0

2
0

文字

分享

0
2
0

對面的E.T.看過來!韋伯太空望遠鏡曲折的追星路──《五十億年的孤寂》

八旗文化_96
・2017/04/04 ・5468字 ・閱讀時間約 11 分鐘 ・SR值 514 ・六年級

-----廣告,請繼續往下閱讀-----

  • 【科科愛看書】在浩瀚無垠的宇宙中,誰願意寂寞寂寞就好?自古以來,每當人們仰望星空,都希望找到其他生命的痕跡,即便旅途漫長艱辛,我們也從未停止腳步。讓我們跟著《五十億年的孤寂:繁星間尋找生命》了解人類探詢外星生命的故事,或許有生之年,你我便能在光年以外,找到外星好厝邊。

劃時代望遠鏡,揭開宇宙面紗

當哈伯望遠鏡在二十一世紀頭十年或二十年達到使用年限後,它就會脫離軌道墜入太平洋,一台更具革命性的全新自動軌道天文台,將會取代它的位置。1996 年,發布了哈伯望遠鏡的後繼者──「新一代太空望遠鏡」(Next Generation Space Telescope);2002 年,為了向在阿波羅計畫光榮時代帶領 NASA 團隊的局長致敬,而改名為「詹姆士.韋伯太空望遠鏡」(James Webb Space Telescope,JWST)。

這台望遠鏡的任務是全面揭開宇宙最初星系的面紗,這個星系在哈伯望遠鏡的最深空影像中,只顯現為一個小紅點。詹姆士.韋伯太空望遠鏡將只是個開頭,因為美國天文學社群很快就會擬定計畫,設計出更多又大又有野心的太空望遠鏡;就像一名貪得無厭的饕客,在菜單上選了好幾道足以撐破肚皮的前菜一樣。

向在阿波羅計畫光榮時代帶領 NASA 團隊的局長致敬的「詹姆士.韋伯太空望遠鏡」。圖/By NASA, Public Domain, wikimedia commons

正當 NASA 持續加碼在詹姆士.韋伯太空望遠鏡上的時候,系外行星學也開始快速興起。天文學家第一次能理性地討論找到另一個類地行星的可能,並得到可觀的公眾利益和人們的讚揚。

這些行星獵人計算出來,若是隔著星際距離觀看我們的行星,在一張哈伯深空的影像中,地球會比一個典型的星系還要稍微黯淡一些。理論上來說,那是詹姆士.韋伯太空望遠鏡可以偵測到的東西,且該望遠鏡確實在「讓和恆星有段距離的年輕氣體巨行星呈現在影像中」這點上表現傑出。

-----廣告,請繼續往下閱讀-----

但實際上,可居住行星太靠近比它們亮太多的母星,這會導致計畫中的望遠鏡,無法獲取能滿足行星獵人或其大眾粉絲所需的高動態影像。舉例來說,在可見光的範圍內,我們的地球就比太陽暗了大約一百億倍,這個數字代表著,地球每反射一個光子到太空,太陽就會噴出超過一百億個。在紅外線中,其對比則會稍微好一些—在這個波段中,太陽只比地球亮大約一千萬倍。

天文學家喜歡把「拍下繞著似日恆星的另一個地球」和「從幾千英哩外,拍攝一隻螢火蟲在一個明亮光點附近飛舞」做類比,但簡單的事實更有力:要拍下一顆環繞恆星的岩石行星,就有如捕捉一粒靠在熱核能火球邊緣的灰暗砂粒,或是像拍攝一根緊貼著點燃氫彈但自己沒有點燃的火柴一般。要做到這點,你得先要有辦法擋住上百萬或十億個熱核光子,才能讓行星的光子被看見。對幾乎所有的恆星來說,地球大氣的模糊干擾,排除了從地面做出準確測量的可能性—只有太空中的軌道天文台,才能傳收任何環繞其他恆星的可能可居住行星光芒。

想找外星生命?重重考驗等著你

在 1996 年初美國天文學會於德州聖安東尼奧(San Antonio)舉行的一場會議上,就在傑佛瑞.馬西揭露其研究團隊首度發現熱木星後不久,日後將成為 NASA 局長的丹.高丁(Dan Goldin)登台報告了關於「NASA 在後詹姆士.韋伯太空望遠鏡時代可以立刻做些什麼,來支援搜索其他可居住行星」的誘人前景。

高丁企圖重塑 NASA 與天體生物學相關的整體科學計畫,並由新的生命搜索太空望遠鏡擔任主打明星。他解釋,「大約從現在開始的十年後,」NASA 將準備好發射「行星發現者」這種軌道天文台,它不但可以定位可能可居住的行星,還能透過多種星光阻擋技術,拍攝該行星的低解析影像。這個軌道天文台將在每一小團行星碎點的光譜中,尋找大氣中的生物標識。

