0

1
0

文字

分享

0
1
0

天氣與發電究竟有多纏綿?郭志禹帶你一窺科學的「風中奇緣」

研之有物│中央研究院_96
・2017/06/13 ・3237字 ・閱讀時間約 6 分鐘 ・SR值 542 ・八年級

為什麼要研究「風力發電」與「氣候」的關係?

台灣擁有得天獨厚的風力資源,但要把風力運用於生產能源,「可預測性」是極其重要的條件。中研院應科中心郭志禹副研究員,將氣象預報所使用的 WRF 模型,比對在風場實際測得的天候數據,再把得到的結果應用於風力發電的效能預測上。對於能源政策的擬定、資源配置、機械設備維運時程安排等,都提供非常重要的參考。

風是什麼顏色?迪士尼電影《風中奇緣》裡的寶嘉康蒂公主,問了這個難解的問題。但對郭志禹來說,這問題一點也不難。

風,是綠色的。

風力發電汙染低,是絕佳的綠色能源。中研院應科中心的郭志禹副研究員,目前進行的研究,就是以這個領域為核心。攝影/張語辰

唯有抓得住風,綠電發展才有著落

人類利用風力的歷史非常悠久,從文藝復興時代就開始了。到了 1970 年代,北歐掀起了一股研發再生能源的熱潮,開始使用幾十層樓高的大風車,從看不見的風中,攫取能源。

台灣海峽的兩側,就是目前全球最佳的風場之一,此處的冬季季風,堪稱世界上名列前茅的優質風力資源,讓風力成為台灣擁有的穩定再生能源,僅次於水力、更勝太陽能。有如此出色的風能條件,需要有好的學術研究來輔助。

以往,台灣綠能產業界關注的是如何製造效率更好的發電設備,然後外銷獲利。但既然台灣訂下了廢核的長期目標,又要同時減少碳排放,再生能源這個領域,就需要轉個彎,從「使用者」的角度來思考問題。

-----廣告,請繼續往下閱讀-----

對風力發電的「使用者」來說,最重要的,就是風力的「可預測性」。

這就是郭志禹研究最初的問題意識。透過風力,今天可以發多少電?明天、後天、下週又是多少?這攸關如何調配各種發電方式的基載配置,是使用者必須知道的答案。為了解答這些問題,郭志禹沒有氣象學的背景,卻一頭埋進了天氣的預測模型裡面。

看天吃飯也要靠傢伙,WRF 為你掌握局部地區天氣

風力發電可以算是一門「看天吃飯」的生意,要懂得「看天」,氣象預報就是一門必修學分。 WRF 模式(The Weather Research and Forecasting Model),是由美國數個科研機構在 2000 年開發成功、氣象學界用來預測「局部地區」天候狀況的模型。郭志禹的研究團隊,也是採用這套模型做為研究基礎,並且選定風力條件極佳的彰化沿海「福海電場」作為研究場域。

彰濱一帶,整個冬天都吹著強勁的東北季風,平均風速可以達到每秒 12 公尺以上(相當於六級風),這是福海雀屏中選成為研究場域的原因之一;另一個原因,則是郭志禹研究團隊和經營此地風場的永傳能源公司,有十分愉快的合作研究經驗。永傳在此架設的測風塔,提供了很珍貴的研究數據。

「雖然測風塔是很傳統的工具,但那些頂尖科技,不管是衛星影像、雷達回波等等,還是需要它的數據來進行校準,是非常重要的設備。」郭志禹形容著科技「反璞歸真」那一面。

-----廣告,請繼續往下閱讀-----

於是,在把 WRF 的模擬資料和場域的真實數據比對之後,郭志禹的團隊發現,兩者相當吻合,足見 WRF 模型對於福海風場一帶的氣候狀況,有不錯的預測能力。

在福海的風速與風向上, WRF 模型的預測(紅線)和實際測得數值(藍線),走勢相當一致。來源/郭志禹

到底是誰扯後腿?原來是斷不開的「尾流」

在掌握 WRF 模式的預測能力之後,郭志禹團隊的挑戰才正要開始。台灣的風力資源固然全球數一數二,但面積上卻不如北歐的北海風場那樣遼闊。因此,「地狹機稠」成了在地風場的特殊現象。可能每隔 10 公里就有一處風場,讓台灣海峽像是風場的集合住宅,空間一擁擠,鄰居之間難免容易有糾紛。

