0

0
0

文字

分享

0
0
0

人工林能否解決碳封存問題?

thisbigcity城事
・2012/02/17 ・728字 ・閱讀時間約 1 分鐘 ・SR值 633 ・十年級

作者:Roger EastGreen Futures

未來六、七年內,我們是否會大量使用人工林對抗氣候變遷,吸收週遭空氣中的二氧化碳?至少雷克納(Klaus Lackner)如此相信,他最近提出新構想,在英國機械工程研究所的「碳封存週」頗受好評。

他所謂的「人工林」,其實是一座座高塔,塗滿具吸收功能的化學物質,聲稱二氧化碳封存量將是等高樹木的千倍,對於「美國物理學會」近期計算後,認為這種設計成本過高,雷克納也出面反駁,他身為哥倫比亞大學地球物理學教授,亦主持可再生能源科技中心,他表示封存每公噸二氧化碳費用最低為30美元,遠低於美國物理學會的430美元,也與電廠與工業流程的碳封存技術成本相當。若可實行,即可協助捕捉車輛、飛機等「流動式碳排放裝置」製造的溫室氣體,這些污染源必須付出的碳處理價格也會更加合理。

雷克納指出,收集二氧化碳之後,若用於農業及其他工業製程中,便不需增加成本,另外兩位哥大教授奇奇尼斯基(Graciela Chichilnisky)與艾森柏格(Peter Eisenberger),也主張採取此種「封閉式循環」的策略,兩人的新創公司Global Thermostat同樣投入碳封存事業。

-----廣告,請繼續往下閱讀-----

他們提出的策略中,運用類似濾網的結構與化學物質,不過較適用於電廠等二氧化排放量較大單位,系統運轉用電也不需另外花費,利用工業製程冷卻系統原會排放的低級熱能即可,而且也打算善用捕捉到的二氧化碳。

其中一種可能方式為結合二氧化碳與氫,生產合成碳氫燃料,Global Thermostat則與另一家新創公司Algae Systems合作,打算運用藻類將二氧化碳轉化為生質燃料。

本文原載於獨立永續專業團體「未來論壇」雜誌《Green Futures》及 This Big City 城事

文章難易度
thisbigcity城事
45 篇文章 ・ 0 位粉絲
《城事》為永續城市部落格,長期發掘關於建築、設計、文化、科技、運輸、單車的都市創新構想,曾數度獲獎。《城事》網羅世界各地城市生活作者,文章曾發表於Next American City、Planetizen、Sustainable Cities Collective、IBM Smarter Cities等網站。《城事》遍尋全球,在世界奮力邁向永續的時刻,呈現城市帶來的種種機會,力求保持樂觀,但不忘批判。

0

3
2

文字

分享

0
3
2
邁向淨零排碳的未來:去碳燃氫技術!
研之有物│中央研究院_96
・2022/12/10 ・6194字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|廖英凱
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

高排碳發電方式的轉型

氣候變遷是全球議題,為了降低碳排放,發展低碳電力相當重要。臺灣目前主要使用天然氣發電,雖然排碳量較燃煤發電低,仍屬高碳排的發電方式,若未來要達到 2050 淨零排放,勢必要開發更多的低碳電力。

中央研究院「研之有物」專訪院內物理研究所陳洋元研究員,他與團隊應用天然氣催化裂解的理論,突破各種技術限制,打造出「去碳燃氫」(methane pyrolysis)裝置,使得燃氣發電可以更進一步減少碳排放,目前成果已接近歐盟需求,並預計陸續擴大運用至商用發電機組。

陳洋元向研之有物團隊介紹「去碳燃氫」技術。
圖|研之有物

因人類工業活動排放的二氧化碳而導致的氣候變遷問題,已是當代人類亟欲解決的難題。近幾年,國際組織與科學機構也不斷地強調減少碳排放的必要,以及調整減碳標準。2014 年聯合國政府間氣候變化專門委員會(IPCC)的綜合評估報告指出,人類應在 2100 年以前削減 90% 的碳排。

-----廣告,請繼續往下閱讀-----

但到了 2018 年的全球暖化特別報告時,IPCC 則將標準加嚴,人類需在 2050 年時達到「淨零排放」,亦即「人為溫室氣體的排放量,扣除透過碳匯碳捕等移除量後為零」。2021 年下半年,世界各大工業國也陸續提出在 2050 年前後達到該國淨零排放的政策目標和政策路徑。

在世界潮流的推動下,2021 年 4 月總統蔡英文在世界地球日的活動,宣示臺灣將努力在 2050 年達到淨零排放。同年中研院在廖俊智院長的主導下,啟動了「Alpha 去碳計畫」,院內物理所的陳洋元研究員與研究團隊也開始為臺灣的「去碳燃氫」技術建立基礎。

把天然氣變成氫氣,真的可能嗎?先來看看過去科學家怎麼做吧!