-----廣告,請繼續往下閱讀-----

這是 NASA 第一次向公眾提及日後所謂的「類地行星發現者」任務概念,高丁對入迷的觀眾說,如果「類地行星發現者」在鄰近恆星發現了有機會的行星,那麼「或許在二十五年內」就會打造企圖心更大的望遠鏡,以「能看見海洋、雲朵、大陸和山脈的解析度」,來拍攝那些行星。高丁為一個並不遙遠的未來做出排程,在那之中,多虧美國的財富智慧,外星地表地圖可讓全球各地學校教室的牆壁增色。他接著又說,在二十一世紀的某一刻,那些顯現為可居住的行星,會成為自動星際探測機的首要目標。

在高丁的如意算盤中,「類地行星發現者」可能會在 2006 年升空,未來則由一座 2020 年代前半登場的太空望遠鏡接班;屆時那台新望遠鏡將開始在任一鄰近的系外類地行星上,實施蘭德麥奈利(Rand McNally)地圖繪製。

然而不幸地,詹姆士.韋伯太空望遠鏡的發展,最終比計畫要困難許多。為了要拍攝最早的恆星和星系,這台望遠鏡需要比哈伯大上很多的主鏡,並且需要為拍攝分子雲、巨行星和最早星系最明亮放射的紅外線而特別進行優化。它也得要進行低溫冷卻,好讓其內在熱度不會洗去宇宙曙光期的微弱光線。最後,它不能在近地軌道上運作,因為我們地球有如電燈泡一樣的紅外線光芒,會污染精細的觀測結果。

經過許多年的眾多開發週期,設計終於拍板定案:詹姆士.韋伯太空望遠鏡將配備 6.5 公尺的主鏡,其集光區域將近哈伯的七倍,並安置於地球與太陽連線上的一個穩定點,離地球有一百萬英哩,約比地球跟月球的距離遠四倍。

-----廣告,請繼續往下閱讀-----

這望遠鏡的每一個方面,都需要大規模的新技術。一面有波音七三七那麼長、那麼寬的多層「太陽罩」,保護著望遠鏡以及整套特製最先進的儀器和偵測器。這整套組合無法讓任何現有火箭裝載,因此為了要發射出去,整個軌道天文台要像摺紙一樣折疊起來;在它於太空深處張開之前,就像蛹中的蝴蝶一樣。為了要能摺疊,詹姆士.韋伯太空望遠鏡的主鏡會分成十八片可調整角度的鍍金六角形,每一片都以極輕且高毒性的鈹金屬雕製而成。

韋伯太空望遠鏡將安置於地球與太陽連線上的一個穩定點,離地球有一百萬英哩,約比地球跟月球的距離遠四倍。然而它所需要的技術實在太高,發展比預期難上非常多。圖/By NASA/ESA, Public Domain, wikimedia commons

多個國際夥伴簽約打造這個儀器或是提供發射載具,但 NASA 將負擔主要成本,初估大約是十五億美元。發射時間則預定在 2010 年前後。隨著該計畫真正的複雜度和實際規模逐漸明朗,成本預估不斷持續上修,但該增加的資助卻越來越不見蹤影,以至於詹姆士.韋伯太空望遠鏡所需的費用,得從 NASA 其他太空科學計畫挪來使用。到最後,光是技術開發就要花上二十億美元。

詹姆士.韋伯太空望遠鏡的進度表開始失控,計畫總成本不斷膨脹,只好將越來越多的主要支出向後挪移。到了 2012 年,詹姆士.韋伯太空望遠鏡的建造、測試、發射,以及頭五年的運作費用,總共估計將近九十億美元,而發射日期不會早於 2018 年。

被金融海嘯沖垮的太空計畫

詹姆士.韋伯太空望遠鏡的「分娩痛」,又因為反覆的國家與全球經濟災難加劇,並在 2008 年開始的經濟大衰退達到頂點。在大衰退中,美國政府花了上兆美元,來防止主要銀行和其他金融機構全面崩盤。一度預期會穩定成長的 NASA 預算,此刻還幸運地維持平盤,但即便如此仍無法趕上通貨膨脹的速度。1990 年代由總統柯林頓所儲存建立的上兆元聯邦剩餘資產,在 2000 年代因減稅和繼任總統小布希的失控開支,轉為數兆美元的虧損。

-----廣告,請繼續往下閱讀-----

在哥倫比亞號太空梭事故之後,小布希委任一項大膽的新任務給 NASA,讓這單位又回到 NASA 原本的後阿波羅時代計畫:打造新的重型運載火箭,然後用它們回到月球,並把人送往火星。這任務日後被稱做「星座計畫」(Constellation program)。