風場與風場之間,會不會相互干擾影響呢?這是郭志禹企圖解答的下一個問題。「尾流」,就是這個問題中的關鍵因素。

風機擾動大氣後,產生可能綿延 30 公里長的「尾流」,會對於風場中的大氣狀態產生相當重要的影響。圖為尾流結合凝結水氣的壯觀畫面。資料來源/Vattenfall

三十層樓高的風機,轉動著巨大的葉片,就好像是矗立在海中的一支支巨大打蛋器,雖然不至於把大氣攪成一鍋蛋花湯,但的確會改變風場中大氣的混合機制,連帶對於水氣凝結、降水的分布,以及熱傳導的物理系統,都會造成影響。

「尾流」對於風力發電影響最鉅的,就是減弱風速。

風機的扇葉從空氣中汲取了動能,那風的速度自然會隨之下降,下降的程度,會隨著距離慢慢遞減。郭志禹的研究團隊,分析大量的數據之後發現,風通過風機之後,風速下降超過 1 公尺(每秒)的區域,面積竟然廣達 100 平方公里左右。

-----廣告,請繼續往下閱讀-----

速度下降 1 公尺(每秒),有那麼嚴重嗎?別小看這 1 公尺,請看這張圖表:

風速與發電功率關係圖。彰濱一帶平均風速為 12(m/s) ,但若下風處的風機受到上風處的風機尾流影響減弱風速,發電功率就會下降。來源/郭志禹

從圖中曲線可以發現,風速大約在 12(m/s)以上時,可以進入最佳的發電效率。彰濱一帶的季風平均風速,正好就落在這個區間。然而,若風速受上游風場影響稍稍下降,來到 9~10(m/s)左右,發電效率衰退會非常明顯。在這個範圍裡,差 1 公尺,即可能造成二到三成發電效率損失

再加上前面提及的,台灣風場如此密集,上風處的第一台風機,可以當頭好壯壯的領頭羊,下風處的第二台就沒那麼好運,第三台、第四台……尾流效應依序疊加,最後會產生巨大的影響。除了發電效率之外,尾流導致忽快忽慢的風速,也會減損下游風機的使用壽命,連維運成本和時程都要重新估計。

郭志禹團隊的這個發現,對風力發電產業來說彌足珍貴。未來將可以據此,把天候及尾流因素納入考慮,提出更佳的規劃,甚至建立精準的預測模型。

-----廣告,請繼續往下閱讀-----

「就像漁民看電視會看漁業氣象,我們要做的就是風力發電產業可以看的『風電氣象』!」郭志禹笑著說。

台灣風電失落的一角:跨領域的合作發展

話鋒一轉,郭志禹提到了自己在學術之外的興趣,是潛水。國內外許多海底勝景,都是他探訪的目標。在幾次潛水的過程中,他看到了海底的沉船、或是人工魚礁,裡面豐富的海洋生態,讓他印象深刻。

從那時起他就深信,「人為改變」並不一定會對於環境產生傷害,重要的是人類要在與環境的共存方式之中,取得「環境保護」和「經濟開發」的平衡。環評,只是起點,後續對於環境的監測更重要。講到這,郭志禹對於當前的風力發電政策規劃,提出了重要的意見:

台灣要發展風力發電產業,真正關鍵的該是土木營建與海洋工程技術。

此言一出,讓採訪的我們有些意外,畢竟土木並不是他的學術領域,跟這份研究的問題意識與成果也並不相關。

但郭志禹表示,在外海架設風機,風場地質會影響風機基礎。彰濱海底的沉積地質太過鬆軟,對於常常會因風向而「側向受力」的風機來說十分不利,風力從迎風面不斷推拔風機。要克服這個因素以及在離岸環境下施工,土木營建與海洋工程技術才是關鍵。

