Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

不只是隨手關燈救北極熊:「節能」「減碳」如何走技術流?

鳥苷三磷酸 (PanSci Promo)_96
・2018/10/04 ・3956字 ・閱讀時間約 8 分鐘 ・SR值 584 ・九年級

-----廣告,請繼續往下閱讀-----

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

全球暖化已經發生了。──漢森博士(Dr. James E. Hansen),1988 年美國國會聽證會

地球大氣層的組成,超過 75% 為氮氣,超過 20% 為氧氣;餘下不及百分之五的大氣成分包括惰性氣體氬、水氣、二氧化碳。別小看這少少的百分之五,其中的水份很大程度了影響了我們的天氣系統,而眾所矚目的二氧化碳雖然平均值尚未達 0.05%(希望永遠不要達到),卻是數量最龐大、最具影響力、也最令現代人芒刺在背的「溫室氣體」。

圖/geralt @Pixabay

受限於今日的技術發展,能源來源無可奈何,還是會來自於高比例的化石燃料燃燒。如何節能減碳、更有效使用電力,也成了我們共同的習題。在第二期能源國家型科技計畫底下,「節能」以及「減碳淨煤」兩大主軸分別為了臺灣未來如何減少二氧化碳排放,做出殊途同歸的努力。

「『節能』與『減碳』兩個方向有點像減肥的兩個常見方向:『少吃』、『多動』,」計畫辦公室黃至弘副主任說:「兩個方向都要做到,才有機會達到最佳的效果。」

-----廣告,請繼續往下閱讀-----

一開始就減少排放:減碳淨煤怎麼做?

近兩百年來,人類大量燃燒化石燃料作為能量來源,大氣中的二氧化碳以及其他溫室氣體逐年增加。而減碳淨煤主軸的核心,就在於使用各種技術,儘可能減少人類燃燒化石燃料對大氣的影響,主要的技術可被囊括為兩大方向,首先為「新燃燒系統」;其次為 CCSU(CO2 Capture, Storage and Utilization):碳捕獲、碳封存及再利用。

減碳淨煤主軸內容架構。圖/NEPII計畫辦公室提供

國中課本就有提及燃燒三要素:可燃物如煤炭等燃料、助燃物如氧氣,以及最後一項是要達到燃點的溫度。新燃燒系統主要針對燃燒的三大要素進行優化或調整,試圖提高燃燒過程中產能的效率,─也儘可能減少產生的二氧化碳。

其中的「超超臨界粉煤發電」就是藉由調整溫度以及可燃物的狀態達到更佳的功能效率;而「富氧燃燒」則是藉著提高助燃物(氧氣)的濃度達到更佳的燃燒效果。另一類的技術研發則試圖在可燃物中加入生質物如稻草,以減少化石燃料使用的比例。

雖然新燃燒技術能減少碳排,但現階段的發電系統,仍無可避免產生大量的CO2。要處理這些碳排首先就必須將二氧化碳由氣體狀態攔截下來,先發的重要技術就是 CCSU 的第一項「碳捕獲」。

-----廣告,請繼續往下閱讀-----

碳捕獲主要應用化學材料特性對二氧化碳進行吸收(液體)、吸附(固態)或使用薄膜技術,將散布在空氣中的二氧化碳分子收集起來。目前在台灣發展較完整的兩項技術分別為「化學吸收法捕獲 CO2系統」與「鈣迴路捕獲 CO2系統」。

化學吸收法捕獲 CO2系統目前在台塑與長春石化已經有示範工廠,每年可捕獲 350 噸 CO2。而需要較高的運作溫度(600-800 ℃)、主要應用於水泥業的鈣迴路捕獲 CO2系統,更是在花蓮和平水泥廠建立了全球同技術最大的 CO2捕獲工廠,可以減少燃燒廢氣中 90%的二氧化碳,其規模超過 1.9 MW,每小時可捕獲1公噸的 CO2

捕獲下來的二氧化碳要怎麼處置呢?接下來就是 CCSU 的另外兩個技術「再利用」與「碳封存」了。

二氧化碳再利用,主要包括三個面向。其一為「直接應用」,如作為產品滅火器、發泡劑、製備為碳酸飲料等功能。其二為「培育生質作物」,例如用於養殖微藻類,再以微藻製作高附加價值產品,如做為畜牧水產養殖業之飼料添加物、生質燃料、化學產品等用途;目前在成功大學安南校區有東亞最大的微藻養殖池,最大之養藻系統容量達 300噸。再應用的第三個面向則以化學工程技術將二氧化碳結合氫氣或其他化學物質,合成出人類所需要的物質如化學原料或能源或儲能產品如甲醇等以供進一步應用。

