Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

哈柏瞄準被重力透鏡放大的遙遠星系

臺北天文館_96
・2012/02/10 ・876字 ・閱讀時間約 1 分鐘 ・SR值 506 ・六年級

感謝天然的放大鏡,哈柏太空望遠鏡(Hubble Space Telescope)拍攝迄今最亮的重力透鏡星系RCSGA 032727-132609 ,讓天文學家得以研究宇宙僅約現在1/3年齡時、恆星形成非常活躍的星系物理性質。

當遙遠天體到地球之間,有諸如太陽、黑洞或星系團等大質量天體的話,其強大重力會如同放大鏡一樣,將更遙遠天體的光線偏折、增亮並放大,即所謂的「重力透鏡(gravitational lens)」現象。

美國航太總署(NASA)哥達得太空飛行中心(Goddard Space Flight Center)天文學家Jane Rigby所領導的研究團隊,利用哈柏太空望遠鏡瞄準最著名的重力透鏡天體之一:因星系團RCS2 032727-132623強大重力而形成幾近90度的重力透鏡光弧;這個光弧編號為RCSGA 032727-132609,其實是個距離地球約100億光年的遙遠星系。

鄰近的星系通常已經發展成熟,恆星形成的歷史幾近尾聲;但遙遠星系卻正值恆星形成最蓬勃活躍的時期,讓我們看到不一樣的宇宙。但因為遙遠星系通常非常昏暗,而且非常小,天文學家若想仔細研究遙遠星系中的恆星形成狀況,若無哈柏太空望遠鏡與重力透鏡現象,那麼一切皆是妄想。

-----廣告,請繼續往下閱讀-----

在2006年時,有一組天文學家利用位在智利的超大望遠鏡(Very Large Telescope)測量位在波江座方向的這個光弧的距離,並估算出它比先前發現的其他重力透鏡星系還亮3倍多。直到2011年,天文學家才用利用哈柏3號廣角相機(Wide Field Camera 3,WFC3)拍攝並分析這個遙遠星系。目前已知前景星系團RCS2 032727-132623紅移值z=0.564,相當於距離地球約50億光年,而背景遙遠星系RCSGA 032727-132609紅移值則達z=1.701,相當於距離地球約100億光年。

因前方星系團的質量分布並不均勻之故,RCSGA 032727-132609被扭曲並重複了好幾次;這是重力透鏡的典型現象。而天文學家最困難的地方,就是得重建這個遙遠星系在被扭曲之前、到底原本看起來是什麼模樣。經由哈柏敏銳的觀察,天文學家終於得以進行這個重建工作;重建後的RCSGA 032727-132609顯示其中的恆星形成區明亮如纏繞聖誕樹的燈泡(頁首圖片左下角的嵌圖),比我們銀河系中任何一個恆星形成區還亮很多。這些天文學家計畫要透過光譜觀測,分析這個這些恆星形成區,以求徹底瞭解為何這些區域能產生這麼多新生恆星。

資料來源:Hubble Zooms in on a Magnified Galaxy[2012.02.02]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

2

0
1

文字

分享

2
0
1
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
-----廣告,請繼續往下閱讀-----
所有討論 2
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

7
0

文字

分享

1
7
0
韋伯太空望遠鏡運作滿週年,它看到了什麼?
PanSci_96
・2023/09/02 ・3306字 ・閱讀時間約 6 分鐘

古老星系中發現有機分子?我們離第三類接觸還有多遠?

韋伯正式展開拍攝任務已經屆滿週年,最近也傳回來許多過去難以拍攝到的照片。六月初,天文學家在《自然》期刊上發表了這張照片,在藍色核心外,環繞著一圈橘黃色的光環。

這是一個星系規模的甜甜圈?這是一個傳送門?還是外星文明的戴森環?

——都不是!其實,這是一個含有有機物多環芳香烴的古老星系,其名為 SPT0418-47。因為名字很長,以下我們就簡稱為 SPT0418 吧!

-----廣告,請繼續往下閱讀-----

這個觀測結果有什麼特殊意義?這代表我們發現外星生命了嗎?

