本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行
全球暖化已經發生了。──漢森博士(Dr. James E. Hansen),1988 年美國國會聽證會
地球大氣層的組成,超過 75% 為氮氣,超過 20% 為氧氣;餘下不及百分之五的大氣成分包括惰性氣體氬、水氣、二氧化碳。別小看這少少的百分之五,其中的水份很大程度了影響了我們的天氣系統,而眾所矚目的二氧化碳雖然平均值尚未達 0.05%(希望永遠不要達到),卻是數量最龐大、最具影響力、也最令現代人芒刺在背的「溫室氣體」。
受限於今日的技術發展,能源來源無可奈何,還是會來自於高比例的化石燃料燃燒。如何節能減碳、更有效使用電力,也成了我們共同的習題。在第二期能源國家型科技計畫底下,「節能」以及「減碳淨煤」兩大主軸分別為了臺灣未來如何減少二氧化碳排放,做出殊途同歸的努力。
「『節能』與『減碳』兩個方向有點像減肥的兩個常見方向:『少吃』、『多動』,」計畫辦公室黃至弘副主任說:「兩個方向都要做到,才有機會達到最佳的效果。」
一開始就減少排放:減碳淨煤怎麼做?
近兩百年來,人類大量燃燒化石燃料作為能量來源,大氣中的二氧化碳以及其他溫室氣體逐年增加。而減碳淨煤主軸的核心,就在於使用各種技術,儘可能減少人類燃燒化石燃料對大氣的影響,主要的技術可被囊括為兩大方向,首先為「新燃燒系統」;其次為 CCSU(CO2 Capture, Storage and Utilization):碳捕獲、碳封存及再利用。
國中課本就有提及燃燒三要素:可燃物如煤炭等燃料、助燃物如氧氣,以及最後一項是要達到燃點的溫度。新燃燒系統主要針對燃燒的三大要素進行優化或調整,試圖提高燃燒過程中產能的效率,─也儘可能減少產生的二氧化碳。
其中的「超超臨界粉煤發電」就是藉由調整溫度以及可燃物的狀態達到更佳的功能效率;而「富氧燃燒」則是藉著提高助燃物(氧氣)的濃度達到更佳的燃燒效果。另一類的技術研發則試圖在可燃物中加入生質物如稻草,以減少化石燃料使用的比例。
雖然新燃燒技術能減少碳排,但現階段的發電系統,仍無可避免產生大量的CO2。要處理這些碳排首先就必須將二氧化碳由氣體狀態攔截下來,先發的重要技術就是 CCSU 的第一項「碳捕獲」。
碳捕獲主要應用化學材料特性對二氧化碳進行吸收(液體)、吸附(固態)或使用薄膜技術,將散布在空氣中的二氧化碳分子收集起來。目前在台灣發展較完整的兩項技術分別為「化學吸收法捕獲 CO2系統」與「鈣迴路捕獲 CO2系統」。
化學吸收法捕獲 CO2系統目前在台塑與長春石化已經有示範工廠,每年可捕獲 350 噸 CO2。而需要較高的運作溫度(600-800 ℃)、主要應用於水泥業的鈣迴路捕獲 CO2系統,更是在花蓮和平水泥廠建立了全球同技術最大的 CO2捕獲工廠,可以減少燃燒廢氣中 90%的二氧化碳,其規模超過 1.9 MW,每小時可捕獲1公噸的 CO2。
捕獲下來的二氧化碳要怎麼處置呢?接下來就是 CCSU 的另外兩個技術「再利用」與「碳封存」了。
二氧化碳再利用,主要包括三個面向。其一為「直接應用」,如作為產品滅火器、發泡劑、製備為碳酸飲料等功能。其二為「培育生質作物」,例如用於養殖微藻類,再以微藻製作高附加價值產品,如做為畜牧水產養殖業之飼料添加物、生質燃料、化學產品等用途;目前在成功大學安南校區有東亞最大的微藻養殖池,最大之養藻系統容量達 300噸。再應用的第三個面向則以化學工程技術將二氧化碳結合氫氣或其他化學物質,合成出人類所需要的物質如化學原料或能源或儲能產品如甲醇等以供進一步應用。
捕獲到的二氧化碳如果用不完還可以怎麼處理呢?另一種選擇則是將二氧化碳儲存在地底岩層之中,也就是「碳封存」的技術了。將氣體存放在地底岩層之中,乍聽相當不符合直覺,事實上大自然的岩層中本來就有百萬年以上的證據,除了家用的天然氣與近年來的化石燃料新寵頁岩氣以外,甚至全世界還有數百個儲存二氧化碳的天然岩層存在。台灣就曾經評估利用苗栗永和山、以及彰濱工業區外海的地下鹽水層作為碳封存的場址。
