0

0
0

文字

分享

0
0
0

觀測通知:御夫座SU與御夫座AB兩變星之協同觀測

臺北天文館_96
・2012/02/12 ・802字 ・閱讀時間約 1 分鐘 ・SR值 551 ・八年級

-----廣告,請繼續往下閱讀-----

美國哈佛史密松恩天文物理中心(Harvard-Smithsonian Center for Astrophysics)Hans Moritz Guenther博士申請XMM-Newton X射線觀測衛星進行御夫座SU(SU Aur)和御夫座AB(AB Aur)兩變星的觀測,並尋求光學天文臺的支援,希望能在2012年2/15~2/17期間進行同步觀測。歡迎有興趣者加入。

御夫座SU是典型的金牛座T型變星(T Tauri),御夫座AB則是接近赫比格Ae星(Herbig Ae star)的變星,這兩種都是由原恆星(protostar)即將轉變成主序星(main sequence star)的主序前星階段(pre–main sequence star),其中金牛座T型變星一般是低質量恆星,赫比格Ae星則是中高質量恆星。這兩類年輕恆星因周圍吸積盤中的物質還在持續堆積而引發某些讓亮度變化改變的現象。其中御夫SU經常發生閃焰等爆發,這些爆發在X射線波段相當明亮,可能在可見光波段也可見到;但是這種主序前星的閃焰爆發事件應該和太陽這類已經成熟的恆星所發生的閃焰不同,因此才讓Guenther博士計畫仔細研究。

御夫座SU星和AB星視亮度分別為9.5等和7.0等,相當明亮。此外,AB星與SU星僅相距3角分,鄰近還有顆亮度7.6等的參考星(comparison)。因此用,以口徑約5~10公分左右的小型望遠鏡就可以同時觀測這兩顆變星與參考星。可利用AAVSO的VSP取得參考星圖(http://www.aavso.org/vsp),星名部分請用SU AUR和AB AUR輸入。以下是這兩星的座標(2000.0):
SU Aur R.A. 04 55 59.38  Dec. +30 34 01.5
AB Aur R.A. 04 55 45.84  Dec. +30 33 04.3

Guenther博士申請的XMM-Newton衛星觀測時間是國際標準時(UT)的2012年2月15日20:31:13到2月17日01:27:53之間;光學望遠鏡的觀測可在XMM-Newton開始觀測前幾小時到XMM-Newton結束觀測後幾小時,不過還是以XMM-Newton的觀測時間內為主。如果能在這幾日開始到2/24之間都有觀測資料,那就更好了。

-----廣告,請繼續往下閱讀-----

Guenther博士建議:盡量用CCD進行觀測,每次曝光時間維持在1分鐘以下,且CCD的時間需事先校正好。V濾鏡優先,但若使用其他濾鏡的觀測也可接受;又因為兩星比較偏紅,不建議做無濾鏡的觀測。

資料來源:AAVSO Alert Notice 452[2012.02.08]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

4
0

文字

分享

1
4
0
譜一張赫羅圖,算出星團中的「人口」及演化——天文學中的距離(三)
ntucase_96
・2021/10/15 ・3259字 ・閱讀時間約 6 分鐘

  • 撰文|許世穎

本文轉載自 CASE 科學報天有多大?宇宙中的距離(3)—「人口普查」

視差主要量測鄰近恆星的距離,想要量測得更遠就需要靠別的方法。在銀河系裡面有許多的恆星,有時會各自群聚為「星團(star cluster)」,就像是一個個村落。我們對這些村落進行「人口普查」,藉由它們的顏色與亮度來找出它們的距離。

M44 鬼宿星團(又稱蜂巢星團),是位於巨蟹座的疏散星團。圖/維基百科

遠看?近看?亮度不同!

