」正在進行的研究為例 (註二),人工智慧可望幫忙解決生活中許多問題,包含:透過行動上網訊號來觀測人口流動,並預測傳染病的傳染區域途徑;藉由分析近年來交通事故的地方法院民事判決,歸納出法官如何衡量肇事責任的分配;亦可透過電腦視覺分析蛾類的體色,了解體色變化與氣候變異的關係。

現階段人工智慧受惠於深度學習,雖然相當強大,但尚有許多限制有待突破,電腦科學家們仍在蒐集訓練資料、優化神經網路、改善運算效能這條路上馬不停蹄。對於想踏入深度學習領域的初心者,李宏毅教授在演講中說出相當真實的心聲:

你看別人做手拉坏好像很容易,但自己做下去會有各種崩潰,深度學習也是一樣。心法在於你要相信自己一定做得出來!

2017 中央研究院 AI 月活動現場,講師正在向大家說明,如何建構精巧的深度神經網路。攝影/張語辰

看完這篇文章,當媒體下標天網要消滅人類、機器人發展自己的語言嚇壞工程師時,相信你已了解深度學習的能力與發展可能性。來自美國南加州大學的郭宗杰教授,在演講中笑著說:「因為不懂,會把它(深度學習)講得非常強;但如果懂了,就會知道它其實相當地有限,不要被外行人的說法嚇到。」

無論何種身分,若對於人工智慧和深度學習的最新發展感興趣,後續中央研究院資料科學種子研究群的活動現場有個位子,留給未來的你。

延伸閱讀

CC 4.0

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

-----廣告,請繼續往下閱讀-----
文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3620 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。