-----廣告,請繼續往下閱讀-----
風力發電並非只是買一台風機「種」在海裡就好,怎麼「種」關乎地質與風向,累積這些工程經驗能變成台灣發展風電的資產。圖/iStock

郭志禹認為,外國的風機相關機電與系統整合科技領先台灣許多,與其競逐利潤日低的風機製造外銷的產業模式,不如正視利用在地的優勢,強化風機基礎與支撐結構設計與工法,累積具參考價值的珍貴數據資料,再拿來和外國進行技術交流。

這一段,雖然不屬於他的直接研究範疇,但述說時,郭志禹表情中蘊含的積極熱切仍未絲毫減少。或許是因為對他來說,做研究從來就不只是做研究。怎麼幫助這塊土地、這個世界更好,才是他心中不曾動搖的想望。

延伸閱讀:

  • 郭志禹的個人網頁
  • 郭志禹 (2017 年 1 月 13 日) 。 An Application of the Weather Prediction Model in Wind Farm Development, 2016 【演講資料】。

本著作由研之有物製作,以創用CC 姓名標示–非商業性–禁止改作 4.0 國際 授權條款釋出。

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3447 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

0
0

文字

分享

0
0
0
人體吸收新突破:SEDDS 的魔力
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/03 ・1194字 ・閱讀時間約 2 分鐘

本文由 紐崔萊 委託,泛科學企劃執行。 

營養品的吸收率如何?

藥物和營養補充品,似乎每天都在我們的生活中扮演著越來越重要的角色。但你有沒有想過,這些關鍵分子,可能無法全部被人體吸收?那該怎麼辦呢?答案或許就在於吸收率!讓我們一起來揭開這個謎團吧!

你吃下去的營養品,可以有效地被吸收嗎?圖/envato

當我們吞下一顆膠囊時,這個小小的丸子就開始了一場奇妙的旅程。從口進入消化道,與胃液混合,然後被推送到小腸,最後透過腸道被吸收進入血液。這個過程看似簡單,但其實充滿了挑戰。

首先,我們要面對的挑戰是藥物的溶解度。有些成分很難在水中溶解,這意味著它們在進入人體後可能無法被有效吸收。特別是對於脂溶性成分,它們需要透過油脂的介入才能被吸收,而這個過程相對複雜,吸收率也較低。

-----廣告,請繼續往下閱讀-----

你有聽過「藥物遞送系統」嗎?

為了解決這個問題,科學家們開發了許多藥物遞送系統,其中最引人注目的就是自乳化藥物遞送系統(Self-Emulsifying Drug Delivery Systems,簡稱 SEDDS),也被稱作吸收提升科技。這項科技的核心概念是利用遞送系統中的油脂、界面活性劑和輔助界面活性劑,讓藥物與營養補充品一進到腸道,就形成微細的乳糜微粒,從而提高藥物的吸收率。

自乳化藥物遞送系統,也被稱作吸收提升科技。 圖/envato

還有一點,這些經過 SEDDS 科技處理過的脂溶性藥物,在腸道中形成乳糜微粒之後,會經由腸道的淋巴系統吸收,因此可以繞過肝臟的首渡效應,減少損耗,同時保留了更多的藥物活性。這使得原本難以吸收的藥物,如用於愛滋病或新冠病毒療程的抗反轉錄病毒藥利托那韋(Ritonavir),以及緩解心絞痛的硝苯地平(Nifedipine),能夠更有效地發揮作用。

除了在藥物治療中的應用,SEDDS 科技還廣泛運用於營養補充品領域。許多脂溶性營養素,如維生素 A、D、E、K 和魚油中的 EPA、DHA,都可以通過 SEDDS 科技提高其吸收效率,從而更好地滿足人體的營養需求。