降低天然氣碳排的方法

為能達到降低碳排的能源轉型,又需兼顧產業發展的用電需求,臺灣目前的能源規劃,預估在 2025 年時,再生能源發電量佔比約 15.2%,其餘則為 45% ~60% 的燃氣發電與 25% ~40% 的燃煤發電所組成,到 2050 年時,樂觀理想情境中再生能源發電量佔比可逾 60%,剩下則以燃氣發電為主。

-----廣告,請繼續往下閱讀-----

儘管燃燒天然氣(甲烷)的理論排碳量,約只有燃燒煤炭的一半,但每燃燒 1 噸的甲烷,仍會產生 2.75 噸的二氧化碳排放,這與淨零排放的目標,仍有相當大的差異。因此,當代天然氣的運用,必須回應如何有效降低碳排放。

大抵來說,降低天然氣的碳排可以分成兩種不同方向的策略,其一是「碳捕捉、再利用與封存carbon capture, utilisation and storage, CCUS)」,方式是將燃燒後的二氧化碳,捕捉下來再利用,如應用於綠藻養殖、水泥製造等,或是將二氧化碳壓縮後封存於耗竭油氣庫這種地質結構上的特殊封閉構造,或是封存於海底富含鹽水的地層構造。

碳捕捉、再利用與封存(CCUS),就是將燃燒產生的二氧化碳,收集與分離出來,拿去工廠再利用或是封存於特殊地層。
圖|研之有物(資料來源|聯合國歐洲經濟委員會

然而碳捕存的技術與概念新穎且須有特定地質條件配合,要能達到具規模的運用仍有相當技術門檻需突破,且碳捕存在臺灣多年來也持續面臨政治及環保爭議,發展進度緩慢。

另一種策略方向,則是「燃料轉換」,將化石能源的天然氣,全部或部分替換為零碳的能源,例如利用微生物分解利用農業等方式生產的有機物質來產生「生質甲烷」(註1)作為燃料;利用大量的無碳電力,電解水後分解為氫氣和氧氣,再將氫氣做為燃料;或是再利用無碳電力將二氧化碳與氫氣合成為甲醇、甲烷、氨等「載氫劑(hydrogen carrier)」以利運送和利用。

-----廣告,請繼續往下閱讀-----

還有一種備受矚目的燃料轉換方式,是直接將甲烷裂解為氣態的氫氣和固態的碳黑(carbon black):

只要有足夠的能量,甲烷就能裂解為固態碳和氫氣。
圖|研之有物

其核心原理為,若能提供甲烷分子每莫耳 74 千焦耳的能量,就能把碳原子與氫原子的鍵結打斷,而關鍵在於如何提供能量以及如何提升使用能量的效率。

1999 年,M. Steinberg 發現當溫度夠高時,甲烷鍵結被打斷的效率隨之提升,而提出「甲烷熱裂解」(thermal decomposition of methane, TDM)技術,該技術是將甲烷處於高於 700°C 的高溫環境,使甲烷裂解為氫氣與固體的碳。固體碳可以穩定的儲存,不會增加大氣中的二氧化碳,也可以做為工業生產的原物料使用。

為進一步提升甲烷分解的效率與商業價值,近二十餘年來,許多針對 TDM 的研究,引入了各種催化劑,作為熱解甲烷的反應環境。目前常使用特定比例的惰性合金作為催化劑,將合金加熱成熔融態,當甲烷氣體通過液態合金時,即開始分為氫氣與固態碳。

-----廣告,請繼續往下閱讀-----

加熱溫度越高、氣體通過的熔融合金管柱越長,則甲烷熱裂解的程度越高,例如以一公尺長的管柱環境,利用不參與反應的 1175°C 熔融錫金屬,則可轉化 78% 的甲烷;利用具催化性的熔融金屬如 27% Ni–73% Bi 合金,則可在 1065°C 達成 95% 之甲烷轉化