-----廣告,請繼續往下閱讀-----

捕獲到的二氧化碳如果用不完還可以怎麼處理呢?另一種選擇則是將二氧化碳儲存在地底岩層之中,也就是「碳封存」的技術了。將氣體存放在地底岩層之中,乍聽相當不符合直覺,事實上大自然的岩層中本來就有百萬年以上的證據,除了家用的天然氣與近年來的化石燃料新寵頁岩氣以外,甚至全世界還有數百個儲存二氧化碳的天然岩層存在。台灣就曾經評估利用苗栗永和山、以及彰濱工業區外海的地下鹽水層作為碳封存的場址。

地球的生態系統裡面原本就含有二氧化碳,在大自然中會進行「碳循環」。就如同我們最熟悉的水循環:水由江川湖海蒸發後進入大氣,凝結成雲四處移動,在適當的條件下降水為冰霜雪雨。碳元素也會有類似的情況,會在生物圈、岩石圈、土壤圈、水圈以及大氣中移動,在大氣中最主要以二氧化碳的形式存在,可能會經由植物的光合作用進入生物圈,也可能溶入海水中,或者與各種礦物反應形成碳酸鹽類,而沉降到水底成為岩石圈的一部分。

碳循環示意圖。圖/J.Wong [Public domain], via Wikimedia Commons

CCSU 二氧化碳的捕獲、封存及再利用這些技術基本上都還在發展中,最終極版理想的狀態便是打造一個人工版的「碳循環」系統。在經濟、能源許可的範圍底下,處理能源使用過程中製造的二氧化碳,從而兼顧能源使用與避免產生溫室效應。

隨手關燈並不夠,技術與整合讓「節能」更有效

而除了在產能階段以及產能後端處理減少二氧化碳的影響,實際上直接以技術減少能源的使用也是控制二氧化碳排放很重要的角度。行政院環保署 2015年的統計資料,電力消費的比例,工業占 47.84%,運輸部門占 14.60%,服務業占 13.36%,住宅占 12.61%;這幾個項目累計高達 88%,也因此是在規劃節能技術最重要的切入角度。

-----廣告,請繼續往下閱讀-----

關係到日常生活的實際需求,倡導不開冷氣只開電扇、夜間不開燈早早睡覺等「苦行僧」的節能模式;或是要求政府機關、商家大樓減少照明燈具、空調設備而不使用,顯然並不那麼充足。真正有效的模式,需要建立於能夠滿足現有的經濟、商業模式的前提上。

人工智慧建築節能系統平台。 圖/工業技術研究院

節能主軸的研發主要分為兩個角度,其一是針對每項耗能的重點細節研發節能技術。如「工業節能」其中的項目「建立凹版轉印生產線」,就是減少傳統工序,預估可減少 60%的能源消耗以及提高了 70%以上的材料使用率。又或者於「住商節能」中用以評估最容易影響夏日尖峰負載的空調系統能耗狀況的「建築能耗模擬與分析平台」( Building Energy Simulation & Analysis Platform; BESTAI) ,這套系統由工研院綠能所發展,能夠透過輸入建築模型後,套用相對應的建築尺寸參數、以及建材等內容,根據熱能傳播的效應來估算建築的耗能數據,並且針對店家或建築提出建議的改良方向。

節能的另一個重要角度則是在於系統的整合,由於能源如電力的使用實際上牽涉到成本問題,因此許多製程改良至今能持續進步的空間並不大,但系統間的相互搭配往往才有機會更加優化整體的節能效率。舉例來說,「運輸節能」其中的「低碳交通運輸系統發展計畫」討論的內容就並非細部的技術層面,而在於評估台灣整體的運輸能耗,配合能耗與排放分析工具,以便提供未來有關綠色物流、智慧運輸系統與優化公路公共運輸營運模式等項目之建議。

另一個系統整合的案例要回到「建築能耗模擬與分析平台」的未來展望。

-----廣告,請繼續往下閱讀-----

「冷凍空調系統的能源效率發展很接近瓶頸了,下一步要節能,就需要做到系統整合。」工研院綠能所智慧節能系統技術組經理林鴻文博士說。

舉例來說,台灣的超商通常會設置有開放的冷藏櫃;而由於沒有隔離的前門自然會讓冷氣外洩,開放冷藏櫃的周圍通常溫度會較低;而設置較近的空調系統會因此降低輸出,冷藏櫃由於環境溫度提高反而會提高輸出;因而造成冷藏櫃周圍的空調,主要會由較耗能的冷藏櫃提供,如此反而大大不利節能。最理想的做法是兩者之間應該要有系統整合,互相協調出最適當的輸出比例。

