Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

變形金剛不夠看,會變形的義大利麵才厲害!

Peggy Sha/沙珮琦
・2017/07/28 ・1918字 ・閱讀時間約 3 分鐘 ・SR值 484 ・五年級

-----廣告,請繼續往下閱讀-----

一說到義大利麵,每個人腦海中浮現的形狀大概都不太一樣,可能是直麵(spaghetti)、貝殼麵conchiglie,甚或是領結麵farfalle),或許有人會覺得「唉,義大利人就是任性!還不都是麵嘛!」那你就太小看它們了。

說到義大利麵,你會想到哪一種?圖/By serginhopacheco@Pixabay

不同形狀的麵條有著不一樣的表面積,會進而影響醬汁的附著,也造就不同的風味。但是,無論是什麼形狀的麵條,通常是在你購買之前就成形了,那如果,科學家有辦法讓麵條在你面前來場「變形秀」呢?那肯定是視覺和味覺的雙重饗宴吧!

用簡單物理來做變形義大利麵吧!

小時候媽媽有沒有告訴過你「不要玩食物」?恩,麻省理工學院(MIT)的可觸媒體小組(Tangible Media Group)完全沒在管母親大人的耳提面命,他們致力於讓用餐時間變得有趣又充滿互動,而他們瘋狂「玩」出的食物表面看上去「平」凡無奇──就只是扁扁的寬麵條──但這些義大利麵放入水中卻可以瞬間變型。

不要玩食物!圖/網友製圖

這到底是什麼巫術?

老實說,神奇義大利麵的出現還真的像魔術一樣,其實純屬意外。科學家們本來是在測試各種材料遇到濕氣所產生的變化,而在實驗中,團隊一度研究了明膠(gelatin),一種吸收水分時會膨脹的可食用物質。他們嘗試製作扁平的雙層薄膜,分別由不同密度的明膠製成,而由於密度會影響物質在接觸水時的膨脹度,只要增加其中一層的密度、讓它吸收更多的水,整個結構就會往密度較低的一邊蜷曲。

-----廣告,請繼續往下閱讀-----
科學家利用兩層的密度差異讓義大利麵蜷曲。圖/實驗圖片

這個發現讓研究團隊就此開啟了神奇的食物之旅。

為了精準地掌握明膠的形狀,科學家們利用 3D 列印技術在明膠上印上一條條纖維素(cellulose),而這些纖維素非常不吸水,就像是閘門一樣,可以準確控制明膠吸水的比例和吸收的位置。利用這種方法,科學團隊得以精準控制麵條彎曲的程度和它們的幾何結構。

最上層是纖維質、第二層是密度較高的明膠、最底層的明膠較疏。圖/實驗圖片

科學家創造出各種不同形狀的義大利麵,除了最經典的款式,他們也新創了一些結構,有的如同花朵形狀、有的則是馬鞍型。在這一系列的嘗試之後,研究團隊還進一步跟波士頓的高檔餐廳合作,推出了兩種與眾不同的變形餐點。

做出來的義大利麵會長得很嫩Q。圖/實驗團隊 @3ders

好玩的同時,變形之後更環保!

看到這裡,你可能會想:

-----廣告,請繼續往下閱讀-----

這樣吃飯也太「搞工」了吧!為什麼連晚餐都要吃得那麼「假掰」?

請別要對這些特別的義大利麵這麼苛刻呀!除了提升食欲之外,它們更肩負著一項重要的使命,那就是──「環保」!研究人員表示:經過簡單計算,目前市售的義大利麵、通心粉即便經過完美的包裝,仍有高達 67% 是在「裝空氣」,如此一來形成了許多不必要的浪費。而將義大利麵「壓扁」不但可以減少存放空間,也能進一步降低運輸上的成本。

這項特別的食物實驗改變了食物的外表、烹煮乃至於包裝方式,為人們的飲食提供了一種有趣的可能性,未來我們餐桌上的食物可能不只好吃還更好玩,是不是光想到就讓人食指大動呢?