在我們《天有多大?宇宙中的距離》系列的前一篇文章中,我們介紹了「視差」。利用在太陽兩端觀測到的天體位置差異,我們得以精確量測最遠一萬光年左右的明亮恆星距離。

可是光是銀河系大小就超過十萬光年,遙遠的恆星以現在的技術根本看不出位置差異、無法使用視差法,更不用說銀河系以外還有那麼多的天體了。我們還有什麼方法來量測距離呢?

在開始實際了解作法之前,讓我們先來想像一下:「有個人在夜裡手裡拿著一支蠟燭,站在你的面前,接著愈走愈遠、愈走愈遠…」那支蠟燭的亮度看起來會有什麼樣的變化?

-----廣告,請繼續往下閱讀-----

如果你不感到害怕的話,應該可以想像:「蠟燭的亮光看起來會愈變愈暗」對吧!

從物理的角度來看,由於蠟燭發出來的光會朝四面八方射出去。距離蠟燭愈遠,蠟燭照射的面積就愈大,所以看到亮光就變暗了。可以想像,我們看到的亮度會與照射的面積成反比,也因此與距離的平方成反比(圖 1)。

圖 1:光源照射出的亮度與照射面積成反比,也因此與距離的平方成反比。圖/參考資料 2

接下來換個情景,想像一下一個人站在一座路燈旁,遠方也有另一盞一樣的路燈。如果這兩座路燈的工程品質夠好的話,我們可以假設這兩座路燈發的光本來是一樣多的。

旁邊的路燈看起來比較亮,遠方的路燈看起來比較暗。比較近的路燈要量測到距離相對簡單且精準。這樣一來,就可以利用兩盞路燈的亮度與其中一盞路燈的距離,換算出另外一盞路燈的距離啦。

-----廣告,請繼續往下閱讀-----

我們也可以利用類似的方法來找去宇宙遙遠天體的距離,在宇宙中的天體發射出來的光,大多都是朝四面八方射出去,因此看到的亮度就跟這個球的表面積成反比、與觀測的距離成平方反比。我們利用鄰近天體、遙遠天體的亮度,搭配鄰近天體的距離,找到遙遠天體的距離。

接下來,我們就來實際認識一個用這種方法來計算距離的例子吧!

銀河系內星團的距離:人口普查

在對一些住得比較近的恆星進行「人口普查」之後,我們對於恆星的性質有了一定的理解。我們可以觀察恆星的顏色,量測出亮度,再依照它們的距離將亮度換算成光度,接著把恆星們「光度對顏色」的分布圖畫出來,這個圖被稱為「赫羅圖(Hertzsprung–Russell diagram或H–R diagram)」(圖 2)。從這個圖當中,可以研究出很多恆星的資訊。

比方說,我們發現在赫羅圖上,大多數的恆星會分布在一條帶狀區域上。這條帶狀區域稱為「主序星帶」。恆星絕大多數的生命時光,就是從在赫羅圖上的主序星帶一端移動到另外一端。我們可以從途中看出,恆星在它的演化之路上,會漸漸地從高溫、高光度,變成低溫、低光度。以觀測的角度來說,就是從「很亮的藍白色」,變成「很暗的紅色」(見圖 2)。

-----廣告,請繼續往下閱讀-----
圖 2:赫羅圖範例。橫軸是溫度,愈左方溫度愈高。愈上方看起來愈亮。每一個點都是一顆星。點的顏色就代表這些星看起來的顏色。可以看出有一條明顯的帶狀區域從右下角往左上角延伸,就是主序星帶。恆星主要的生命會從這個主序星帶的左上角慢慢演化成右下角的樣貌。圖/參考資料 3

也就是說,我們能從「恆星的顏色」來推知「恆星的光度」。如果我們可以清楚量測出一顆恆星的顏色,就能夠猜出它們的光度,進而計算出它們的距離。雖然這個方法跟視差一點關係也沒有,但這個方法卻被稱為分光視差(Spectroscopic Parallax)。