賣場的開放式冷藏櫃因為無門設計而使周遭較為涼爽,若能配合店內的空調系統調控整體溫度,可以減少電力浪費。 圖/KristenMathiasen @Pixabay

展眼未來,無論是減少能源使用的「節能」或是根本減少二氧化碳排放的「減碳」,都需要更多更多的細部技術研發與系統整合,藉由這些持續不斷的技術發展與數不盡的研究與技術人員的努力,或許終有一天,這些科技技術終能帶領人類走上真正永續發展的未來。

延伸閱讀:

本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
0

文字

分享

0
3
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

8
0

文字

分享

0
8
0
氣候變遷會讓世界變得又熱又病嗎?暖化之下的寄生關係可不簡單
阿咏_96
・2023/05/15 ・3195字 ・閱讀時間約 6 分鐘

近年來,氣候變遷已經變成一個眾所皆知的熱門話題,不僅影響著我們身處的自然環境,以及人類生活,也對生物的繁殖、生長、分布等造成衝擊。不過,今天我們沒有要討論海平面上升、極端天氣等這些巨觀環境的改變,而是要來談談或許你我體內都有的——寄生蟲。

提到寄生蟲,大家比較熟悉的或許是蟯蟲、蛔蟲等,有機會寄生於人類體內的寄生蟲,而自然中許多物種之間也有寄生關係,但這與氣候變遷有什麼關係呢?

有許多研究顯示,氣溫升高會導致寄生蟲爆發事件增加,也有些研究說寄生蟲在高溫下的表現比宿主好,因此暖化可能會造成相關疾病越來越嚴峻,後來也衍生出「地球越溫暖,流行病越多」的假說。

地球越溫暖,流行病越多」的假說近來相當盛行。圖/envatoelements

寄生不是哩想ㄟ那麼簡單

俗話說:魔鬼藏在細節裡。腹肌藏在脂肪裡。

如同在生物課本裡學過的,寄生關係是生物間的交互作用,一種生物寄居在另一種生物的體表或體內,獲取營養得以生存、繁殖,所以也並非只有寄生蟲的事,和宿主的生理也有很大關係。找到溫度升高會影響寄生過程的哪些步驟,以及背後的機制怎麼運作,是了解氣候變遷對寄生關係影響的關鍵。

-----廣告,請繼續往下閱讀-----

近期發表在英國皇家學會《自然科學會報》(Philosophical Transactions of the Royal Society B)的一項新研究就發現,溫度能夠調節寄生真菌在宿主水蚤體內的感染機制。

這個研究由臺灣大學氣候變遷與永續發展學程助理教授孫烜駿與美國密西根大學研究團隊合作,利用暖化實驗觀察水蚤和真菌之間的寄生關係。

他們將一種水蚤 Daphnia dentifera 作為實驗物種,水蚤平常吃藻類等浮游植物,然後也會被更大的捕食者吃掉,因此水蚤在淡水食物網中扮演著重要角色。而今天的另一個主角 —— 寄生真菌 Metschnikowia bicuspidata ,則是一種會感染多種水蚤的酵母菌。

那水蚤是怎麼被感染的呢?

-----廣告,請繼續往下閱讀-----

宿主與寄生真菌之間的攻防戰

水蚤在濾食水中浮游植物時,寄生真菌的孢子可能會一起被牠吃進去,這時感染過程就開始了(水蚤表示:窩⋯⋯窩不知道QQ)首先,寄生真菌的針狀孢子需要先刺穿水蚤的腸道上皮細胞,才能進到體腔內開始發育、繁殖,感染初期有些水蚤還可能痊癒,否則就會進到最終感染階段,一旦水蚤體腔內充滿寄生真菌的孢子或孢子囊,便不可能康復,最終走向死亡,之後下一代孢子釋放回環境中,再被新宿主吃掉,完成感染週期。

寄生真菌在水蚤中的感染過程。生真菌的針狀孢子會先刺穿水蚤的腸道上皮細胞。圖/英國皇家學會《自然科學會報》

也不是所有被吃進去的孢子都能夠成功感染宿主,必須要經過重重關卡,畢竟水蚤也不是吃素的(好啦水蚤真的吃素沒錯 XD)

而兩道最重要的關卡就是「物理屏障」與「細胞免疫」。

物理屏障是一種常見的防禦形式,例如我們的皮膚和植物的角質層,在水蚤與寄生真菌的感染過程裡,腸道上皮細胞就是抵抗孢子進入體腔的物理屏障,像是一道能夠抵抗外來敵人的城牆。

