0

0
0

文字

分享

0
0
0

「潛移斷層」安全嗎?斷層動靜之間的學問

震識:那些你想知道的震事_96
・2017/06/20 ・4102字 ・閱讀時間約 8 分鐘 ・SR值 520 ・七年級

-----廣告,請繼續往下閱讀-----

  • 文/陳卉瑄 教授|國立台灣師範大學 地球科學系

家鄉在台東的我,小時候沿著卑南鄉的頂岩灣到市區,沿著彎彎的山路下去時,爸爸就會跟我講這個故事。「山下有個小學,上課的時候,腳下的地層一直在滑動呢!」父親指著遠方的惡地泥岩地形,有聲有色的跟我說。

這一大塊都是抓不住樹根的泥岩,一下雨,整塊地都會「古溜」地滑落。這種滑動或許就是人們熟知的「山崩」,如果真的有機會目擊大規模的山崩,可能會發現在數秒之內,地塊一口氣崩塌的景象。假如這種土石滑動的規模增加數十倍甚至百倍千倍,並且一路延伸到地下的情況會是怎樣呢?

或許看不到,但多少我們都會體驗過:斷層滑動與瞬間發生的地震。

動盪的地球:地震與斷層

如果能將地球剖開一半,我們將會看到「活的」地球。就像我們有體溫心跳一般,地球內部有軟流圈以下的熱對流,和上方緩慢的板塊運動。細細分析可以發現,地表各處「運動」的方向速度不一,即使是剛硬如石頭的板塊,有些地區也會像彈簧受力壓縮一般,長期受力的作用累積「應力」,這些應力累積的地方,就是遲早會破裂的區域。若發生破裂,這個破裂面就是斷層面;斷層錯動時還會伴隨釋放能量,造成地震。

-----廣告,請繼續往下閱讀-----

常有小地震的地方會因能量釋放光了,而相對安全嗎?

事實上,小地震釋放的能量、斷層大小和大地震比起來,只是冰山一角,我們用簡單的數學幾何方式來呈現,如圖一所示。

圖一:不同規模地震釋放能量的大小與斷層面積成正比。

如果要用較小的地震填滿一個規模 6.0 地震的斷層面積,你要有約 30 個規模 5.0 的地震,或是約 1000 個規模 4.0 的地震,或是三萬多個規模 3.0 的地震。這樣算起來,如果它原本會發生錯動的斷層面極大,即使小地震發生很多,也無法降低規模 7.0 以上地震發生的可能性哪!

況且,地震的觀測資料有限,過去幾年全世界的大地震,往往發生在令專家跌破眼鏡的地方,例如:應力累積非常緩慢的四川盆地周邊(2008年汶川大地震)、以及從未有同等規模紀錄的日本東北地震。這些例子也告訴我們,大地震難防之處,在於它不常發生,而斷層難研究之處,在於它特性複雜。

-----廣告,請繼續往下閱讀-----

不過,不是所有斷層都蠢蠢欲動的在醞釀地震,令人較為擔心的,是一萬年內活動過的,分類中屬於「第一類活動斷層」的斷層。據中央地調所的公告,台灣共有 33 條這樣的斷層。這些斷層活動特性各異,有些總是躁動不安,但多半都以小地震草草了事;有些則是平常看似平靜,但卻蓄勢待發等待驚天一震(這種最可怕);還有一些更為特別的,平常緩慢滑動,但卻沒有地震發生--這樣的斷層,叫做潛移斷層(creeping fault)。假如斷層長期都在緩慢移動(釋放能量),會不會較不易發生大地震、不易致災呢?

惱人的潛移斷層

可以確定的是,就算不發生地震,潛移斷層也是惱人的搗蛋鬼!

我們將鏡頭轉向美國加州,加州大學柏克萊分校旁的足球場,正巧被潛移斷層切穿(圖二紅線)。這個平常一直緩緩移動的斷層,使得足球館的西側以每年 0.47 公分的速率緩緩向北移動。造成台階、牆壁等硬體設施錯位,翻新的總金額高達 32 億!