SPT0418 是怎麼被拍到的?扭曲時空的重力透鏡!

一年前,在韋伯望遠鏡傳回第一組令人震撼的照片時,我們製作了兩期節目來介紹韋伯望遠鏡,和它在天文觀測史上跨時代的重要意義。在那之後,也有不少泛糰敲碗,希望我們可以再繼續介紹韋伯望遠鏡的後續發展。

這次在週年前夕公開的這張 SPT0418 照片,是一張標標準準因為重力透鏡而形成的美麗照片。「重力透鏡 Gravitational Lensing」這個概念,相信有在關注天文物理的泛糰們,應該都有聽過。愛因斯坦的廣義相對論告訴我們,星系與星系團的龐大質量會扭曲它們周圍的時空,就像一面星系尺度的超級放大鏡一樣,可以在光線通過時改變它們的走向,從而扭曲背景星系的影像。而如果背景星系與前方的前景星系剛好前後對齊的話,重力透鏡效應還能將背景星系扭曲成美麗的環型,這個環型被稱為「愛因斯坦環 Einstein Ring」。

背景星系從黑洞後面經過時的重力透鏡效應模擬影像。圖/Wikimedia

乍聽之下,重力透鏡會扭曲背景星系影像,好像會干擾觀察,是個缺點。但實際上重力透鏡在扭曲影像的同時,也會聚焦背景星系發出的光,從而讓背景星系變得更加明亮而容易觀測,讓天文學家可以看到更遠或更暗的天體。因此雖然扭曲的影像會增加分析上的麻煩,但天文學家其實非常喜歡觀測這些受重力透鏡效應影響的天體們。甚至會專門安排觀測計畫,拍攝這些受重力透鏡效應影響的區域。這次的主角 SPT0418,正是韋伯太空望遠鏡針對重力透鏡效應開展的「TEMPLATES 」觀測計畫的其中一個觀察對象。

-----廣告,請繼續往下閱讀-----

SPT0418 是一個位於時鐘座(Horologium)方向,距離地球約 123 億光年遠的古老星系。最早在南極望遠鏡(SPT)的觀測資料中被發現,並在後續以阿塔卡瑪大型毫米及次毫米波陣列 ALMA 進行的觀測中,確認了它是一個富含大量塵埃,而且正在以每年約 350 個太陽質量的超高速率生成恆星的星系。

在我們與 SPT0418 之間,還存在著一個前景星系。正是這個前景星系的質量扭曲了周圍的時空,像一片巨大的放大鏡一樣將背後的 SPT0418 扭成了漂亮的愛因斯坦環。

當觀察者、前景星系和背景星系在同一直線上時,就可以透過重力透鏡效應觀測到愛因斯坦環。圖/PanSci YouTube

在這張經過調色的照片中,中間的藍色部分就是前景星系,旁邊的橘色環則是因為重力透鏡而扭曲的 SPT0418 。得益於這個重力透鏡,SPT0418 的影像被增亮了三十倍以上,非常適合讓天文學家一窺早期宇宙中星系的狀態,因此被選為韋伯的觀測目標。

韋伯望遠鏡藉由重力透鏡效應拍攝到的扭曲的古老星系 SPT0418-47。圖/J. Spilker/S. Doyle, NASA, ESA, CSA

那麼,這次的觀測又有什麼重要意義呢?

-----廣告,請繼續往下閱讀-----

多環芳香烴是什麼?看見它代表什麼意義?