不過要將這個方法用在單一顆恆星會有很多的不確定性。比方說,之所以叫做主序星「帶」,就是因為它不是一條「線」。即便是在同一個顏色,它的光度會有一個不算小的範圍。

所以比起單純用來找出一顆恆星的距離,這個方法更常被用來找出一整團恆星的距離。這個方法稱為「主序星擬合(Main Sequence Fitting)」。

在銀河系裡面有許多的恆星,這些恆星並不是完全隨機分布的,有時會各自群聚為「星團(star cluster)」。把每一顆恆星都想成一個人的話,銀河系就是有著一千億人口的國家(人口很多也沒關係,反正土地也很大)。而星團就是國家裡的村落。有的村落具有一定的規模,可能有上百萬顆星。也有些村落比較小巧,可能只有幾百顆星。

-----廣告,請繼續往下閱讀-----

「主序星擬合(Main Sequence Fitting)」比較兩個村落的亮度,其中一個我們知道距離,另外一個的距離則是我們的目標。利用已知的距離,來得出未知的距離。

首先我們可以觀察銀河系內比較近、可以靠其他方法找出距離的星團。把星團裡的恆星「亮度對顏色」分布圖畫出來,可以找到一條主序星帶。

接著我們觀察未知距離的遙遠星團,一樣能從「亮度對顏色」分布圖中看到一條主序星帶。這兩條主序星帶由於星團的距離不同,亮度就會不一樣(範例見圖3)。比較這兩條主序星帶的亮度,就能換算出遙遠星團的成距離。

圖 3:距離不同的星團中主序星帶的差別。藍色點是畢宿星團(Hyades),紅色點是昴宿星團(Pleiades)中的恆星。每一個點都是一個恆星。橫軸是顏色,縱軸則是亮度。由於畢宿星團比較近,因此畢宿星團的主序星帶亮度比較亮、昴宿星團的主序星帶亮度比較低。從它們之間的亮度差別可以換算出距離的差別。圖/參考資料 4

過去常用來作為參考的星團是「畢宿星團(Hyades)」與「昴宿星團(Pleiades)」(圖 4)。畢宿星團是距離地球最近的星團,只有 151 光年,昴宿星團稍微遠一點點,大約 440 光年。這種距離下星團中的恆星距離可以用視差非常精準的量測。

-----廣告,請繼續往下閱讀-----
圖 4:畢宿星團(左)、昴宿星團(右)。圖/參考資料 5、6

不過畢宿星團的缺點也是有的,畢竟主序星擬合之所以成立是建立在一個假設之上:「所有星團的主序星帶亮度都一樣」,然而這個假設是不一定成立的。我們已經發現,不同年齡的星團它們的主序星會長的不太一樣。

以畢宿星團來說,它是個相較之下年老的星團,大約6億年左右。如果要用它來找年輕星團的距離,就好像要拿開發中國家來和已開發國家比較一樣,總是會有些不公平。另外每個國家其實也都有著自己的特色,讓這個方法總是有潛在的偏差。

主序星擬合是「宇宙距離階梯(cosmic distance ladder)」很重要的一步。藉由假設主序星的性質一致,我們找到了銀河系內遙遠星團的距離。然而主序星擬合的極限還是離不開銀河系。

在下一篇中,我們將帶大家認識量測研究銀河系外星系距離最重要的角色:「造父變星」,並介紹一位偉大的天文學家亨麗愛塔‧勒維特(Henrietta Swan Leavitt)的故事。

參考資料

  1. Pixabay / spirit111
  2. Encyclopædia Britannica, Inc.
  3. wiki / Hertzsprung–Russell diagram
  4. ESO / CAS 2003
  5. ESA Hubble / Overview of the Hyades star cluster (ground-based image)
  6. wiki / Pleiades


本系列其它文章:
天有多大?宇宙中的距離(1)—從地球到太陽
天有多大?宇宙中的距離(2)—從太陽到鄰近恆星
天有多大?宇宙中的距離(3)—「人口普查」

-----廣告,請繼續往下閱讀-----
所有討論 1
ntucase_96
30 篇文章 ・ 1443 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