圖二:潛移中的 Hayward fault。這個斷層切穿了加州大學柏克萊分校足球館 (Berkeley Memorial Stadium)。虛線標示了斷層線,而箭頭指示著斷層兩側相互運動的方向(右移斷層)。圖/ Roland Burgmann

回頭來看台灣,我們也有個因高速滑動和特殊的斷層型態而聞名世界的潛移斷層—池上斷層(圖三)。斷層造成其中一側以每年平均 2.4 公分的速率抬升,有個住在池上的友人,每隔個 5 年,他家就得重新修補台階(超過 10 公分高差),更不用講有條斷層在底下默默經過的房舍了。斷層的作用像強力千斤頂般,逐漸累積的地面錯位,對路面、牆壁、管線甚至建物都造成了顯著的破壞,如圖四之一、四之二所示。

-----廣告,請繼續往下閱讀-----
圖三:潛移中的池上斷層。這個向東傾的逆衝斷層,是目前全世界最活躍的逆衝型潛移斷層。圖中紅線指出了池上斷層的位置,紅色三角形的指向為東方,說明這是一個向東邊傾的斷層。圖/ 牟鍾香。
圖四之一:因長期斷層潛移而受到損壞的排水管,地點於圖三所示。圖/朱傚祖。
圖四之二:因長期斷層潛移而受到損壞和磚牆,圖/朱傚祖。

潛移斷層比較安全?

潛移斷層,過去的研究認為,由於斷層帶具有特定的岩石組成成分(像蛇紋石、黏土礦物和鹽等等),大幅降低它在承受變形時的強度,於是在大地應力不停推阿擠的,斷層面上的錯動穩定地、不間斷地發生。這樣的滑動,又稱作穩定滑移(stable sliding)。

和潛移斷層完全相反,甚至相異到極致的另一種類型,就是推不動的鎖定斷層(locked fault)。這種和穩定滑移相反的鎖定區(locked),則有足夠的強度,平常時它「零變形」,但其實正在累積著應力,等待破裂的臨界點到來,這一刻,就是發生「大破壞」之時。而這所謂的大破壞,就是我們熟悉的大地震。

這樣說來,潛移斷層,一推就動,應力無從累積,也就不會有地震了?這一個說法看似正確,但是我們必需強調一點:不能小看斷層面的複雜度!

代誌沒這麼簡單,潛移沒這麼單純

斷層面的性質並不是完全均一的。

-----廣告,請繼續往下閱讀-----

在數公里長、寬的斷層面上,有的地方在穩定滑移、有的在鎖定狀態。這就是為什麼潛移斷層仍能發生規模 6.0 以上的地震。

什麼!?要怎麼解析哪裡在鎖定、哪裡會穩定滑移呢?首先需要有很多的地表位移測量,越多點位,越能推測複雜的斷層行為。圖五表現了三種不同行為的斷層分類,分別為:

(a) 整段都在潛移 ;(b) 部分鎖定、部分潛移; (c) 整段完全鎖定。

潛移的區塊,每年以數公釐至數公分的潛移速率 D 緩緩地移動著; 鎖定區雖然目前不動,但是它可是蓄勢待發的!如果我們知道斷層鎖定區過去的活動性,便可以向前追溯前幾次在這個區塊發生的地震。

-----廣告,請繼續往下閱讀-----

把地震當時的滑移量和發震時間作圖如 (d),可以先得到一個「階梯狀」的變化圖,每一階的變化可以視為地震當下的錯動量。而下一步,我們可以拉出一條斜率為 L 的斜線(虛線),它代表這個鎖定區長期的滑移速率。如果 L 算出來是每年三公分,那它跟你說的是: 嘿!雖然我不動,但這 100 年我就存了 300 公分的位移量,在哪裡存呢?就說在一個圖四 (c) 的鎖定面積吧! (30 km x 65 km ),那麼,當我「想」動了,可以製造一個規模 8.7 的大地震啊! (算法請參照參考文獻[1])。

圖五:地底下斷層在任兩個觀測時間點的位移(震間變形),可以忠實地被沿著斷層面擺放的 GPS 所記錄下來。(a)整段都在潛移的斷層。潛移的方向如灰色箭頭所示,而地表 GPS 記錄到的位移場方向,則由黑色箭頭所示。(b) 部分潛移、部分鎖定的斷層。當斷層面有某一塊區域被鎖定,則其上方的 GPS 就會紀錄到幾乎不動的地表位移。(c) 整段都被鎖定的斷層,上方的位移場幾乎為 0。(d) 一個鎖定的斷層,幾百年才錯動一次,每次錯動的滑移量和時間作圖,就可以描述這個斷層長期的滑移速率。