隨著科技的進步,藥品能打破過往的限制,發揮更大的療效,也就相當於有更高的 CP 值。SEDDS 科技的出現,便是增加藥物和營養補充品吸收率的解決方案之一。未來,隨著科學科技的不斷進步,相信會有更多藥物遞送系統 DDS(Drug Delivery System)問世,為人類健康帶來更多的好處。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
197 篇文章 ・ 303 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
衛城出版_96
1 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

0

2
1

文字

分享

0
2
1
除了像風車一樣,風力發電機還能長成什麼樣?風機百百種,沒有扇葉還可以靠震動發電?!
PanSci_96
・2023/12/11 ・5185字 ・閱讀時間約 10 分鐘

你有騎車被擊落的經驗嗎?比馬路更危險的是,水鳥可能在天上飛著飛著,就被巨大的風機送去投胎。

不是,風機蓋那麼大幹嘛?既然核電有小型核電廠,風電應該也要有小型版吧?

事實上除了大型水平軸式風機外,我們還有轉向不同的垂直軸式風機、天上飛的高空風力發電機,甚至靠抖抖抖就能發電的風力發電棒。等等,這真的能發電嗎?

為何需要新的風力發電技術?

從古巴比倫人和古埃及人的時代,「風」就被視為構成世界的元素之一,因此人類也很早就開始研究如何運用風的能量。古希臘時代,有一款叫做 Heron’s Windwheel 的風琴,就是利用風力驅動風車,並帶動幫浦為風琴不間斷送風。在這之後,中國和歐洲相繼出現各種風車來替人們進行農務工作,例如大家熟悉的荷蘭式風車。雖然現在常見的現代風力發電機組個頭大很多,但構造與荷蘭式風車沒有太大差異,都是扇面垂直於地面,並且扇葉轉軸和風向平行的水平軸式風車結構。但這種已經用了幾百年的風車設計,真的是最理想的發電方式嗎?有沒有更新穎的設計構造可以用來捕捉更多風能呢?

-----廣告,請繼續往下閱讀-----
Heron’s Windwheel。圖/wikimedia
荷蘭式風車。圖/wikimedia

先來說說大家熟悉的水平軸式風車,國際間最普遍的風力發電機組是三葉式的水平軸,台灣西海岸的諸多風力發電場採用的也是這類設計。你曾經好奇,為什麼扇葉是三葉的嗎?或是不知不覺就認為,三葉就是最正常的結構?既然推動風車的力量來自於扇葉,不是越多扇葉就能獲得更多能量嗎?而且看看風車,扇葉的面積明明就不大,旁邊都是空隙,這些能量不是浪費了嗎?實際上也確實不是越多扇葉越好,其中牽涉到許多複雜的因素。簡單來說,更多的葉片會帶來更多的風阻,也會降低葉片旋轉的速度,因此從三葉增加到四葉或五葉所帶來的效率成長非常少。也就是你如果有 12 支扇葉,4 座三葉發電機的發電量,會高於 3 座四葉發電機的發電量。因此,在單支風機的建設成本就是億元起跳的情況下,三葉成為最佳選擇。

對了,雖然更多葉的風機較少見,但反過來說,還真的有雙葉片,甚至單葉片的機組設計。畢竟較少的葉片代表較低的建造成本,以及較快的轉速。但是,單一葉片在旋轉時並不穩定,需要在對面方向額外加裝重物來平衡重量,顯得多此一舉。那雙葉呢?它的問題在於扇葉角度在隨風向調整時,容易產生震動而不穩定,對扇葉和機組的強度要求也更高。在綜合因素考量下,現在大多數的風電機組都是採用三個葉片的設計。

有水平軸式風車,就有垂直軸式風車,也就是轉軸與風向平行的風車。在台灣,你可能在某些工廠或是房屋屋頂上能看到它,我不是指工廠的排風球哦,而是看起來由幾根弧形線條構成的裝置。為什麼要設計成垂直的呢?因為比起水平軸發電機有一個特定的面風向。垂直軸的優勢在於不論風來自哪個方向,它都可以發電,不需要特別轉向;此外,它也不需要水平軸式風車長長的扇葉,相對不占空間,甚至能做成各種美感十足的設計。這幾個優點讓它特別適合設置在都會區中,用來捕捉方向不固定的小規模氣流,因此台灣有些地方就可以看到這種以垂直風力供電的路燈。