1
3

文字

分享

0
1
3
星星電力公司:觀察恆星的核融合反應,了解恆星的生老病死——《蔚為奇談!宇宙人的天文百科》
三民書局_96
・2019/12/20 ・3803字 ・閱讀時間約 7 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/國立清華大學天文研究所教授 潘國全

「天若有情天亦老。」

──李賀,《金銅仙人辭漢歌》

恆星之所以取名為恆星,是因為古時人們相信恆星永恆不變,象徵著完美與無限。然而事實上並沒有什麼東西是永恆不變與完美的,恆星也如同人一般有著生老病死,只是恆星的一生可能橫跨數百萬到數百億年1,遠多於你我的壽命,更長於人類的文明。

太陽是離我們最近的一顆恆星,目前的年紀約為 46 億年,天文學家預測它大概還可以再持續發光 50 億年以上。這麼長的時間,天文學家如何瞭解太陽是怎麼演化的呢?其他的星星與太陽到底有何不同?到底是什麼能量讓太陽能夠發光?為什麼有些星星看起來是不同的顏色?

對於太陽,我們可以假設太陽系的地球與其他行星、小行星是在類似的時間形成,所以研究地球內部的結構、隕石的成分等都可以間接幫助我們瞭解太陽,但這樣的研究方式卻沒辦法運用到其他恆星。

距離我們最近的恆星——太陽(Credits: NASA/SDO)圖/三民提供

-----廣告,請繼續往下閱讀-----

我們可以用統計的方式來瞭解星星。假想你在觀察某一所小學學生的身高分布,雖然學生之間有高矮胖瘦等差異,但在不同年級的教室裡,可能會發現年級與學生的身高呈現正相關分布。

整體來看,愈高年級的學生身高愈高,所以你不必等小學一年級的學生升到六年級,就可以推斷六年級學生的平均身高比一年級學生高。觀察星星也是如此,而星星的命名中也有類似的意味,好比說矮星(dwarf,又有侏儒的意思)與巨星(giant,巨人)。

那星星的學校在哪裡呢?事實上,大部分的星星並不孤單,有很多「雙星」或「三星」的系統,更有一種組成叫做「星團」,是由數百到數百萬顆星星所組成的。星團裡的星星,每顆都有不同的質量,但卻在相近的時間一起誕生,而不同質量的星星有著不同的演化過程和壽命。

顯示恆星演化過程的「赫羅圖」

丹麥天文學家赫茲普龍 (Ejnar Hertzsprung) 與美國天文學家羅素 (Henry N. Russell) 分別提出把恆星的光譜類型與光度2畫在一起的關係圖,後來命名為赫羅圖

天文學家發現這樣的關係圖對瞭解恆星演化非常有幫助:恆星的光譜類型同時代表著恆星的表面等效溫度,恆星愈藍代表溫度愈高(正所謂爐火純青,藍色的火焰比黃色的火焰高溫)。如果我們對不同的星團畫赫羅圖,可以發現不同年齡的恆星在赫羅圖上有不同的分布。

-----廣告,請繼續往下閱讀-----

赫羅圖是恆星的星等(或亮度)對光譜類型(或等效溫度)的關係圖,可以用來顯示恆星演化的過程。(Credits: ESO) 圖/三民提供

天文學家發現大部分的年輕恆星都分布在圖中的對角線—那條稱作主序星 (main sequence stars) 的地帶,而質量愈大的恆星位在愈靠近圖中左上的部分(高亮度、高溫度),且演化得愈快(壽命短);質量愈小的恆星則愈紅、愈暗淡,位在赫羅圖右下方。

究竟是什麼讓太陽可以維持目前的亮度這麼多年呢?太陽的亮度約為 3.8×1026 瓦特,每秒鐘所放出的能量比全人類整年所消耗的能量(約為 2×1013 瓦特)還多。那麼高的能量到底是怎麼來的呢?