但是,如果一個斷層上同時有鎖定區和潛移區,那,潛移區塊扮演甚麼角色呢?當你用 L 代表鎖定區的滑移速率,用 L 減去 D 代表穩定滑移區的滑移速率,這時候估計出來的「可能地震規模」就會變小,這是為什麼過去,專家們一直常把潛移斷層認為是相對安全的。

隨著大地測量、地震儀架設的點位越多,斷層的哪一個部分在穩定滑移 / 鎖定?怎麼滑? 隨時間有沒有變化?這些問題的答案漸漸浮現。對於斷層行為的了解越多,照理說應該越安心,但科學家們卻發現了另一件隱憂……。

潛移斷層 vs.大地震

前文曾提到斷層面積、釋放能量與地震規模的關係,所以地震可以「長」多大似乎受控於斷層破裂面可延伸多遠,那麼,這些斷層面上的穩定滑移區,會控制「大地震發育」嗎?

-----廣告,請繼續往下閱讀-----

利用斷層模型進行模擬,科學家們發現,這些多為「穩定滑移區」的潛移斷層,在地震發生時,讓斷層面上的錯動更無障礙的穿越,也就是,潛移斷層可以讓大地震更「大」 ! [2]。而有許多的觀測證據都陸續發現,在鄰近有大地震發生而伴隨著斷層面的高速滑動時,「穩定滑移區」潛移區可能會轉換成「鎖定區」 [3],使得鎖定區域範圍加大、大地震潛勢增加。這樣的發現,是對身處潛移斷層區的居民敲了警鐘,「沒有不危險的斷層」,專家如是說。

身處活動斷層密集區的我們,更需要知道:地底下的變形、斷層面的特性隨時間一直在改變,沒有絕對安全的所在,也沒有「地震周期可以預測」的具體證據。面對這困境,更高密度的監測儀器,將能幫助我們釐清各種不同斷層特性,如何影響著大地震的行為。

事實上,全世界不少地方有潛移斷層的發現:如美國、墨西哥、義大利、土耳其、以色列、阿富汗、巴基斯坦、中國、菲律賓、日本和台灣。可惜的是這些被文獻所紀錄的潛移斷層,絕大多數都是走向滑移斷層,僅有一例為正斷層型態(菲律賓的 Alto Tiberina Fault),一例為逆衝斷層(台灣的池上斷層),不同斷層型態的潛移特性,所知仍然非常有限,「潛移斷層和大地震的關係」 這個重要的課題,尚待更多研究人員的投入和充分探索。全世界潛移斷層的分布和證據請見[4]。

隨著科學和科技進步,或許大家會期許研究能帶領我們了解斷層、預測地震,但新發現同時也告訴我們,探尋越多才知道人類了解的其實很少。所以,加入地震研究領域,現在正是時候!

-----廣告,請繼續往下閱讀-----

後記與致謝

感謝震識發起人馬國鳳教授的強力邀稿,和主編潘昌志先生的專業編修。這一篇文章的構想,是由本人與 Roland Burgmann 五月發表在 Review of Geophysics 的評論文章而來[5],本文的圖一和圖二就是源自該處。本文的初始文稿編修,則感謝黃大銘學長、陳耀傑、陳奕尹和陳淑俐幾位的寶貴意見。原稿稍微多一點專業用語,並包含較多個人情感和搞笑口語,有興趣參考的請連結至[6]。

本文原發表於《震識:那些你想知道的震事》部落格,或是加入按讚我們的粉絲專頁持續關注。將會得到最科學前緣的地震時事、最淺顯易懂的地震知識、還有最貼近人心的地震故事。

