Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

電磁英雄法拉第(中):光電磁的魔術師——《物理雙月刊》

物理雙月刊_96
・2017/07/07 ・4968字 ・閱讀時間約 10 分鐘 ・SR值 537 ・八年級

  • 文/高崇文,中原大學物理系教授

聽說咱們臺灣的基礎研究的預算,今年又要狠狠地被砍一番,不禁想起法拉第這位一生游走在基礎研究與應用科學的科學家。他可是惟一得過兩次 Copley 獎章的物理學家哦。(Copley 獎章是皇家學會不分領域所頒發的最高榮譽)且讓我們來看看,法拉第這位光電磁的魔術師在玩什麼戲法?

以磁生電,古往今來第一人!

厄斯特發現電流生磁後之後,科學家發現愈來愈多電磁相關的現象。像法國科學家 François Arago 就發現把電線捲成線圈,再把不帶磁性的金屬棒放進去,金屬棒會被磁化。此外,若是將圓形磁鐵和不帶磁性的圓型金屬板,彼此靠近排在一起,當磁鐵轉動時,金屬板也會朝同樣的方向轉動。這個被稱呼為「Arago 圓盤」。英國科學家 William Sturgeon 在 1823 年也發現,若是將鐵棒放入用鐵絲纏繞而成的螺線管內的話,鐵棒的磁場會變強。他還將鐵棒彎成 U 字型,通電後成功吸起相當於磁鐵 12 倍重量約 4 公斤重的秤錘!但是這些基本上都是以電生磁,那倒底能不能以磁生電呢?雖然大家普遍相信有可能,可是沒有人做的出來,直到 1831 年,法拉第才終於成功地以磁生電!

François Arago 發現把電線捲成線圈,再把不帶磁性的金屬棒放進去,金屬棒會被磁化。圖/By Hendrik Scheffer, Public Domain, wikimedia commons

法拉第把兩條獨立的電線環繞在一個大鐵環,第一條導線連上電池,另外一條導線只連上電流計。他發現當第一條導線通電跟斷電時,連上第二條導線的電流計都會動一下,法拉第接著把磁鐵通過導線線圈,線圈中也有瞬間電流產生。移動線圈通過靜止的磁鐵上方時也一樣,原來之前眾人都期待「以磁生電」會產生穩定電流,只有法拉第注意到磁場變化生出來的電流都是瞬間電流!1831 年 11 月下旬,法拉第在皇家科學院的聚會中做了口頭發表,接著又以「與電相關實驗之研究」為題投稿到自然科學會報。這是他在接下來將近 25 年間撰寫的 29 篇論文中的第一篇。除了其中一篇論文之外,28 篇論文都發表在皇家學會的旗艦刊物《自然科學會報》(The Philosophical Transactions of the Royal Society)。內容就是大家從國中就學過的電磁感應定律(不過感應電動勢的方向是後來才由在聖比得堡的冷次 Heinrich Lenz 所決定的)隔年法拉第就獲得他的第一面 Copley 獎章了。

大家國中都有玩過電磁感應嗎?圖/By Eviatar Bach, CC0, wikimedia commons

論文還沒付印前,法拉第就寫信告訴法國數學家 Jean Nicolas Pierre Hachette 他的大發現,Hachette 將內容透露給 Arago。Arago 則在 12 月 26 日一個會議中宣布。這個消息幾天後出現在巴黎的報紙上。但報導卻說在法拉第之前已經有法國科學家先做過這個實驗。更離譜的是當時頗備歡迎的英國雜誌 Literary Gazette 的主編 William Jerdan 居然寫了篇文章說道「最早發現電磁感應現象的是 Leopoldo Nobili 和 Vincenzo Antinori 兩位義大利科學家,法拉第是重做了他們的研究」。這是因為義大利的雜誌將這兩位義大利化學家的論文發表日期由 1832 年 1 月往前移了兩個月成為 1831 年 11 月造成的誤會。這兩位義大利化學家在他們的論文中明明承認法拉第首先發現電磁感應。順便一提這兩位學者是在佛羅倫斯做的實驗。

-----廣告,請繼續往下閱讀-----

當然最後法拉第的功績還是被世人肯定,不過話說回來,當時的社會大眾會關心「從磁力做出電」這件事,表示科學的成就已經開始牽動一般民眾的民族情感,這也顯現出科學與社會的互動已是愈加緊密,至於這是好還是壞,就見仁見智囉。