垂直軸風機葉片的型態多樣且美觀。圖/PanSci YouTube

不過城市內的風畢竟還是有限,為路燈或是小型家電發發電可以,但要能成為支撐整個城市的電力,還不及海上那些水平軸式巨無霸。在外海,不僅可以設置葉片長度超過 100 公尺的巨型風機,外海的風能,就是比內陸強烈且穩定。但這些巨無霸雖然會為我們帶來戰力,也會波及無辜。雖然風機遠離人類居住的地方,但外海還是有其他原始住民的,短暫地把人類的文明,建立在其他物種的痛苦之上 最後還是會害到整體。然而,巨大風機施工和運轉的噪音會干擾到海中生物,扇葉旋轉還會擊落蝙蝠和鳥類。雖然我們在上一集,有提到可以透過驅離或是扇葉塗黑的方式,讓其他生物注意到風機的存在,進而減少誤傷。但我們有沒有全新的設計,可以一勞永逸?

-----廣告,請繼續往下閱讀-----

風力發電還能長什麼樣?

面對目前風力發電的困境,有人重新思考風力發電的構造,提出全新的設計。其中一種便是漂浮式的離岸風電機組。

我們為了獲得更多風能,近年來積極發展離岸風電廠,作法非常簡單,就是把原本在陸地上的風電整根插到海床上。這光想起來就是非常浩大的工程曠日廢時,而且成本高,施工過程中產生的水底噪音也會影響到海洋生態。

可是海上的風就是比陸地上強上好幾倍,這麼香的風力來源怎麼能放著不用呢?來自挪威的公司 World Wide Wind 提出了一種浮標式風電機組,省去了海底工程的麻煩。這種風電機組採用垂直軸的設計,這樣機組就不會被海風吹著跑。整個裝置可以靠著海面下的配重平衡地直立在海面上,除了電纜之外不須要任何固定措施。這大大地擴展了離岸風電的發展空間。許多最佳的風場位在離岸較遠的深海區域,我們沒辦法在這些海床上豎立巨大的水平軸風車,這時候就可以透過漂浮式構造來擴張風電的勢力範圍。

反轉式直立渦輪(COUNTER-ROTATING VERTICAL TURBINES)。圖/World Wide Wind

不只如此,最特別的是,它是以兩組旋轉方向相反的葉片組成,因此被取名為反轉式直立渦輪(COUNTER-ROTATING VERTICAL TURBINES)。這麼做不只可以讓旋轉時更加穩定,還可以增加發電效率。由於發電用的渦輪是透過兩組扇葉之間的相對旋轉來發電,所以反向旋轉就像是用雙手擰毛巾一樣,等於收集到幾乎兩倍的能量。而且因為上下兩組扇葉所接收的風來自水平方向,所以彼此干擾並不大,展現了垂直軸風電的獨特優勢。一般的水平軸風車可沒有辦法玩這套,因為風在流過第一組葉片之後就會變成速度較慢的亂流。

-----廣告,請繼續往下閱讀-----

垂直軸提供了新選擇,但只要有軸,發電機就是會旋轉,還是有機會擊落海面上飛行的生物。如果要不傷及鳥類,看來……只能讓風機不旋轉了嗎?等一下,風機不旋轉還能發電嗎?誒,還真有可能。一家西班牙的新創能源公司 Vortex Bladeless 在幾年前開發出了全新的「渦流」發電技術,就是這根抖動的棒子。