參考文獻

  • 1. http://katepili.pixnet.net/blog/post/427778105
  • 2. Noda, H., and N. Lapusta (2013), Stable creeping fault segments can become destructive as a result of dynamic weakening, Nature, 493, doi:10.1038/nature11703.
  • 3. Uchida, N., K. Shimamura, T. Matsuzawa, and T. Okada (2015), Postseismic response of repeating earthquakes around the 2011 Tohoku-oki earthquake: Moment increases due to the fast loading rate, J. Geophys. Res. Solid Earth, 120, 259–274, doi:10.1002/2013JB010933.
  • 4. Harris, R.A. (2017), Large earthquakes and creeping faults, Rev. Geophys., 55, 169–198, doi:10.1002/2016RG000539.
  • 5. Chen and Burgmann (2017), Creeping faults: Good news, bad news?, Review of Geophysics, 10.1002/2017RG000565.
  • 6. “潛移斷層” ,安全嗎?
文章難易度
震識:那些你想知道的震事_96
38 篇文章 ・ 9 位粉絲
《震識:那些你想知道的震事》由中央大學馬國鳳教授與科普作家潘昌志(阿樹)共同成立的地震知識部落格。我們希望透過淺顯易懂的文字,讓地震知識走入日常生活中,同時也會藉由分享各種地震的歷史或生活故事,讓地震知識也充滿人文的溫度。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

5
3

文字

分享

0
5
3
除了蚯蚓、地震魚和民間達人,那些常見的臺灣地震預測謠言
鳥苷三磷酸 (PanSci Promo)_96
・2024/02/29 ・2747字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

災害性大地震在臺灣留下無數淚水和難以抹滅的傷痕,921 大地震甚至直接奪走了 2,400 人的生命。既有這等末日級的災難記憶,又位處於板塊交界處的地震帶,「大地震!」三個字,總是能挑動臺灣人最脆弱又敏感的神經。

因此,當我們發現臺灣被各式各樣的地震傳說壟罩,像是地震魚、地震雲、蚯蚓警兆、下雨地震說,甚至民間地震預測達人,似乎也是合情合理的現象?

今日,我們就要來破解這些常見的地震預測謠言。

-----廣告,請繼續往下閱讀-----

漁民捕獲罕見的深海皇帶魚,恐有大地震?

說到在坊間訛傳的地震謠言,許多人第一個想到的,可能是盛行於日本、臺灣的「地震魚」傳說。

在亞熱帶海域中,漁民將「皇帶魚」暱稱為地震魚,由於皇帶魚身型較為扁平,生活於深海中,魚形特殊且捕獲量稀少,因此流傳著,是因為海底的地形改變,才驚擾了棲息在深海的皇帶魚,並因此游上淺水讓人們得以看見。

皇帶魚。圖/wikimedia

因此,民間盛傳,若漁民捕撈到這種極為稀罕的深海魚類,就是大型地震即將發生的警兆。

然而,日本科學家認真蒐集了目擊深海魚類的相關新聞和學術報告,他們想知道,這種看似異常的動物行為,究竟有沒有機會拿來當作災前的預警,抑或只是無稽之談?

-----廣告,請繼續往下閱讀-----

可惜的是,科學家認為,地震魚與地震並沒有明顯的關聯。當日本媒體報導捕撈深海魚的 10 天內,均沒有發生規模大於 6 的地震,規模 7 的地震前後,甚至完全沒有深海魚出現的紀錄!

所以,在科學家眼中,地震魚僅僅是一種流傳於民間的「迷信」(superstition)。

透過動物來推斷地震消息的風俗並不新穎,美國地質調查局(USGS)指出,早在西元前 373 年的古希臘,就有透過動物異常行為來猜測地震的紀錄!

人們普遍認為,比起遲鈍的人類,敏感的動物可以偵測到更多來自大自然的訊號,因此在大地震來臨前,會「舉家遷徙」逃離原本的棲息地。

-----廣告,請繼續往下閱讀-----

當臺灣 1999 年發生集集大地震前後,由於部分地區出現了大量蚯蚓,因此,臺灣也盛傳著「蚯蚓」是地震警訊的說法。

20101023 聯合報 B2 版 南投竹山竄出蚯蚓群爬滿路上。

新聞年年報的「蚯蚓」上街,真的是地震警訊嗎?

​當街道上出現一大群蚯蚓時,密密麻麻的畫面,不只讓人嚇一跳,也往往讓人感到困惑:為何牠們接連地湧向地表?難道,這真的是動物們在向我們預警天災嗎?動物們看似不尋常的行為,總是能引發人們的好奇與不安情緒。

如此怵目驚心的畫面,也經常成為新聞界的熱門素材,每年幾乎都會看到類似的標題:「蚯蚓大軍又出沒 網友憂:要地震了嗎」,甚至直接將蚯蚓與剛發生的地震連結起來,發布成快訊「昨突竄大量蚯蚓!台東今早地牛翻身…最大震度4級」,讓人留下蚯蚓預言成功的錯覺。

然而,這些蚯蚓大軍,真的與即將來臨的天災有直接關聯嗎?