看不見的電其實藏有定律

法拉第研究電磁感應後提出了一個非常重要的新概念。那就是「磁力線」。根據法拉第的看法,磁力線占據磁鐵內部與其周圍的空間。雖然肉眼不可見,但是只要將鐵粉灑在磁鐵上方的紙張上,馬上就可以看到圖形。磁力線在磁力最強的兩極附近,分佈得最稠密。離兩極越遠,隨著磁力越弱磁力線的分佈的密度越低。有了磁力線的概念,法拉第認為切斷線路上的磁鐵或其他電流發出的磁力線,是引起電磁感應的原因。法拉第的磁力線概念後來被馬克士威發揚光大。不過法拉第的電磁感應模型也有踢到鐵板的時候,著名的「法拉第弔詭」就是最好的例子。限於篇幅,阿文在此不能詳述,日後當寫專文一篇來討論,還請各位看官耐心等候。

磁力線占據磁鐵內部與其周圍的空間。在磁力最強的兩極附近,分佈得最稠密。離兩極越遠,隨著磁力越弱磁力線的分佈的密度越低。圖/By Newton Henry Black, Public Domain, wikimedia commons

法拉第下一個重要貢獻是證明了電基本上是同一種東西;在 19 世紀初,不同來源的電因而有不同的名稱。像是由伏打電堆(或一般化學電池)所得的電稱為「伏打電」;經由摩擦而得的靜電稱為「摩擦電」;電磁感應產生的被稱為「磁電」;溫度不同的兩個金屬產生的叫「熱電」;電魟和電鰻之類產生的則叫「動物電」等等。法拉第認為這些不同名稱的「電」應該擁有相同的性質。那他要如何證明呢?

1833 年法拉第設計了一種測量電流的儀器,根據電解過程中釋放的氣體體積來衡量流過的電流量,也就是後來的伏特計(Voltmeter)。他用這種儀器量度了電解過程中每產生 1 克氫氣所通過的電量與在電解槽中所沉積出的各種物質量的關係,最後歸納出法拉第電解定律:

-----廣告,請繼續往下閱讀-----
  1. 電解過程中,於電極所游離出之物質的質量與通過電解質之電量成正比
  2. 電解過程中,用相同之電量,其產生游離物質之質量與它們的化學當量成比例

無論電的由來為何,一定量的電會引起一定的效果,就這樣法拉第證明了各種名稱的電其實都是相同的。電解定律馬上就被發現具有實用的價值。利用電解的鍍金法,當時流行的方法是汞合金法就是將金與汞混合,金汞比例大致為(1 : 7),形成液體合金(金汞齊)。將它塗抹在器物的表面。無煙炭火溫烘烤令汞蒸發,剩下金層。電鍍比起來要安全得多而且更有效率。

搭乘飛機怕雷擊?法拉第會說「免驚」

三年後法拉第又讓社會大眾大吃一驚。法拉第做了一個被細密的金網包覆的木框。籠子長達 3.5 公尺相當龐巨大,無法放進法拉第的地下實驗室,只好搬到講堂。實驗時因為有大量的電荷從發電機送到籠子表面的金網,所以甚至有火花從金網飛出來。但是法拉第進到籠子裡,不但點燃蠟燭,還一副悠哉悠哉的模樣。他還用電表確認了籠子裡完全沒有電荷。這就是法拉第籠。

被導體包圍的法拉第籠內部的電位完全相同。所以一旦將電荷帶進籠內部,電荷就會往法拉第籠移動並分佈在籠子的表面。在日常生活中,飛機和汽車等金屬製的交通工具就算被雷打中,裡面的乘客也不會受到影響。阿文曾搭飛機時親身經歷飛機機身被雷擊中,一時機艙內一片死寂,只有陣陣嬰兒哭聲,不多久傳來德籍座艙長冷冷地說「我們開始供應餐點」,真是畢生難忘。當然啦,飛機一路順利抵達目的地,只是當時魂飛魄散的模樣依稀在眼前呢!

法拉第籠示意圖。圖/Di L’utente che ha caricato in origine il file è stato Nobelium di Wikipedia in tedesco, Public domain, wikimedia commons

當時大部份的科學家都認為庫侖力與萬有引力都是所謂的「超距力」,力是電荷或質量之間的作用,跟周遭的介質是無關的。法拉第獨排眾議,認為電力是透過介質而來傳遞,所以介質應該對電力有影響。為此 1837 年法拉第做了兩個大小相同的電容。電容的內極板與外極板之間各有 3 公分的間隔,可在其中填入介質。他先讓其中一個電容的內極板帶電,接著讓這個極板與另一個電容的內極板連接。結果電荷在兩個電容平均分布。接著他將其中一個電容的空腔填滿介質,再重複相同的實驗,卻發現填滿介質的電容累積比較多的電荷(電荷多寡是由庫倫的扭秤做測量)。由此可用數值來表現絕緣體的介質性質。法拉第把這個數值叫作比電容量,現在我們稱之為介電常數。