如圖所示,此為天然氣裂解的簡易流程,當天然氣進入管柱時,需要熔融合金 Ni-Bi 作為催化劑,以便在高溫環境下轉化為固態碳(C)和氫氣(H2)。
圖|研之有物(資料來源|Science

為什麼需要催化劑?為了降低化學反應的難度。

化學反應的過程就像冒險者從小鎮(反應物)出發,克服山頂上的巨龍(活化能),並取得山谷寶藏(生成物)。而催化劑就像是幫冒險者開外掛的流浪法師,短暫加入冒險者一伙,開啟原本沒有的秘密通道,讓冒險者不用打龍就輕鬆取得寶藏。
圖|研之有物(資料來源|chemorphesis

實際運用上的限制與問題

以裂解方式生產氫氣的技術,有可能會成為未來氫能發展最主流的方向,歐盟針對氫能發展的預估中,即認為到 2050 年時,歐盟所使用的氫能會有 55% 來自於甲烷裂解,有 30% 來自目前化工產業較成熟使用的天然氣重組,以及 15% 來自於水電解產氫。

因此,2021 年 3 月起,在廖俊智院長的主導下,中研院啟動了「Alpha 去碳計畫」,目的在發展熱催化、電漿裂解等各種技術方法,以達成去碳產氫的發電目標。物理所陳洋元研究員的團隊,也開始在院內建構甲烷熱裂解的裝置,試圖為我國建立起去碳燃氫的技術基礎。

然而,儘管催化性熔融金屬的理論可行,在實務運作上此方法卻有其瓶頸,陳洋元研究員的團隊發現,當裂解後產生的氫氣和碳從熔融金屬表面冒出時,熔融金屬的蒸氣會把碳包住而在金屬表面變成如岩漿般的黏稠流體,必須不斷暫停實驗把岩漿給撈出去,使得學理上雖可高效率地裂解甲烷,但仍難以放大規模至發電機機組或提供給發電業使用。

-----廣告,請繼續往下閱讀-----
上述催化性熔融金屬用在天然氣裂解,理論上可行,但是陳洋元團隊實作發現,熔融金屬的蒸氣會把碳包住,會在金屬表面(如管壁)形成岩漿般的黏稠流體,必須不斷暫停實驗,把廢碳渣撈出去。
圖|研之有物(資料來源|Science、陳洋元)

體認到催化性熔融金屬的限制後,陳洋元研究員開始尋找其他也可具有類似催化效果的材質。其中一種可行的催化劑,就是碳黑本身。過去針對催化反應的研究中,即發現碳本身即是一種理想的催化劑。在甲烷裂解的過程中,研究者可以透過利用不同形式、結構與表面積的碳,來調控碳的催化活性

2013 年,韓國研究者 Seung Chul Lee 等人提出用碳黑作為催化劑的甲烷熱裂解裝置設計,其概念是將高溫管柱中,裝填直徑 30 nm 的碳粒作為催化劑,使甲烷通過高溫碳粒時,被催化裂解為氫氣和碳,再透過集塵器與過濾器捕捉碳黑。

2013 年韓國 Seung Chul Lee 等人提出了利用碳黑作為催化劑的甲烷熱裂解裝置。
圖|Korean Journal of Chemical Engineering

雖然概念裝置已提出逾十年,但至今市面上仍未有成功商業化與量產的設備。由於催化劑和裂解後的碳都是相同的物質,因此隨反應時間增加,實驗裝置中的碳黑會不斷吸附。

因此,該實驗設計若要能用於實務上的燃氣電廠減碳,關鍵就在如何能維持或定時減少高溫管柱中積存的碳;如何能延長集塵設備與濾網的更換週期,以須確保裝置能不間斷的長時間運作;以及如何與既有燃氣機組的系統結合。

-----廣告,請繼續往下閱讀-----

Alpha 去碳計畫:以局部比例的氫氣代替甲烷

面對過去研究的基礎與限制,中研院的團隊已在開發利用碳黑作為催化劑的甲烷熱裂解裝置,且能搭配自動化的清除積碳、與更新集塵、過濾器,使熱裂解裝置能持續性地運作。

熱裂解的裝置設計上,也並非追求極致的甲烷轉換率,由於氫氣比甲烷擁有更劇烈的燃燒反應,如在空氣中的燃燒速度,甲烷為 0.38 公尺/秒,但氫氣則高達 2.9 公尺/秒,這使得氫氣爆燃的衝擊力遠大於甲烷。