-----廣告,請繼續往下閱讀-----

蚯蚓與地震有關的傳聞,被學者認為起源於 1999 年的 921 大地震後,在此前,臺灣少有流傳地震與蚯蚓之間的相關報導。

雖然曾有日本學者研究模擬出,與地震相關的電流有機會刺激蚯蚓離開洞穴,但在現實環境中,有太多因素都會影響蚯蚓的行為了,而造成蚯蚓大軍浮現地表的原因,往往都是氣象因素,像是溫度、濕度、日照時間、氣壓等等,都可能促使蚯蚓爬出地表。

大家不妨觀察看看,白日蚯蚓大軍的新聞,比較常出現在天氣剛轉涼的秋季。

因此,下次若再看到蚯蚓大軍湧現地表的現象,請先別慌張呀!

-----廣告,請繼續往下閱讀-----

事實上,除了地震魚和蚯蚓外,鳥類、老鼠、黃鼠狼、蛇、蜈蚣、昆蟲、貓咪到我們最熟悉的小狗,都曾經被流傳為地震預測的動物專家。

但可惜的是,會影響動物行為的因素實在是太多了,科學家仍然沒有找到動物異常行為和地震之間的關聯或機制。

遍地開花的地震預測粉專和社團

這座每天發生超過 100 次地震的小島上,擁有破萬成員的地震討論臉書社團、隨處可見的地震預測粉專或 IG 帳號,似乎並不奇怪。

國內有許多「憂國憂民」的神通大師,這些號稱能夠預測地震的奇妙人士,有些人會用身體感應,有人熱愛分析雲層畫面,有的人甚至號稱自行建製科學儀器,購買到比氣象署更精密的機械,偵測到更準確的地震。

-----廣告,請繼續往下閱讀-----

然而,若認真想一想就會發現,臺灣地震頻率極高,約 2 天多就會發生 1 次規模 4.0 至 5.0 的地震, 2 星期多就可能出現一次規模 5.0 至 6.0 的地震,若是有心想要捏造地震預言,真的不難。 

在學界,一個真正的地震預測必須包含地震三要素:明確的時間、 地點和規模,預測結果也必須來自學界認可的觀測資料。然而這些坊間貼文的預測資訊不僅空泛,也並未交代統計數據或訊號來源。

作為閱聽者,看到如此毫無科學根據的預測言論,請先冷靜下來,不要留言也不要分享,不妨先上網搜尋相關資料和事實查核。切勿輕信,更不要隨意散播,以免造成社會大眾的不安。

此外,大家也千萬不要隨意發表地震預測、觀測的資訊,若號稱有科學根據或使用相關資料,不僅違反氣象法,也有違反社會秩序之相關法令之虞唷!

-----廣告,請繼續往下閱讀-----

​地震預測行不行?還差得遠呢!

由於地底的環境太過複雜未知,即使科學家們已經致力於研究地震前兆和地震之間的關聯,目前地球科學界,仍然無法發展出成熟的地震預測技術。

與其奢望能提前 3 天知道地震的預告,不如日常就做好各種地震災害的防範,購買符合防震規範的家宅、固定好家具,做好防震防災演練。在國家級警報響起來時,熟練地執行避震保命三步驟「趴下、掩護、穩住」,才是身為臺灣人最關鍵的保命之策。

延伸閱讀

討論功能關閉中。

0

1
1

文字

分享

0
1
1
地震預測行不行:地震前兆研究
鳥苷三磷酸 (PanSci Promo)_96
・2023/12/16 ・4014字 ・閱讀時間約 8 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/何其恩

地震災害真的這麼可怕嗎?綜觀 1900 年以來天然災害事件的死亡人數排名,第一名的確不是地震災害(根據統計資料,目前死亡人數最多的是發生在 1931 年的江准水災,造成約莫 200 萬人死亡)。但以前十名來說,地震災害就佔了一半了,分別是:2010 海地地震 31 萬人、2004 年印度洋大地震 30 萬人(南亞大海嘯)、1920 年海原大地震 27 萬人、1976 年唐山大地震 24 萬人以及 1923 年關東大地震 14 萬人。