  • 快來看看義大利麵究竟如何變形吧:

參考資料:

  • “MIT researchers 3D print shape-shifting noodles in bizarre culinary research project” 3ders [2017.05.26]
  • 料理科學》采實文化出版

原始論文:

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
Peggy Sha/沙珮琦
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

6
1

文字

分享

3
6
1
如何 3D 列印不會崩壞的蛋糕?
胡中行_96
・2023/03/30 ・1892字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「那無疑是我從沒嚐過的味道」,論文的第一兼通訊作者 Jonathan David Blutinger 回想起初期的失敗,委婉地承認:「其實不難吃,只是與眾不同。我們畢竟不是米其林大廚。」[1]所幸皇天不負苦心人,在多次修正後,美國哥倫比亞大學的團隊,終於做出原料一樣,但是不再坍塌的蛋糕,並於 2023 年 3 月的《npj 食品科學》(npj Science of Food)期刊上分享食譜。[2]

3D列 印蛋糕的失敗百態。圖/參考資料 2,Supplementary Figure 1(CC BY 4.0)

3D 列印蛋糕的食譜

研究團隊的終極目標,是希望將來任何人均能用簡單的軟體烹飪,3D 列印再雷射加熱,創造經濟、健康且美味的餐點。他們選擇的食材相當普遍,全部都從美國紐約的 Appletree Market 超商購買。[2]

材料

Skippy 花生醬、J.M. Smucker 草莓果醬、Nutella 榛果巧克力醬、Betty Crocker 糖霜、Krasdale櫻桃淋醬、拿叉子搗爛的香蕉泥;以及用食物調理機攪 2 分鐘製成的全麥餅乾糊(8 塊全麥餅乾、2 湯匙的牛油和 4 茶匙的水)。[2]

步驟

(1)冷藏材料,使其變得濃稠,以穩定結構。[2]

-----廣告,請繼續往下閱讀-----

(2)把各種材料灌入分別的 7 支針筒(30ml;14 gauge)。[2]

(圖/參考資料 2,Supplementary Figure 3(CC BY 4.0))

(3)將針筒裝進特製的 3D 食物印表機。[2]

(圖/參考資料 2,Supplementary Figure 2(CC BY 4.0))

(4)把壓克力餐盤擺在 3D 印表機下,盛接針筒擠出的條狀物。其直徑約 1.5 毫米,會逐漸累積出蛋糕的半成品。[2]

(5)論文有寫到運用藍光和紅外線,為蛋糕加熱。不過,實驗方法的段落,僅提及 3D 印表機附設的藍光雷射二極體(blue laser diode),也就是下圖中黑色的長方體。[2]

-----廣告,請繼續往下閱讀-----
圖/參考資料 2,Supplementary Figure 4(Left;CC BY 4.0)
3D 列印蛋糕從失敗到成功的各個版本。影/參考資料 2,Supplementary Video 1(CC BY 4.0)

從上面的影片,可見早期幾個版本的蛋糕,非常容易崩垮。[2]研究團隊於是依據物質受力變形時,展現的黏性和彈性特質,即黏彈性(viscoelasticity),將食材分為「結構」與「填料」兩類,並在軟體中改變設計:[2, 3]用結構性強的全麥餅乾糊,作為蛋糕各層的形狀基礎,又以花生醬和榛果巧克力醬輔助支撐,再填入其他相對柔軟的原料。最後,他們調整 3D 印表機的針筒高度,並減緩列印的速度。如此擠出來的流體,尾端便不會蜷曲。能避免繩捲效應(coiling effect或rope-coil effect),破壞蛋糕表面的平整。要不然有時會出現本文開頭的圖組中,最末一塊蛋糕那種毛躁的外貌。[2]

a. 列印成功的蛋糕;b. 切開看內餡;c. 蛋糕設計;d. (1)全麥餅乾糊、(2)花生醬、(3)草莓果醬、(4)榛果巧克力醬、(5)香蕉泥、(6)櫻桃淋醬和(7)糖霜。圖/參考資料 2,Figure 1(CC BY 4.0)

3D 列印食品的推廣

目前 3D 列印食物尚未普及,此蛋糕的成形有如曇花一現。這一方面是基於科技新穎,懂得操作的人還少;另方面則因為這種印表機索價不菲,不是誰都玩得起。如果要商業化,研究團隊認為得採取 Gillette 刮鬍刀和 Nespresso 咖啡機的經營模式:壓低主要產品本身的價格,後續再從耗材獲利。換句話說,廠商賣出廉價的 3D 食物印表機,之後消費者就會以零買或長期訂購的模式,購買列印用的食譜和食物匣。食物匣的內容物,發展空間多元。除了碎肉和花生醬等泥狀物;也能推出醬油、橄欖油等液體;食鹽與胡椒之類的顆粒;還有百里香或香芹這類碎片等,任何可食用的東西。[2]

此外,在薄利多銷和產品開發的同時,也要提升大眾的接受度。偏好天然食材,或是不信任食品產業,都是對 3D 食物列印存有疑慮的原因。研究團隊提出的解方,是宣傳它的好處,例如:精準調配營養,不浪費材料;降低能源耗損;以及客製化的食譜等。[2]當然,似乎也就避而不談犧牲纖維質,以求列印順暢等問題。[1]總之,他們描繪出科技烹飪的美好願景,並且排除萬難,要讓飲食邁向全新時代。倘若有天上述的市場成熟,產品賣相比論文中的蛋糕誘人,您會願意品嚐嗎?