因此,目前仍未有純氫氣或高比例氫氣的商品化發電機組,而多以在甲烷中混合 10% ~30% 的氫氣,達到局部比例的減碳,因此在裝置設計上,須同步調控所產製氫氣與甲烷的比例,使發電機能持續燃燒固定成分比例的甲烷氫氣混合物。

中研院天然氣熱裂解裝置的實體照片。天然氣高溫裂解系統,包含:控溫電子儀器、高溫爐與流量計。放大區域顯示高溫爐上面的構造,白色為隔熱棉,石英管管壁已經有少許的碳渣附著。
圖|研之有物(資料來源|陳洋元)

從減碳效益來比較傳統天然氣發電和部分比例的去碳燃氫發電,以目前大潭電廠最新燃氣機組的熱效率 60% 來計算,每噸天然氣燃燒,可提供 9300 度的發電量,並排出 2.75 公噸的二氧化碳。

-----廣告,請繼續往下閱讀-----

但若能將其中 30% 的甲烷高溫裂解後,將氫氣與天然氣混燒,因氫氣的燃燒熱較低,且需額外提供裂解所需的能量,此時每噸天然氣則能發出 7400 度的電量,但碳排放降低為 1.92 公噸的二氧化碳,並生產 0.225 公噸的固體純碳。

也就是說,以大潭燃氣電廠為例,若將 30% 的甲烷裂解,產生氫氣與天然氣混燒,最終是以減少 20% 的發電量為代價,換得 30% 的減碳效益,以及具有精密工業、高產值化工業運用潛力的高純度碳黑原料。

目前中研院的 Alpha 去碳計畫已完成了將甲烷熱裂解裝置與 13 kW 天然氣發電機串聯,混燒 10% 氫氣燃料的概念驗證。

預計在 2025 年以前,將陸續擴大至針對建築物規模使用的 65 kW 燃氣渦輪發電機;和針對廠房、工商業用途使用的 1~2 MW 商用燃氣機組;以及與既有大型燃氣電廠使用的 170 MW 燃氣機組結合,以此建立我國去碳燃氫的產業鏈。

中研院將與業界合作,目標在 2025 年以前,推出裂解效率可達 40% 的去碳燃氫裝置,使臺灣天然氣發電的碳排達到歐盟訂定的永續標準。

開闢臺灣淨零排放的路徑

面對氣候變遷的威脅,世界各國無不積極且緊迫地尋找能達到零碳排放的方式,然而多數國家在有限的自然資源條件下,風力與太陽光電等再生能源的發電規模和穩定程度仍遠不及大型發電廠。

因此 2021 年起世界各國,相繼提出了符合淨零與永續精神的天然氣使用規準。2022 年 2 月,歐盟批准了有助實現歐盟環境目標的「永續活動分類法」與「氣候授權補充法案」,其中針對燃氣發電廠的規範,是要求 2035 年以前須完全由天然氣轉向低碳燃料或再生能源燃料;或是 2030 年前施工但每度電少於 270 克二氧化碳排放量,才能獲得永續金融投資的優惠。

以此作為標準來檢驗目前臺灣的燃氣發電,較先進且尚有機組興建中的大潭發電廠,碳排係數約低於每度電 388 克二氧化碳排放,若能順利搭配裂解效率 30% 的去碳燃氫技術,則碳排係數可降為每度電 271.6 克二氧化碳排放,幾乎符合歐盟的標準。

若再能輔以部分比例的生質甲烷混燒,排出二氧化碳又有部分比例利用碳捕存處理,至少就能使我國在未來最主要使用的天然氣,能符合目前歐盟看待永續能源的標準。

目前中研院陳洋元團隊打造的去碳燃氫技術,能利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的基載電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。

然而,去碳燃氫技術也因減碳目的而降低燃氣的發電量,這會使臺灣已經擴大天然氣使用的政策方向還要更加強化,如增加更多的天然氣進口量,興建更多的天然氣接收站、儲存槽與管線。近年烏俄戰爭帶來世界性天然氣的短缺,以及第三天然氣接收站的興建帶來海岸生態的危害,使用天然氣仍有難以忽視的環境與社會風險。

中研院的去碳燃氫技術,可能不是淨零未來的唯一選項,但傾力推動這項技術,才有機會在邁向淨零未來的過程中,爭取到足以讓永續與潔淨能源普及的時間。

中研院陳洋元團隊打造的「去碳燃氫」技術,利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。
圖|研之有物