當物理學家發現核反應以及愛因斯坦的  \( E= mc^{2} \)  後,馬上就意識到太陽的能量是來自氫的核融合反應,而氫又是宇宙中最常見的一種元素,因此可以推斷恆星最開始的光芒都來自於氫的核融合反應,只是不同質量的恆星因為壓力與溫度不同,氫的核融合有不同的反應速率,導致它們演化的速度不同。

不同元素的核融合所需溫度
反應溫度 (K)
氘核融合 ~ 106
鋰核融合 ~ (2~3)×106
氫核融合 ~ (1~4)×107
氦核融合 ~ (1~2)×108
碳核融合 ~ (6~8)×108
氖核融合 ~ (1.2~1.4)×109
氧核融合 ~ (1.5~2.2)×109
矽核融合 ~ (3~4)×109

而氫燃燒完後,不同質量的恆星也因為重力造成的壓力不同而有完全不同的命運。概略來說,恆星依其質量可以分成三個種類:極低質量恆星低質量恆星,以及大質量恆星

-----廣告,請繼續往下閱讀-----

極低質量恆星

在極低質量恆星之中,質量介於約 10~80 倍木星質量3之間的恆星又稱為棕矮星 (brown dwarf);質量小於這個範圍則稱為次棕矮星 (sub­brown dwarf);稍大一點則稱為紅矮星 (red dwarf)。

太陽與紅矮星、棕矮星、木星之間的比較。圖/wikimedia

與太陽和一般的主序星不同,棕矮星因為重力微弱,核心內部的溫度和壓力不足以點燃氫的核融合反應,因此內部主要是氘在進行核融合反應,只能發出非常微弱的光芒。次棕矮星的質量更小,連氘的核融合反應都無法點燃,有些天文學家甚至還在爭論次棕矮星與行星(譬如木星)之間如何劃分。

紅矮星的質量大約介於 0.08~0.5 倍太陽質量,而且表面溫度低於 4,000 K。紅矮星的質量小,溫度低,暗淡不易觀測,但數量龐大。目前估計銀河系中約有六、七成的星星屬於紅矮星。紅矮星的光和熱主要來自氫融合成氦4

目前恆星演化模型認為紅矮星是完全對流的,也就是核心產生的氦會對流至表面,使星球所有的成分均勻混合,延長反應時間。因此,理論上紅矮星的壽命非常長,目前普遍相信宇宙中所有的紅矮星都還沒有演化到下一個階段。如果紅矮星的氫燃燒完畢,將演化為一種目前仍未觀測到,純為理論預測的恆星—藍矮星 (blue dwarf)。

-----廣告,請繼續往下閱讀-----

低質量恆星

低質量恆星的質量大約介於 0.5~8 倍太陽質量之間。

演化初期,低質量恆星主要是靠氫融合成氦的核反應;質量較小的恆星主要是透過質子—質子連鎖反應;而質量較大的恆星主要則靠碳氮氧融合循環 (CNO cycle) 來產生氦。在核心燃燒氫的這個階段稱為主序星,太陽目前就處在主序星階段,其內部溫度高達攝氏千萬度。

數十億年後,恆星核心內的氫將逐漸用盡,轉變以氦為主,而核心外圍則有一層氫燃燒的球層。此時內部的溫度仍不足以點燃氦的核反應,在赫羅圖上的演化階段從主序星帶慢慢往上方偏移,進入次巨星 (subgiant) 階段,它們與主序星有類似的光譜類型,但較為明亮。

這個階段主要是燃燒氦核外面的氫層。由於恆星內部的核反應停止,核融合產生的能量無法對抗重力的坍縮,因此內部的氦核會漸漸轉變為量子簡併的狀態,核心慢慢縮小,溫度和密度則漸漸增加(溫度約為一億度),但外層反而漸漸冷卻膨脹而轉變為紅巨星 (red giant)。

生生不息的恆星演化生命循環 (Credits: star formation: NASA/JPL­Caltech/UCLA; proto­star: NASA/ESA/the Hubble Heritage Team (STScI/AURA)/IPHAS; sun, red dwarf, supernova explosion & neutron star: NASA; planetary nebula: ESO/VISTA/J. Emerson; red supergiant & black hole: NASA/Ames/STSCl/G. Bacon) 圖/三民提供