地球的生態系統裡面原本就含有二氧化碳,在大自然中會進行「碳循環」。就如同我們最熟悉的水循環:水由江川湖海蒸發後進入大氣,凝結成雲四處移動,在適當的條件下降水為冰霜雪雨。碳元素也會有類似的情況,會在生物圈、岩石圈、土壤圈、水圈以及大氣中移動,在大氣中最主要以二氧化碳的形式存在,可能會經由植物的光合作用進入生物圈,也可能溶入海水中,或者與各種礦物反應形成碳酸鹽類,而沉降到水底成為岩石圈的一部分。
CCSU 二氧化碳的捕獲、封存及再利用這些技術基本上都還在發展中,最終極版理想的狀態便是打造一個人工版的「碳循環」系統。在經濟、能源許可的範圍底下,處理能源使用過程中製造的二氧化碳,從而兼顧能源使用與避免產生溫室效應。
隨手關燈並不夠,技術與整合讓「節能」更有效
而除了在產能階段以及產能後端處理減少二氧化碳的影響,實際上直接以技術減少能源的使用也是控制二氧化碳排放很重要的角度。行政院環保署 2015年的統計資料,電力消費的比例,工業占 47.84%,運輸部門占 14.60%,服務業占 13.36%,住宅占 12.61%;這幾個項目累計高達 88%,也因此是在規劃節能技術最重要的切入角度。
關係到日常生活的實際需求,倡導不開冷氣只開電扇、夜間不開燈早早睡覺等「苦行僧」的節能模式;或是要求政府機關、商家大樓減少照明燈具、空調設備而不使用,顯然並不那麼充足。真正有效的模式,需要建立於能夠滿足現有的經濟、商業模式的前提上。
節能主軸的研發主要分為兩個角度,其一是針對每項耗能的重點細節研發節能技術。如「工業節能」其中的項目「建立凹版轉印生產線」,就是減少傳統工序,預估可減少 60%的能源消耗以及提高了 70%以上的材料使用率。又或者於「住商節能」中用以評估最容易影響夏日尖峰負載的空調系統能耗狀況的「建築能耗模擬與分析平台」( Building Energy Simulation & Analysis Platform; BESTAI) ,這套系統由工研院綠能所發展,能夠透過輸入建築模型後,套用相對應的建築尺寸參數、以及建材等內容,根據熱能傳播的效應來估算建築的耗能數據,並且針對店家或建築提出建議的改良方向。
節能的另一個重要角度則是在於系統的整合,由於能源如電力的使用實際上牽涉到成本問題,因此許多製程改良至今能持續進步的空間並不大,但系統間的相互搭配往往才有機會更加優化整體的節能效率。舉例來說,「運輸節能」其中的「低碳交通運輸系統發展計畫」討論的內容就並非細部的技術層面,而在於評估台灣整體的運輸能耗,配合能耗與排放分析工具,以便提供未來有關綠色物流、智慧運輸系統與優化公路公共運輸營運模式等項目之建議。
另一個系統整合的案例要回到「建築能耗模擬與分析平台」的未來展望。
「冷凍空調系統的能源效率發展很接近瓶頸了,下一步要節能,就需要做到系統整合。」工研院綠能所智慧節能系統技術組經理林鴻文博士說。
舉例來說,台灣的超商通常會設置有開放的冷藏櫃;而由於沒有隔離的前門自然會讓冷氣外洩,開放冷藏櫃的周圍通常溫度會較低;而設置較近的空調系統會因此降低輸出,冷藏櫃由於環境溫度提高反而會提高輸出;因而造成冷藏櫃周圍的空調,主要會由較耗能的冷藏櫃提供,如此反而大大不利節能。最理想的做法是兩者之間應該要有系統整合,互相協調出最適當的輸出比例。
展眼未來,無論是減少能源使用的「節能」或是根本減少二氧化碳排放的「減碳」,都需要更多更多的細部技術研發與系統整合,藉由這些持續不斷的技術發展與數不盡的研究與技術人員的努力,或許終有一天,這些科技技術終能帶領人類走上真正永續發展的未來。
延伸閱讀:
參考資料:
本文由 NEPII「第二期國家型能源科技計畫」委託,泛科學執行