註解

  • 註1:生質甲烷的概念是,透過微生物分解農業生產的有機物質,由此生產甲烷,這種有機物的碳,是來自植物光合作用的固碳反應。因此理論上不會使用到地底下的化石碳,比天然氣還要減碳。

延伸閱讀:

研之有物│中央研究院_96
290 篇文章 ・ 3095 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

3

4
4

文字

分享

3
4
4
使用「藍碳」捕捉二氧化碳的速度比森林快四倍!這個方法可行嗎?——《圖解全球碳年鑑》
商業周刊
・2022/10/05 ・4523字 ・閱讀時間約 9 分鐘

沿海濕地中的藻類、海草、紅樹林、鹽沼、和其他植物在生長過程中會吸收和捕獲二氧化碳。沿海和海洋生態系統捕獲和儲存二氧化碳的方式,稱之為「藍碳」。

被封存在海底的碳有一半以上來自這些沿岸的森林,它們捕獲二氧化碳的速度比傳統森林快了 4 倍,因為大部分的碳都進入幾米深的潮濕土壤中。以這種方式捕獲碳可以將之從大氣層中移除,降低空氣中二氧化碳的總含量。

1 公頃的紅樹林每年可以捕獲多達 8 噸的二氧化碳,遠比 1 公頃熱帶森林所能捕獲的量還要多。

在過去半個世紀以來,世界上約 30% 到 50% 的紅樹林遭到破壞

1 公頃的紅樹林每年可以捕獲多達8 噸的二氧化碳,遠比1 公頃熱帶森林所能捕獲的量還要多。圖/商業週刊

土壤的碳儲存方式

土壤是有生命的。當泥土被無數的有機微生物寄居時,就變成了土壤,成為植物生長的重要基質。

土壤還將世界上大量的碳儲存在一種物質當中,也就是所謂的土壤有機質(soil organic matter,SOM)。有機一詞在此並不是指沒有化肥或殺蟲劑,而是指存在大量的碳。通常土壤有機質含有 50% 到 60% 的碳。大多數用於農業的土壤含有 3% 到 6% 的有機質。

-----廣告,請繼續往下閱讀-----

當植物原料(如葉子或莖)凋零掉落到土地上時,會被土壤中的微生物分解,這個過程將植物轉化為碳,並產生有機質。碳被封存在土壤中,不再以二氧化碳的形式釋放到大氣中。

當植物原料凋零掉落到土地上時,會被土壤中的微生物分解,這個過程將植物轉化為碳,並產生有機質。圖/Pixabay

犁田耕作會破壞土壤有機質和碳的儲存。耕地時,會使有機質暴露地表,更容易被微生物利用,迅速消耗土壤有機質,將二氧化碳釋放到大氣層中。每年由於耕作、侵蝕、或與氣候相關的土壤變化(如永久凍土融化),造成儲存在土壤中大約 10 到 20 億噸的碳,以二氧化碳的形式釋放回大氣層中。

土壤有機質可以保留或重建,使得大氣中的二氧化碳返回土壤長期封存。農民在施肥、將植物廢棄物(如玉米秸稈)留在田間進行分解、或種植覆蓋作物時,會增加土壤有機質。覆蓋作物是在生長季節過後、田間空無作物時種植,通常是草或三葉草,根部很深,能穿透土壤。如果在種植新的經濟作物之前讓覆蓋作物在田間分解,能夠顯著增加土壤中的有機質和碳。

最小化耕作(稱為保護性耕作)是另外一種防止土壤有機質流失(或使土壤慢慢再生)的方法。其中所謂的免耕種植,是指利用專門的播種機將種子放入一小塊翻鬆的土壤中,因此無須翻耕整片田地。

-----廣告,請繼續往下閱讀-----

讓土壤恢復健康

泥土並不完全相同,土壤的養分含量會隨著時間根據其處理方式、和所處的環境而發生變化。

世界上三分之一的土壤已經退化到幾乎無法再支持動植物生存的地步。主要的一些原因是:

  • 土壤耕作。
  • 牛群過度放牧。
  • 砍伐和焚燒樹木和植物(砍燒耕作法)。
  • 未在冬季種植覆蓋作物。
  • 覆蓋物不足。

亞洲、歐洲、北美和南美的大型工業化農場,由於大量重植大豆、小麥、大米和玉米等商品,因而加劇了土壤侵蝕。市場和債務的經濟壓力使可持續性農業做法在短期內難以實施。

由於大量重植大豆、小麥、大米和玉米等商品,因而加劇了土壤侵蝕。圖/Pixabay

從生產的食物品質到大氣中的碳含量,土壤健康都具有深遠的影響。土壤很健康時,可以平衡水循環、並發揮避震作用以防止洪水和侵蝕。1930 年代美國西部的沙塵暴侵襲(Dust Bowl)、和 2017 年波多黎各的洪水災害,都是氣候變化的災難性衝擊、和土壤侵蝕造成的自然災害實例。這些變化會對農業產生重大影響。

-----廣告,請繼續往下閱讀-----

根據美國農業部的說法,農民可以透過 4 種方式創造更好的土壤:

盡量減少干擾

  • 限制耕作。
  • 使化學品發揮最大效益。
  • 牲畜輪替。

強化土壤覆蓋

  • 種植覆蓋作物。
  • 使用有機覆蓋物。
  • 保留植物殘留物。

強化生物多樣性

-----廣告,請繼續往下閱讀-----
  • 種植多種不同的覆蓋作物。
  • 利用多樣化的作物輪作。
  • 整合牲畜。

強化活根的存在

  • 減少休耕。
  • 種植覆蓋作物。
  • 利用多樣化的作物輪作。

在地方層面,一般公民可以透過投票支持可持續性農業發展的立法和政策,以及購買可持續性農業經營的產品。

房屋所有者也可以透過全年種植多樣化的植物種類,讓自然生態發展,改善其房產周圍的土壤健康,這樣能強化活躍的根系、並創造生物多樣性。

健康的土壤如何平衡水循環?圖/商業週刊

大規模改變環境的「地球工程」

如果你生起營火、或是隨意處置一台冷氣機,那就是在用個人的行動改變環境。但是,當公司和國家有意大規模改變環境時,這被稱為「地球工程」(geoengineering)。

-----廣告,請繼續往下閱讀-----

地球工程策略聽起來像是科幻電影情節似的:在太空中部署太陽遮屏,以使部分太陽能量反射回太空,或是從大氣中吸取二氧化碳,將之送入地下層變成石頭。科學家們正在探索更多這一類大規模修補地球系統的方法,使地球降溫,但迄今為止,許多方法都成本高昂、存在爭議、也充滿著風險。

以太陽遮屏為例,雖然聽起來像部署固體金屬片,但其實是模擬大規模火山噴發時的情況,在空中噴灑出濃密的灰燼和化學物質,進而阻擋太陽能量。可能在噴氣燃料中加入化學物質,以便高空飛行的噴氣機將之擴散到高層大氣中。

超級計算機預測,以這種方式噴射到平流層的反射硫粒子,可能會產生冷卻效果,當然,也會影響降雨、降雪和季節性溫度。目前還不清楚會到什麼程度,如果天氣變化太過劇烈,就不容易挽回損失,造成人人受苦。即使可以逆轉噴灑,停止這樣的計畫也可能造成危險,因為太陽射線突然少了阻擋而導致全球氣溫和溫室氣體驟升。

至於直接從空氣中吸取二氧化碳,將之儲存在地下岩層中,歐洲和北美已有 19 家工廠做到這一點,每年吸收約1 萬噸的二氧化碳。沒有人知道這種方式可以安全地封存二氧化碳多久。

-----廣告,請繼續往下閱讀-----
直接從空氣中吸取二氧化碳,將之儲存在地下岩層中,歐洲和北美已有19 家工廠做到這一點,每年吸收約1 萬噸的二氧化碳。圖/Pixabay

一旦出現洩漏,土壤、水和空氣可能會受到汙染,而從地下層收集氣體也可能引發微震和地震。不管怎麼說,這個過程若想要成功,也必須得降低成本、提高效率才行(目前每噸的成本高達 600 美元),我們將會需要相當多家的碳捕獲工廠,才可能有辦法消除每年所排放的數千兆噸二氧化碳,以實現 2050 年淨零排放。

不同於將二氧化碳儲存於地下岩層,鐵質施肥(iron fertilization)是以海洋為重點的選擇。這個過程是將硫酸鐵注入海水中,促進藻類大量繁殖以吸收二氧化碳,然後沉入海底。成功率參差不齊,有 5% 到 50% 的藻類增殖,沉入到足以造成封存影響的深海。然而,完全有效可能需要付出代價:過量的藻類或許也會引發有毒浮游植物的生長高峰,而將二氧化碳儲存在海洋可能會加速海水酸化。