-----廣告,請繼續往下閱讀-----

1838 年法拉第與德國的「數學皇帝」高斯一起獲得 Copley 獎章,這是他第二次獲獎。但是之後法拉第就病倒了(當時法拉第四十九歲,當年戴維是五十歲英年猝逝,後世有學者懷疑他們因為長期接觸有毒物質所以才會健康出問題。誰說科學工作沒風險?)在休養好一陣子之後法拉第才逐漸恢復,接下來他的興趣由電磁現象轉到了光與磁相關的問題,並且得到非常豐碩的成果。

劃時代磁光效應,想得到卻量不到

法拉第認為光跟電磁現象有密不可分的關係,一開始他嘗試讓光通過強電場,想要觀察偏振光是否產生變化。但是徒勞無功。後來法拉第把電場換成磁場,在偏振光的附近放置磁極,並且讓偏振光通過各式各樣透明物質。雖然改變過磁鐵的強度、位置、通過物質的種類,卻一直無法得到預想的結果,1845 年 9 月 13 日他終於發現電磁鐵讓光的偏振面旋轉的神奇現象!當偏振光與磁力線平行地通過重玻璃時會產生最大的旋轉。這個實驗首次證明了光和磁力有所聯繫,也開啟後來馬克斯威爾的工作!

諷刺的是,使偏振面產生旋轉的物質正是令他苦惱許多年的「光學玻璃改良計畫」中製造的高折射率重玻璃。他了解到這種玻璃的高折射率會放大磁力的作用。這個現象是由於線性偏振可以分解為兩個圓偏振部份的疊加,而這兩個圓偏振部份之間的振幅相同、一個左旋,一個右旋,當磁場加在磁性物質上時,左旋與右旋光在磁性材料中有不同的吸收及反射係數,造成左旋圓偏振光波與右旋圓偏振光波各自以不同的速度傳播於介質,造出的相對的相移就會造成線性偏振取向的旋轉。電場其實也有類似的現象,但是法拉第當時的儀器還量不到這個效應,要等到 1878 年蘇格蘭科學家 John Kerr 才成功。

雖然在 1845 年法拉第已經發現磁光效應,直到一百多年後,才應用起磁光效應觀察、量測磁性材料的磁滯曲線;隨著雷射光與電子學的發展,結合磁光效應,發展出新型的光訊息元件——磁光元件。如法拉第旋轉器(Faraday rotator)可以用於光波的調幅,是光隔離器與光循環器(optical circulator)的基礎組件,也是光通訊與其它雷射領域必備組件。在天文學裏,法拉第效應也是一種很重要的磁場測量工具。舉個例子,從銀河系外射微波源(extragalactic radio sources)發射的無線電信號,穿過日冕而產生的法拉第效應,可以用來估算日冕內部的電子密度分布以及磁場的分布。

-----廣告,請繼續往下閱讀-----

處處皆有磁?原來法拉第才是第一位「萬磁王」

當時人類只知道磁石等特殊物質有磁性。但法拉第相信所有物質或多或少都有內含的磁性。雖然早在 1778 年,S. J. Brugmans 就發現了金屬鉍和金屬銻在磁場中存在某些抗磁性現象,但是直到 1845 年 9 月,法拉第發現在外在施加磁場中,所有天然物質都擁有不同程度的抗磁性,抗磁性 diamagnetism 這個詞才正式在文獻中使用。其實這個詞是William Whewell 建議的(Whewell 還創造 scientist, physicist 等詞呢)這個現象要等到二十世紀量子力學出現之後才能完整地解釋,不過這算是邁出磁性物理的重要的一步。

法拉第不僅相信光與電磁現象有關,他還相信重力與電磁現象也有關。1849 年 4 月,法拉第開始做實驗要來證明電與重力的關係。他嘗試將銅之類非磁性物質所做成的球,從直立的金屬製螺旋梯中落下,但沒有任何特殊的發現。他逐漸提升降落的高度。還是沒有看出任何效果。最後他甚至利用泰晤士河南岸的 Lambeth 的 shot tower,還是無法觀測到任何電荷變化(shot tower 翻做散彈製造塔,將鉛溶化後從很高的塔頂滴下去,塔底為水槽,墜落於水槽的鉛滴即可製成鉛彈)。法拉第不得不承認無法證明電和重力的關連,他非常失望,因為他連重力電這個專有名詞都早就準備好了。法拉第將這個研究結果投稿到哲學學報(Philosophical Transactions),皇家學會的秘書斯托克斯認為實驗沒有成果而將它退稿。這是法拉第最後一篇的投稿論文。