二十世紀以來前十名的自然災害死亡人數,其中地震災害就佔了一半。 圖/envato

這說明了地震災害對人類社會有一定的致命性。它沒辦法像颱風、豪大雨可以發布透過天氣預報,也不像土石流、火山爆發有明確的指標能提早預警,做出相對應的防災措施。以目前的科技來說,地震發生到具有強大破壞性的 S 波到達,只有短短幾秒的預警時間。雖然地震測報技術比起十幾年前大有進步,距離理想的防災機制還有一大段路要走。

這也是為什麼地震預測對我們來說這麼重要。如果真的能做到像天氣預報一樣,我們就有更充裕的時間針對震災做出對應的防災動作。這篇文章統整了地震前兆相關研究及背後可能的物理機制,讓我們來認識什麼是地震前兆吧!

-----廣告,請繼續往下閱讀-----

地震前兆的線索:地震發生的物理機制對應的可能現象

地震發生前會有什麼現象呢?首先要探討地震發生的原因及過程。撇除火山爆發、隕石撞擊、人為活動⋯⋯等因素,世界上多數地震都是由斷層錯動產生的。

因為地球板塊無時無刻都在運動,當一個區域基於一些因素而鎖定,地層就會持續的累積應力。某處發生形變、岩石產生破裂,而使地層回彈,就是地震發生的物理過程。

在這個假設下,地震要發生前必須要有應力累積,這就是地震前兆的第一個突破口。如果我們能觀察、監測到異常的應力變化,或許我們就能推測地震什麼時候可能發生。

當然,應力畢竟是一種能量,我們需要藉由其他方式去觀測、計算。像是在應力持續增加下,岩層中的裂隙可能會越來越多、孔隙率可能也會改變,以至於深層的流體往上跑,讓地下水或土壤成分發生變化;又或者因為應力改變造成岩石的磁感率發生變化,進而導致大地磁場、電場,甚至是電離層的電子濃度發生改變。

-----廣告,請繼續往下閱讀-----

接下來我們就來討論地震前兆研究中,幾種相對直觀的前兆訊號:地殼異常形變、地下水改變、小地震增加。

大地測量

大地應力的來源大多是板塊移動,換句話說,監測地表位移就是檢驗大地應力結構的方法之一。

最直接的測量方法就是在出露的斷層兩側加上應變計(應力計)、潛變計⋯⋯等測量儀器,像是在大坡國小裡就能看到裝在池上斷層兩側的潛變計。日本地震學家坪川家恒曾經提出的「地殼異常持續天數」與「下一個可能發生的地震規模」的關係式。

隨著科技的進步,遙測技術也應用在大地位移場的監測。一部分的科學家把注意力放在遙測資料上,它可以更大範圍了解整體地塊移動情況,克服難以部署設備的困境,像是 GNSS、InSAR⋯⋯等方法,不過它們的缺點就是解析度有限。

-----廣告,請繼續往下閱讀-----

地下水監測

有時候深部的變化沒辦法直接反映在地表形變,這時我們就需要參考其他數據。地下水就是一個不錯的方式,主要可以分成兩個指標:地下水位變化、地下水成分變化。

後者比較好理解,一開始我們提到,在地震發生前應力累積的時期,地層可能已經出現許多裂隙,而深部的氣體就可以沿著這些通道往地面移動。如果遇到地下水層,氣體就會進入地下水,造成地下水組成的變化。

最常使用的目標氣體就是氡氣(Rn),它在空氣的組成非常稀少,主要存在地球內部。所以當地下水監測到異常的氡氣含量,我們就會推測可能有什麼原因造成地球內部氣體往地表擴散。1966 年的蘇聯,就有科學家在加爾姆地區的地下水井中觀測到氡氣異常,進而預測接下來發生的塔什干地震。

而地下水井的水位變化,地震發生前累積應力導致地層產生應變,可能會使地層產生微小的裂隙,改變地層的孔隙率及滲透率,而造成地下水位高度變化。921 集集地震前,車籠埔斷層附近地下水井的地下水位出現明顯升降的變化。然而除了地震可能影響地下水位變化外,包括降雨、大氣壓力、潮汐甚至人為抽水等其他因素都會影響地下水井的水位變化,因此地下水前兆研究尚有重重難關,還需要更多的觀測及研究。