將二氧化碳儲存在海洋可能會加速海水酸化。圖/Pixabay

地球工程是一個冒險的賭注,一些科學家表示,這對於全球氣溫的衝擊微乎其微,尤其是考慮到不採取行動造成不良後果的可能性很高。但也有科學家指出,仰賴快速的工業解決方案,可能會使人們和企業忽略對於實際減少碳排放、或停止使用化石燃料應付出的努力。

有無數的公司和國家正在單方面從事地球工程研究。預計這些實驗將在世界各地不同軌道上展開。

-----廣告,請繼續往下閱讀-----

利用二氧化硫進行地球工程

有些工程師提出一種低成本又快速的方法來減緩氣候變化⸺整頓碳房,同時「擺脫困境」。

就像鏡子反射光線、黑色車道在夏日變得炎熱一樣,外層大氣從太陽反射的光熱,也會對全球溫度產生影響。

30 年前,菲律賓的皮納圖博(Mt. Pinatubo)發生了 100 年來最嚴重的一次火山爆發,所噴發的灰燼造成了驚人的影響:一整年地球的平均溫度下降了約 0.5° C。透過使地球大氣層反射陽光,而不是吸收,地球變得比較涼爽。

地球工程學家正專注研究此一概念,在地球外圍創造一個人為的太陽遮屏。利用特殊裝備的大型噴氣式飛機,將不同的化學物質噴灑到高層大氣中,希望能一次改變地球多年的反射率,以人為方式降低地表的平均溫度。

透過地球工程,在大氣中添加懸浮微粒來複製火山噴發的自然效果。平流層氣溶膠注入的作用:

  • 散射太陽光。
  • 讓天空更明亮一些。
  • 反射部分太陽熱量。
  • 讓地球更涼爽一些。
透過地球工程,在大氣中添加懸浮微粒來複製火山噴發的自然效果。平流層氣溶膠注入的作用:讓天空更明亮一些。圖/Pixabay

透過在大氣中注入二氧化硫、鈦、或其他化學或礦物質,可以增加行星反照率(反射率)。

太陽能地球工程透過改變地球的輻射平衡,來治療氣候變化的徵狀,這方面的科學研究稱為「平流層氣溶膠監測」(stratospheric aerosol modification,SAM)。

據估計,這種方法一年成本不到 100 億美元,在大多數的氣候變化因應措施當中只是九牛一毛。一些專家認為,只要動用幾百架飛機即可完成,而且可以比預期更早開始。

研究人員馬克.勞倫斯(Mark Lawrence)2006年指出,「對地球工程可能性的嚴肅科學研究,如克魯岑和西塞隆(Crutzen & Cicerone)發表文章中所討論的,完全沒有得到氣候和大氣化學研究界的包容」,然而,到了 2016 年,他總結道,「在這些文獻發表後的 10 年間,雖然氣候工程仍然是極具爭議性的問題,但是在更廣泛的地球科學研究領域,那種禁忌感基本上已不存在」。

這種方法,還是有許多未經測試的現實問題:

  • 這些化學物質將會使臭氧層出現什麼反應?
  • 該由哪些國家規範這個過程、又該如何決定干預措施的地點和程度?
  • 有什麼辦法能阻止組織和國家單方面進行?若有國家想要暖化加劇、或是有億萬富翁只是想要名利,該如何處理?
  • 這將對人類、動物、植物、和海洋的健康造成什麼影響?
  • 我們準備好長久持續進行了嗎?如果沒有,一旦陷入了相對低成本和快速的解決方案,又該如何下決心停止呢?

——本文摘自《圖解全球碳年鑑:一本揭露所有關於碳的真相,並即時改變之書》,2022 年 9 月,商業周刊,未經同意請勿轉載。

所有討論 3
商業周刊
12 篇文章 ・ 3 位粉絲

0

2
1

文字

分享

0
2
1
每年有一千萬公頃的森林消失!把樹種回去,就可以解決問題了嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/19 ・1997字 ・閱讀時間約 4 分鐘

碳捕捉:把電廠排出來的二氧化碳再抓回去!