泰晤士河南岸的 Lambeth 的 shot tower(左)圖/By David Wright, CC BY-SA 2.0, wikimedia commons

法拉第真正最後的實驗又回到光與磁的關係。1862 年 3 月 12 日,他觀察強磁場是否會改變鈉的 D 線(焰色反應中的黃色光)的頻率與譜線線寬。結果是一場空。然而,法拉第的想法並沒有錯,問題出在他當時使用的儀器,尚不足以觀察到這效應。等到 1896年,荷蘭的物理學家 Zeeman 才利用分光能力更好的光柵分光器觀察到了今日我們稱之為 Zeeman 效應的光譜線的分裂。順帶一提,Zeeman 和用理論解釋此效應的勞侖茲一起獲得 1902 年的諾貝爾物理獎呢。

綜觀法拉第一生的研究,可以看得出來他所追求的是各種物理現象的合一。這跟他個人虔誠的宗教信仰有密不可分的關聯。有趣的是法拉第工作一輩子的皇家研究院非常重視科學的應用的機構,與傳統的學術單位大相逕庭。但是法拉第的電磁學研究許多在他有生之年是看不出應用價值的。到頭來,做科學最要緊的是有好的品味,做出好的科學才是王道吧。

-----廣告,請繼續往下閱讀-----

各位看官,您說是不是呢?


本文摘自《物理雙月刊》39 卷 6 月號 ,更多文章請見物理雙月刊網站

-----廣告,請繼續往下閱讀-----
文章難易度
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
英國紅外望遠鏡發現4對「不可能存在」的密近雙星
臺北天文館_96
・2012/07/28 ・1012字 ・閱讀時間約 2 分鐘 ・SR值 512 ・六年級

一組Wide Field Camera (WFCAM) Transit Survey研究團隊的天文學家Bas Nefs等人,利用位在夏威夷的3.8米英國紅外望遠鏡(United Kingdom Infrared Telescope,UKIRT)發現4對軌道週期極短的密近雙星,每對雙星的子星們互繞的軌道週期不滿4小時。在此之前,天文學家們一直認為這樣的密近雙星是不可能存在的,但這個新發現顯然打破了先前的想法。

銀河系中約有半數左右的恆星屬於兩顆恆星會互相環繞的雙星系統,而不是像太陽這樣的單星。雙星系統裡的成員們是一起誕生的,且相距不遠而受到彼此重力吸引,因而從誕生之後便開始互繞的命運。天文學家先前認為:如果雙星系統裡的兩顆子星靠得太近時,會很快地合而為一,形成一顆更大的恆星。過去30年間,許多觀測結果都支持這個理論,因為他們從未發現過軌道週期短於5小時的雙星系統。

雖然紅矮星是銀河系中最普遍的恆星,但因在可見光波段裡不甚明亮,因此從未被一般巡天計畫當作主要探尋對象。但WFCAM)Transit Survey研究團隊專門搜尋紅矮星雙星系統,其子星多為質量僅及太陽的數十分之一、光度僅為太陽千分之一的低質量恆星。UKIRT過去5年內固定以廣角相機(Wide-Field Camera,WFC)監測數十萬顆恆星在紅外波段的亮度變化,其中包含多達數千顆的紅矮星。當時這個低溫恆星的巡天計畫,主要目的是想透過凌日法研究系外行星和低溫恆星的性質。

然而,這個巡天計畫卻帶來意外的驚喜:他們發現4對紅矮星雙星,其軌道週期明顯短於5小時這個「雙星公轉週期最小極限」;其中一對由兩顆光譜型為M4的紅矮星組成的雙星,軌道週期甚至只有2.5小時左右。如果按照先前的理論,這些雙星應該是不可能存在的。

-----廣告,請繼續往下閱讀-----

既然在恆星形成早期,恆星的體積會逐漸縮減,那麼這類緊密雙星的存在,意味著它們的軌道也應該會在誕生後隨時間而縮減,不然早該撞在一起、合併成一顆星了。但是,天文學家們並不清楚它們的軌道何以能縮減得這麼多?其中一個可能的答案,就是低溫恆星組成的雙星系統其實遠比先前認為的還活躍。當它們一邊互繞、一邊互相接近時,子星間的磁力線彼此糾纏扭曲,透過恆星風而產生許多閃焰爆發或星斑等活動。強烈的磁場活動像是煞車一般,讓雙星間彼此靠近的動作慢了下來,不致於很快地就合併成一顆更大的恆星。

這些天文學家們希望透過這樣的紅矮星雙星研究,能更進一步瞭解紅矮星的活動與磁場等性質,以及它們在銀河系中存在的環境。

資料來源:UKIRT discovers ‘impossible’ binary stars[2012.07.05]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!