-----廣告,請繼續往下閱讀-----

但如果孢子還是順利進到水蚤的體腔內,細胞免疫就像一支軍隊,免疫細胞士兵們會聚集到被感染的部位,開啟防禦模式,共同抵禦外敵,也就是前面提到的,有些剛被感染的水蚤有機會康復的原因。

健康的 Daphnia dentifera 水蚤(左圖)與被寄生真菌 Metschnikowia bicuspidata 感染的水蚤(右圖)。圖/國立台灣大學

暖化之下,寄生關係會怎麼樣

研究團隊想知道:溫度對物裡屏障和細胞免疫的影響,以及會不會影響最終感染的機率。

因此他們把水蚤放到 20°C 和 24°C 下的環境飼養,為甚麼是這兩個溫度呢?

根據先前研究,20°C 是適合水蚤生長繁殖的溫度,而 24°C 則是來自 2100 年氣候變遷預測下的平均溫度變化,自西元 1985 年起,夏季的湖面溫度以每十年 0.34°C 攀升,到本世紀末預計上升 4°C。

並將不同溫度下飼養的水蚤,分別放入有寄生真菌和沒有寄生真菌的環境,總共四種環境條件的組別。

-----廣告,請繼續往下閱讀-----
  1. 實驗組:24°C,沒有寄生真菌
  2. 實驗組:24°C,有寄生真菌
  3. 控制組:20°C,沒有寄生真菌
  4. 控制組:20°C,有寄生真菌

接著,為了知道感染初期的情形,針對有寄生真菌的組別,研究團隊在放入真菌 24 小時後,用複式顯微鏡觀察,檢查水蚤腸道和體腔內是否有孢子,以及孢子的數量。

那要怎麼知道物理屏障和細胞免疫的防禦效果呢?

如同前段提過的,我們將作為物理屏障的腸道上皮細胞想像成城牆,免疫細胞想像成軍隊,而寄生真菌的孢子是試圖入侵的外敵

腸道的防禦力便是用「後來在體腔內的孢子數」與「所有試圖刺穿腸道上皮的孢子數」相除;也就是「進到城牆內的敵人數」除以「所有一開始來城牆外攻擊的敵人數量」。(編按:每一百個攻擊城牆的敵人,會有多少人突破城牆的防禦進到牆內)

-----廣告,請繼續往下閱讀-----

除此之外,團隊也觀察在不同溫度下水蚤腸壁上皮的厚度,畢竟城牆的厚度可能是防禦的關鍵。

而細胞免疫則是以「前來支援的免疫細胞數」除以「體腔內的孢子數」計算,可以想像成一個敵人需要幾個士兵一起抵抗

除了兩道關卡的抵禦能力外,為了解水蚤的健康狀態,研究團隊紀錄牠們在感染後的死亡率和繁殖力。

溫度影響的不只是寄生關係

實驗結果發現,較溫暖環境下的水蚤腸壁上皮細胞比控制組厚,但腸壁是越厚越好嗎?

-----廣告,請繼續往下閱讀-----

另一個結果顯示,其實較厚和較薄的腸壁上皮細胞,比較能抵抗寄生孢子的攻擊,反而是有中等腸道厚度的水蚤防禦孢子進入體腔的能力較弱。

而關於細胞免疫,則發現隨著成功進入體腔的孢子數量增加,附著在孢子上的免疫細胞總數也跟著增加,但在較溫暖環境下飼養的水蚤召集來的免疫細胞,比控制環境下來得少。也就是說,越多敵人入侵,軍隊會募集越多士兵來共同對抗,但在溫暖環境下召來的士兵較少

那物理屏障和細胞免疫之間有什麼關係呢?

在 20°C 下,腸道上皮細胞越厚,每個寄生孢子所需要的免疫細胞數就越少,這似乎蠻容易理解的,若城牆越厚,軍隊火力就不需要太強,反之亦然。

-----廣告,請繼續往下閱讀-----

但在 24°C 卻看不到同樣的趨勢,我們知道的只有在溫暖環境下,同樣腸道厚度免疫細胞仍比控制組少。

最後,不論是繁殖力還是存活率,都是在溫暖環境下被感染的水蚤敬陪末座。

從這個研究,我們可以得知,溫度上升不僅會改變宿主的物理屏障,也會影響細胞免疫,進而改變寄生真菌對水蚤的感染結果。在更了解溫度影響寄生關係中的哪些關鍵特徵和結果後,便能預測在暖化環境中,宿主與寄生蟲之間的交互作用,以及所導致的後果。

  1. Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
  2. Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
  3. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
  4. Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
  5. Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.
-----廣告,請繼續往下閱讀-----