一九九〇年代,尚未開發出風能和太陽能,當時對氣候變遷的擔憂日益增加,因此有人建議捕捉和儲存那些從化石燃料發電廠排放出來的二氧化碳,如此就可將其轉變成一種低碳電力。

碳捕捉主要是透過化學反應將煙道氣(flue gas)中的二氧化碳分離出來,然後再將其壓縮液化,泵入地下洞穴,例如含水層或是廢棄的油氣田。

同時要針對傳統的發電機開收排放二氧化碳的費用。這將鼓勵電廠採用碳捕捉技術,不過前提是碳價要夠高,超過捕捉和封存二氧化碳的成本。

然而,即使在龐大的歐盟市場,碳的價格也從未高到足以讓碳捕捉在電力生產中具有競爭力,而且真正在運作的碳捕捉工廠很少。

碳捕捉將煙道氣(flue gas)中的二氧化碳分離出來,然後再加工處理。圖/Envato

即使如此,捕捉二氧化碳排放依舊可望成為一種脫碳方法,在未來某些產能製程中合乎成本效益。一個例子是將天然氣轉化為氫氣,這還能用於加熱和製造燃料電池,或用於生產水泥以及甲醇和氨等重要工業化學品。

-----廣告,請繼續往下閱讀-----

碳捕捉的各種可行性:直接從空氣抓?多種一點樹?

也有人認真思考過直接從空氣中捕捉二氧化碳的可行性,因為目前我們所面對的現實非常危險,即二氧化碳排放量下降的速度恐怕來不及讓上升溫度控制在攝氏 1.5 度內。

種植更多的樹木可能是最簡單也最便宜的方法,但首先必須遏止每年大量的伐林問題。

每年約有一千萬公頃的森林遭到砍伐,用於種植大豆、棕櫚油和其他作物,以及放牧牲畜。這樣的伐林導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。

目前二氧化碳排放量下降的速度沒辦法使上升的溫度控制在 1.5°C 內,再加上樹木被大量的砍伐,導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。圖/Envato

此外,封存大量二氧化碳所需的樹林面積也相當大──約要美國國土面積的四分之一,需要超過六年,甚至幾十年的時間才能讓樹木長到成熟,每年只能吸收平均全球燃燒化石燃料的 10% 排放量。

而在成長期過後,還需要更換樹木,因為在建築中也會使用到木材。有人建議,可以燃燒林業的廢棄物來產生能量(熱或電),並捕捉和封存排放出來的二氧化碳。

-----廣告,請繼續往下閱讀-----

這種生質能源的碳捕捉尚有爭議,必須要確保改變土地利用的這項變動最後的結果是產生淨負排放,而不是增加碳的排放量。此外,這種方法尚在開發中,可能會與其他對可耕地和淡水的需求產生競爭關係。

多種樹,真的可以救地球嗎?事情可沒有我們想的那麼簡單!圖/Pixabay

不過,可以使用化學吸收器直接從空氣中捕捉二氧化碳,這種方法比生質能源更緻密、更可靠, 只是目前的價格較為昂貴。

奧利金能源公司(Origen Power)正在開發將碳捕捉與具有商業價值的石灰生產相結合,這樣的製程可望降低成本。

吸碳新創公司「Carbon Engineering」也在開發另一種方法,是使用與二氧化碳接觸會形成碳酸鈣的氫氧化鉀。整個過程以石灰來合成氫氧化鉀,形成碳酸鈣,然後將其加熱,釋放出二氧化碳,進行壓縮和封存──這時便會再度合成石灰。他們預估,以這種方式捕捉二氧化碳的成本可望降低至每噸 100 美元。

-----廣告,請繼續往下閱讀-----

碳捕捉的展望與未來

為了增加產值,可以將捕捉來的二氧化碳與氫結合(比方說以再生電力來電解水,製造出氫氣),這可用來合成低碳燃料,取代汽油、柴油或航空燃料,這樣一來,其總排放量會遠低於某些生質燃料。

若是要捕捉和封存燃煤發電廠排放的二氧化碳,電力成本會增加約 60%,而使用再生能源來發電,成本則低得多。

然而,隨著空氣碳捕捉的研發和大量投資,再加上在某些工業製程中捕捉二氧化碳,以及重新造林,預估到二〇五〇年時,碳捕捉可能會吸收掉全球年排放量的 10%。

到二〇五〇年,再生能源和核能的總發電量可能接近當前全球需求量的 90%,透過碳捕捉,全世界可能會達到二氧化碳淨零排放。但要處理大量再生電力,電網在輸送和分配上需要適應風場和太陽光電場輸出量的種種變數,因此發展儲能設備非常重要。

-----廣告,請繼續往下閱讀-----

——本文摘自《牛津通識課|再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。