  

-----廣告,請繼續往下閱讀-----

致謝

特別感謝許凱勝先生協助確認技術細節。

  1. Sample I. (22 MAR 2023) ‘Have your cake and print it: the 3D culinary revolution is coming’. The Guardian.
  2. Blutinger, J.D., Cooper, C.C., Karthik, S. et al. (2023) ‘The future of software-controlled cooking’. npj Science of Food, 7, 6.
  3. Gan H, LAM Y. (2008). ‘Viscoelasticity’. In: Li, D. (eds) Encyclopedia of Microfluidics and Nanofluidics. Springer, Boston, MA.
-----廣告,請繼續往下閱讀-----
所有討論 3
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

3
2

文字

分享

0
3
2
活體犧牲不再?讓蚊子吸食水凝膠去吧!
胡中行_96
・2023/03/02 ・2680字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

以往病媒蚊研究中,人類志願者及受試動物,得犧牲小我以造福蒼生。活生生地,讓蚊子叮咬並吸食他們的血液。現在,美國科學家用充滿動物血液的水凝膠餵蚊子;將來或許還能改為填充蛋白質營養液。[1]從此以後,科學家便能像主持以酒代血的天主教感恩祭,慷慨地對蚊子說:「你們大家拿去喝,這一杯就是我的血,新而永久的盟約之血,將為你們和眾人傾流,以赦免罪惡。」[2]

圖/Australian Department of Foreign Affairs and Trade on Flickr(CC BY 2.0)

餵食蚊子的水凝膠

1944 年科學家 Samuel Gertler 合成的化合物 DEET(中譯「待乙妥」或「敵避」),在二戰期間被美軍用來驅蚊。[3]之後各種防蚊成份的研究過程,仍免不了仰賴人類和動物的活體貢獻。隨著近年 3D 列印與生物相容水凝膠的技術發展,開發替代品的時機逐漸成熟。理想上,餵食蚊子的水凝膠製品,要具備高解析度的 3D 列印血管、擴散於組織中的血液、對多種蚊子的吸引力、低廉的成本,以及較少的動物實驗倫理問題。此外,最好還能搭配一組攝影器材,與相應的數據運算模型。[1]

2023 年 2 月,美國研究團隊於《前沿生物工程與生物科技》(Frontiers Bioengineering and Biotechnology)期刊上,介紹他們一體成形的嘗試成果。[1]

水凝膠的「食譜」

類似於做捲心酥,要先調配麵糊,烘烤定型,才能在裡面填充內餡。此實驗的第一個步驟,是製作稍後能注入血液,或者其他液體的水凝膠。研究團隊先把適當比例的聚乙二醇二丙烯酸酯(PEGDA)、明膠甲基丙烯(GelMA)、甘油(glycerol)、LAP 光敏劑檸檬黃食用色素(tartrazine),混合在一起。[1]透過數位光源處理(digital light processing),使原料遇光固化,將內有曲折空管的水凝膠薄片,3D 列印出來。[1, 4]每批產出3份水凝膠,費時約 23 分鐘。[1]

-----廣告,請繼續往下閱讀-----

接著,成形的水凝膠,被丟進磷酸鹽緩衝生理食鹽水(phosphate buffered saline),浸泡至少 2 天。這段期間內,多餘的色素會不斷流出,所以要勤換水,直到水質清淨。上述從頭到尾的程序,一旦商業量產,成本即可降低。如果在無菌環境中製造,還能冷藏儲存數月。[1]

注入液體

再來,就要幫捲心酥灌多元口味的內餡了。科學家購買了,已經去除凝血功能的研究級脫纖血(defibrinated blood)。[1, 5]依照要進行的實驗,將這些血液或是其他液體,裝進針筒。接著,用注射泵浦(syringe pump)和管路,將針筒裡的內容物以 100 μL/min的速率,推進水凝膠裡。此實驗過程中,一支針筒透過管路,最多連接 6 份水凝膠。[1]

蚊子實驗

美國科學家將多塊水凝膠,分別放置於幾個玻璃罩內。每個罩子裡,引進 20 至 30 隻母蚊子,當作主要的觀察對象。[1]由於母蚊子吸血是為了產卵,所以裏頭還加上幾隻公蚊子作陪,來促進其食慾。[1, 6]攝影機全程對準水凝膠,記錄蚊子的活動,時間總長約 30 至 45 分鐘。[1]基於個別實驗的目的,方法設計上稍有差別:

  1. 餵食觀察:使用充滿血液的水凝膠餵食蚊子,調整溫度與設備,替換蚊子的品種,並優化攝影機的紀錄。簡單講,就是做不同的嘗試,為後面的實驗打好基礎。[1]
  2. 食物選擇:為蚊子奉上動物血液、紅墨水和磷酸鹽緩衝生理食鹽水,三種「口味」的水凝膠,並貼心熱菜到37°C。後二者沒什麼營養價值,單純想看牠們好不好騙。[1]
  3. 防蚊成份:3個玻璃罩裡,血液飽滿的水凝膠,都溫熱至37°C,但分別為沒塗料、塗抹DEET,以及敷上一層檸檬尤加利油(lemon-eucalyptus oil)萃取物。測試蚊子會不會因為外層的化合物,放棄吸食水凝膠裡的血液。實驗重複5次,受試的蚊子也每次更換。[1]
A. 充滿血液的水凝膠;B. 配有攝影機的玻璃罩;C. 建立辨識蚊子的運算模型;D. 不同的蚊子品種、液體和防蚊成份。圖/參考資料1,Figure 1(CC BY 4.0)

結果與展望

餵食觀察的錄像,歷經截圖、挑選、標註和校正等程序,成果被拿來訓練電腦找蚊子。於嘗試及調整後,此運算模型不僅能辨識影片中的蚊子,還會分別「未進食」與「進食中或吸飽血」的腹部形狀,平均準確率高達 92.5%。這個模型,馬上被運用在後面的實驗裡。[1]

-----廣告,請繼續往下閱讀-----

在選擇食物時,紅墨水和磷酸鹽緩衝生理食鹽水,顯然騙不過受試的蚊子;牠們唯獨吸食有動物血液的水凝膠。未來研發蛋白質營養液時,也可以用雷同的方式,評估蚊子的接受程度。為了引誘牠們,以後也能加碼在水凝膠上,塗抹真實皮膚會有的化學物質,並且在附近散佈二氧化碳。若是成功了,成品就能在其他病媒蚊實驗中,替代動物血液。如此便減少血液傳播疾病的風險,[1]以及使用動物血液的倫理問題。

另一個實驗的 DEET 和檸檬尤加利油萃取物,一如預期地令蚊子完全不想靠近。倒是沒塗料的對照組,卻意外只有 13.8% 的低餵食率。科學家覺得應該歸咎於水凝膠太小,有些蚊子擠不進去。將來製作時,得加大表面積。[1]

A. 截圖、標註、校正、訓練運算模型,並評估成果;B. 未進食(正紅色)與吸血(桃紅色)。圖/改作自參考資料1,Figure 2局部(CC BY 4.0)

整體而言,論文的第一作者 Kevin Janson 博士,很滿意這個自動分析功能,迅速又穩定的運算模型。在研究驅蚊效果方面,身為論文作者之一的 Omid Veiseh 教授,則認為他們的設計,未來也可以用於測試其他化合物。至於病媒蚊的品種,此實驗主要採用的,是會傳播黃熱病(yellow fever)、登革熱(dengue fever)和茲卡熱(Zika fever)的埃及斑蚊(Aedes aegypti)。另一位作者 Dawn Wesson 教授表示,假使想套用此模型跟設備,在習性迥異的野生品種上,就得再花時間研究。[7]

  

-----廣告,請繼續往下閱讀-----
  1. Janson KD, Carter BH, Jameson SB, et al. (2023) ‘Development of an automated biomaterial platform to study mosquito feeding behavior’. Frontiers Bioengineering and Biotechnology, 11:1103748.
  2. 教學方案」天主教台北總教區教理推廣中心(Accessed on 23 FEB 2023)
  3. American Chemical Society. (20 JUN 2020) ‘N,N-Diethyl-m-toluamide (DEET)’. Chemistry for Life.
  4. A Dowon, Stevens LM, Zhou K, et al. (2020) ‘Rapid High-Resolution Visible Light 3D Printing’. ACS Central Science, 6 (9), 1555-1563.
  5. Technical Support – FAQs’. Thermo Fisher Scientific. (Accessed on 23 FEB 2023)
  6. Harrison RE, Brown MR, Strand MR. (2021) ‘Whole blood and blood components from vertebrates differentially affect egg formation in three species of anautogenous mosquitoes’. Parasites Vectors 14, 119.
  7. Gillham AB. (09 FEB 2023) ‘Human test subjects may no longer be needed for mosquito bite trials thanks to invention of new biomaterial’. Frontiers Science Communications.
-----廣告,請繼續往下閱讀-----
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。