-----廣告,請繼續往下閱讀-----

異常的微震數量

在應力累積的階段,斷層上小小的破裂也會產生地震,這些破裂可能隨著應力累積而持續增加,地震數量也會增加直到主震發生。在中國海城地震發生前,就曾經觀測到微震的數量突然增加。

至於地震前應力會在哪裡累積?目前還沒有一個準確的答案,可能就在震源附近,或是完全沒有預期的遙遠區域!科學家們也在研究其中的可能。

在地震發生前,應力會在哪裡累積?目前科學家們還沒有一個準確的答案。 圖/envato

從有形到無形:從大地電場及大地磁場看地震前兆

應力改變可能還會影響到什麼呢?除了在壓力表現之外,同時也可能改變岩石的磁感率。這時我們就有機會藉由觀測大地電場及磁場的改變,尋找地震前兆的線索。

可以想像地球就像一個巨大的發電機,時時刻刻都在產生電磁場,而這些原生電磁場會在地下岩層產生或大或小的渦電流,進而產生次生電磁場穿出地表。

-----廣告,請繼續往下閱讀-----

如果地下岩石的物理性質改變,次生電磁場也會發生異常的變化,進而造成大地電磁場異常。而另一個理論是,當岩石破裂會產生電流,伴隨強大的電磁場。

像是中央大學的研究團隊,就曾經在美濃大地震前,觀測到震央周圍數個測站出現異常的電訊號,為地震前兆研究注入了一劑強心針。雖然以目前的技術及知識,沒辦法在每次大地震前都觀測到電場異常,但它確實是一個有利的研究方向!

太空也有地震前兆?跳脫地圈的電離層觀測

擴大來看,電磁場異常還會影響遠在太空中的電離層。921 集集大地震前三天,臺灣上空的電離層濃度相較於前 15 天的中位數有降低的趨勢;在四川大地震前也曾經觀測到四川地區上空的電離層濃度明顯減少。

為什麼會影響電離層呢?目前學界有非常多相關物理模型,像是岩層可能具有壓電特性,受到壓力就會釋放出正電,形成渦電流影響電離層;或是當岩石破裂產生的電流影響電磁場,使電離層中的電漿溫度升高、體積膨脹而導致電漿粒子減少濃度降低。不過相關的理論及研究尚未成熟,其中還有許多限制及假設。

-----廣告,請繼續往下閱讀-----

地震前兆的其他可能性:從地球科學推演到更廣的科學層面

當然有人會問:「以前聽過動物行為異常也代表有大地震發生,難道動物行為不能當作地震前兆嗎?」

現在科學家也沒辦法給出明確的答案,因為動物的行為機制太複雜了!可能某些物種能捕捉到人類無法發現的前兆,但現在階段我們真的不能確認,今天冬眠的蛇大量跑出洞穴,是因為有地震要發生?還是有其他環境因子?或者牠們只是心情不好想要透氣而已?

這些可能的方法,需要靠更多跨領域科學家們合力研究,將可能的原因及現象一一分析,未來十年、二十年後,或許地震前兆研究可以更完整、更多元。

地震前兆的困境與展望

回到現實層面,既然有這麼多地震前兆研究方法,為什麼地震預測到現在還沒有像天氣預報這麼成熟的系統呢?

-----廣告,請繼續往下閱讀-----
為什麼有這麼多理論,我們到現在仍無法預測地震呢? 圖/envato

雖然理論看起來可行,實際上會遇到許多困難:

1. 地層結構比想像中的還要複雜,增加許多不確定性。

地層是非均勻的。理論上我們會形容底下的地層被鎖定、在累積應力,但現實上,是有些地方被鎖定、有些地方已經破裂、有些地方呈現韌性的穩定滑移⋯⋯。理論指出的現象沒辦法穩定且顯著的發生,因為存在太多變數了!

2. 一百條斷層有超過一百個可能的物理模式。

不同地方一定存在差異,何況同一條斷層也可能因時間推移產生改變。之前就有學者嘗試計算斷層的活動週期,但結果不如預期。當時算出的地震發生週期,就在下一次地震時,又脫離了原本的週期。這也說明了斷層活動不只具有空間變異性,也同時具有時間的變異性。

為了突破這個困境,不同領域都在努力精進。相信有朝一日人類能準確地預測地震,這是災防的一大突破,也代表更了解我們所在的地球!

延伸閱讀:

討論功能關閉中。