這次的拍攝結果不能完全說是意外,因為在這個研究中,韋伯的目標非常明確,就是要尋找古老星系中的多環芳香烴。

在天文學上,多環芳香烴通常指兩個以上的苯環所組成的有機化合物的統稱,人們一般以它的簡稱「PAH」來稱呼它。

發現有機分子,難道這代表有生命存在於古老星系中嗎?其實不能這麼快下定論。

因為 PAH 廣泛存在於各式各樣的星系中,與其他由碳和矽組成的塵埃顆粒,同屬於星際塵埃的一部分。甚至在彗星、小行星、隕石中,都能發現各式各樣的 PAH。目前認為,宇宙中可能有超過 20% 的碳原子,都是以 PAH 的方式存在,只是環數不盡相同。

-----廣告,請繼續往下閱讀-----
圖中右側的黑色暗帶為星際塵埃。圖/NASA, ESA, and the LEGUS team

所以,雖然科學家認為,宇宙中的生命誕生,可能與這些這些遍布其中的有機分子有關。但發現 PAH,不能直接與發現生命劃上等號。

過去數十年的天文觀測結果也顯示,PAH 確實廣泛存在於星系之中,但是天文學家對於這些分子究竟如何形成?又是什麼時候形成的?目前還沒有共識。因此迫切需要更多觀測,例如這次的目標 SPT0418 是個距離我們非常遙遠的古老星系,對於研究宇宙早期星系以及 PAH 的起源就很有幫助。

觀察 PAH 的困難及韋伯望遠鏡的重大突破

然而,要觀察 PAH 卻不太容易。原因是這些 PAH 發出的光,波長主要都集中在幾微米到十幾微米的近紅外與中紅外線波段。這個波段的光線受到大氣層的吸收非常嚴重,幾乎無法從地面觀測,因此過去我們很難取得相關數據。想要尋找 PAH 的蹤跡,勢必得使用紅外線太空望遠鏡才行。

這時,就是韋伯大展身手的時候了。比起同樣專注於紅外光譜的前輩史匹哲太空望遠鏡,韋伯的鏡片直徑大了超過七倍,集光面積更是大了將近六十倍,這不僅讓韋伯能夠拍攝遠比史匹哲更清晰的影像,更可以在更短的時間內拍攝到更暗的目標。

-----廣告,請繼續往下閱讀-----

得益於韋伯強大的觀測能力,在這個研究中它僅僅對著 SPT0418 曝光了不到一個小時的時間,就在 3.3 微米的波段找到了清晰的 PAH 發射譜線,確認了PAH的存在的同時,也打破了觀測到最遠的 PAH 訊號的紀錄。

此外天文學家也發現,韋伯所拍攝到的 SPT0418 與前幾年使用 ALMA 觀測到的影像並不全然相同。

由於觀測波段不同,不同的望遠鏡拍攝同一天體的亮部分布會產生差異。圖/PanSci Youtube

由於韋伯拍攝的是 PAH 發出的近紅外光,而 ALMA 拍攝到的則是毫米尺寸的大顆粒塵埃所發出的遠紅外線,因此這可能代表 SPT0418 這個星系的不同部分,有著不同的塵埃組成。為甚麼會這樣呢?天文學家目前也沒有肯定的答案,需要更多的觀測來進一步釐清。

任務還在繼續!TEMPLATES 計畫持續追蹤 PAH 足跡

韋伯對 SPT0418 拍攝的照片,不僅打破了人類探測過離太陽系最遠的 PAH 訊號紀錄,更展示了在重力透鏡加韋伯的攜手合作下,能大幅拓展人類觀測遙遠星系的能力。除了 SPT0418 之外,天文學家還預計觀測另外三個被重力透鏡放大的星系,尋找並研究其中 PAH 的足跡,以解開星系與星際塵埃的演化之謎。

-----廣告,請繼續往下閱讀-----
韋伯望遠鏡的「TEMPLATES 」計畫預計觀測四個被重力透鏡效應放大的天體。圖/JWST ERS Program TEMPLATES

雖然還有許多未解之謎,但韋伯傳回來的每張相片,都能讓我們能更了解這個宇宙一點點。最後想問問大家,韋伯望遠鏡正式展開拍攝工作屆滿一年,你最喜歡,或最希望我們繼續來講解的照片是哪一張呢?

  1. 土星、天王星和海王星的行星環高清照
  2. 大爆炸後 3.2 億年就誕生的的古老星系
  3. 即將蛻變為超新星的恆星照
  4. 更多你覺得美麗的照片,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1