不要懷疑,這個像搖頭娃娃一樣左右震動的棒子是一種完全不需要扇葉的渦流震動發電機。奇怪了,為什麼風吹會造成這種震動呢?原來當有空氣流經過圓柱狀的物體時,會在後方形成不穩定的渦流,讓物體產生左右震動的現象。如果振動頻率剛好和物體的自然頻率接近,便會產生出乎意料的強大共振。1940 年代,有座位在美國的塔科馬海峽吊橋,就是因為氣流共振導致扭曲斷裂,所幸最後無人傷亡。這個威力強大的現象如今也被拿來進行發電。

塔科馬海峽吊橋與氣流共振。

而這根風力發電棒的尺寸和材質,都經過特別設計來和渦流產生共振。它的上半部可以自由的晃動,位於底部的磁鐵和線圈接著可以將震動轉換為電能。這種設計不只看起來很有趣,產生的噪音也小很多,還能減少對鳥類的威脅。甚至因為沒有快速轉動的葉片,也能設置在靠近人群的都市環境中。目前一根約三公尺高的裝置,在有風的情況下可以產生一百瓦的電力。想像一下,只要把高速公路分隔島上排滿這種震動發電機,就能產生很可觀的電能。對了 這就像一個人訂閱泛科學看似影響不大,但如果每個人都同時按下訂閱泛科學,就能給我們莫大的支持與力量,麻煩各位了,跟我們一起共振吧!

話說回來,這種振動發電的轉換效率終究是比渦輪旋轉發電低,能夠捕獲的風量也較少。它的競爭優勢則在於較低的建造和維護成本,或許適合和太陽能互補為住家和都市地區提供電能。此技術已經在多年前證明可行,但目前在設計與量產方面仍處於開發階段,還須要更多的時間和資金才有辦法進入大規模生產。

-----廣告,請繼續往下閱讀-----

講完了海上與陸地上的風機,最後,既然要靠風發電,那麼風能最豐沛的高空,能不能也來發電一下呢?

高空的發電量會更高嗎?

最早在 2014 年就有 Altaeros Energies 這家公司嘗試這個做法。他們將風電機組裝在氦氣的飛船中央,放到離地表三百到六百公尺的高空。在這高度的風速比地表快上兩倍左右,由於風能正比於風速的三次方,所以風能是地面的八倍。這些風能會在高空就轉為電能,之後透過纜線傳回地上。除了電纜以外,也會有幾條固定纜線可讓地面人員控制氣球的高度與方向。

圖/Altaeros Energies

除了用氦氣球搭載發電機外,也有一些設計是透過風箏來將小型風電機組放到空中,形成隨到隨用的風力發電裝置。不過可以想像的是,雖然高空發電可以節省地面空間,還能取得豐沛的風能。但不論是汽球還是風箏,在維護上肯定需要投入更多的成本。如果要大規模設置,對於鳥類或是飛安的影響又是另外一個問題。目前,這些浮空風電裝置最大的優勢是它們絕佳的機動性,可以為遠離電網的偏遠地區,或是臨時性的研究站提供電力。又或是如果在大型演唱會的上空放一顆風力發電氣球來為活動供電,那好像也是挺浪漫的。

圖/wikimedia

雖然今天講到那麼多有創意的設計,但大多數的新創能源公司,都會因為現實上的競爭力不足而永遠停留在模型階段,還無法進入商業化生產。短期內的風力能源,還是得靠興建更多岸上和離岸的大型風電機組來扛起。不過,未來再生能源的需求只會持續地增加,我們確實需要有更多新想法、新設計,尤其是能廣泛設置,同時對環境影響低的新型態發電方式。而隨著材料科學的進步,當這些新設計的成本下降,我們就有機會在生活周遭看到它。

-----廣告,請繼續往下閱讀-----

最後也想請大家預測一下,20 年後風力發電的主力會是哪一種裝置呢?

  1. 漂在海面上的反轉式直立渦輪,感覺技術成熟後,施工成本可以降到很低
  2. 渦流震動發電棒,對環境傷害小,又不挑地方到處都能設置,積少成多
  3. 大型水平軸風機技術還是最成熟 成本也不斷破底,估計還是發電主力

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

討論功能關閉中。

PanSci_96
1220 篇文章 ・ 2223 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。