-----廣告,請繼續往下閱讀-----

當核心內部的溫度最終達到足以點燃氦的核融合反應,使氦核心不再是簡併狀態而快速膨脹,此即氦閃 (helium flash)。核心的氦透過三氦過程 (triple­alpha process)融合成碳,效率比氫的核反應高非常多。這時核心內部達到新的平衡,在赫羅圖上從紅巨星階段往左邊平行移動,稱為水平分支 (horizontal branch)。

如同氫一般,最終核心的氦也將用盡,進入漸近巨星分支 (asymptotic giant branch),此時恆星內部將再度變回簡併狀態而成為一顆白矮星 (white dwarf),而外層由於劇烈的恆星風不斷將物質吹出,形成行星狀星雲 (planetary nebula)。低質量恆星的重力不足以使內部再度點燃碳的核反應。

大質量恆星

大於 8 倍太陽質量的大質量恆星,由於重力很強大,內部的氫燃燒完就只剩外層在燃燒,其溫度足以點燃氦的核反應,所以不會產生簡併狀態的核心,甚至可以一路燃燒下去,演化為超巨星 (supergiant)。

蟹狀星雲是一顆恆星爆炸粉碎成為超新星之後的殘骸。圖/wikimedia

-----廣告,請繼續往下閱讀-----

演化到最後,恆星內部會形成一個簡併的鐵核心,外圍則如洋蔥般依序圍繞著矽、氧、氖、碳、氦與最外圍的氫。比鐵輕的元素可以透過核融合放出能量,但是鐵非常穩定,如果要融合出超過鐵的元素反而需要給予能量,因此大質量恆星的核融合反應只會達到鐵。

簡併的鐵核是有質量上限的,當重力超過簡併壓力所能負擔的極限,核心會發生坍縮,形成超新星。而在超新星爆炸後,依其質量與內部結構的不同分布可能留下一顆中子星黑洞

總有一天地球會被吞食?

圖/pixabay

不管是低質量恆星產生的行星狀星雲,或是大質量恆星產生的超新星殘骸,最終回歸宇宙中的雲氣會再度形成第二代的恆星,生生不息地循環下去。我們的太陽也註定在約 5 億年後慢慢演化成紅巨星,其體積將會膨脹,除了吞食水星和金星,甚至可能會把地球也吞沒,屆時人類必定要離開地球(如果那時人類還存在)。

-----廣告,請繼續往下閱讀-----

在進入紅巨星的階段之前,太陽演化至次巨星時,強烈的亮度會使地球升溫,溫度就像目前的金星,使地球不適合生物居住。幾億年看似還有好久,我們或許還不需要太在意,但在宇宙的某個角落,或許有某個文明正在經歷不得不離開母星的命運也說不定呢!

註解:

  1. 宇宙目前的壽命也只有約 140 億年。
  2. 光度:luminosity,天體每秒從其表面所輻射出的總能量。
  3. 木星質量約為太陽質量的千分之一或地球質量的 320 倍。
  4. 透過質子—質子連鎖反應,protonproton chain。

——本文摘自泛科學 2019 年 12 月選書《蔚為奇談!宇宙人的天文百科》,2019 年 11 月,三民出版

三民書局_96
18 篇文章 ・ 12 位粉絲
創立於1953年,為了「傳播學術思想,延續文化發展」,60年來默默耕耘著書的園地。從早期的法政大學用書、三民文庫、古籍今注新譯叢書、《大辭典》,到各式英漢字典及兒童、青少年讀物,成立至今已出版了一萬多種優良圖書。不僅讀者佳評如潮,更贏得金鼎獎、小太陽獎、好書大家讀等諸多獎項的肯定。在見證半個世紀的社會與時代變遷後,三民書局已轉型為多元、綜合、全方位的出版機構。