但小布希其實並沒有提供足夠的資助,也沒有來自美國國會的大力支持,更沒有在他首度發表後再度提起這計畫。就跟小布希任內開始的眾多政府計畫一樣,星座計畫看起來唯一的長處,就是把幾十億美元的公共資金與聯邦資金,轉移到與此脈脈相連的私人承包商金庫裡,而那些單位總是只回報一丁點結果而已。

小布希委任一項新任務給 NASA,後阿波羅時代計畫:打造新的重型運載火箭,然後用它們回到月球,並把人送往火星。這任務日後被稱做「星座計畫」。然而這個計畫更加劇了韋伯太空望遠鏡的難產。圖/By NASA, Public Domain, wikimedia commons

2006 年,NASA 選擇從它的科學預算中挪用數十億美元,支撐小布希這個失敗的計畫,而讓詹姆士.韋伯太空望遠鏡的開發陷入混亂之中,並讓一個即刻的 TPF 開發與發射計畫正式宣告「無限期延遲」,而沒了指望。並不是每個人都為這損失哀悼—許多不是研究系外行星的天文學家已經開始覺得,「類地行星發現者」的狹隘目標和預計成本,對於他們同樣需要太空望遠鏡但乏人關照的子領域來說,幾乎是種生存威脅。確實,有些人甚至主動透過具影響力的研究團體和計畫委員會,以遊說方式阻止它的進行。

經過多年不上不下的結果和超過一百億的支出後,星座計畫在 2010 年由總統歐巴馬中止,但這已經對 NASA 科學計畫造成損害。為了資助詹姆士.韋伯太空望遠鏡,整個單位被迫縮編,延後或取消幾乎所有下一代天文物理學及行星科學的主要任務。這個軌道天文台若想成功,只有在有效排除 NASA 絕大多數太空科學代表作的龐大花費下,才有可能辦到。隨著前一代老化的太空望遠鏡一台接一台地破損故障,不論詹姆士.韋伯太空望遠鏡最終何時升空,屆時天上都可能只剩下這台望遠鏡,獨自在一個突然沒有其他大型軌道天文台的天空中,望向宇宙的邊緣以及時間的起點。

-----廣告,請繼續往下閱讀-----

在缺乏金錢和強大機構支援的情況下,「類地行星發現者」就跟那些遙遠的恆星一樣,如此地遙不可及。因為計畫持續延遲超支,美國國會也反覆威脅要把支助詹姆士.韋伯太空望遠鏡的資金抽掉,哈伯望遠鏡的接班計畫也就可能無法達成。就算達成,望遠鏡的可用年限也只有十年,因為屆時其燃料儲存將會用盡,設備也會退化。天文學家私下議論,由哈伯開啟的黃金時代恐怕就要結束了。

哈伯大夫:我們並不孤單

這個想法讓約翰.格朗菲德(John Grunsfeld)的心情格外沉重。這位留著大八字鬍的天文物理學家,也是歷經五次太空梭任務的 NASA 太空人。他的五次任務中,其中三次就是造訪哈伯望遠鏡。哈伯望遠鏡能夠成功,有不少部分得歸功於格朗菲德在三次哈伯維修任務中,在創紀錄的五十八小時半太空漫步時,套著太空裝展現了精湛的修復工夫。媒體盛讚格朗菲德是個英雄,稱他為「哈伯大夫」。透過將太空梭駛入軌道,維修史上最具生產力的太空望遠鏡,再以同一台望遠鏡研究脈衝雙星以及其他異常迷人的天文現象,格朗菲德經歷到 NASA 載人太空計畫與科學太空計畫的強大協同利益。

約翰.格朗菲德是歷經五次太空梭任務的 NASA 太空人。哈伯望遠鏡能夠成功,有不少部分得歸功於格朗菲德在三次哈伯維修任務中,在創紀錄的五十八小時半太空漫步時,套著太空裝展現了精湛的修復工夫,因此被稱為「哈伯大夫」。圖/By NASA, Public Domain, wikimedia commons

他針對花在國際太空站與太空梭上的上億美元,以及維持太空望遠鏡黃金時代所需的資助深思。並思考 NASA 生氣蓬勃的載人探索計畫,該怎麼像太空梭和大型軌道天文台計畫一樣,再一次與這機構純然的科學研究一同打造強大的合作關係,好讓雙方都大幅獲益。2003 和 2004 年間,他擔任 NASA 的首席科學家,協助開發小布希星座計畫的科學應用;結果發現,巨大火箭拿來發射特大號天文望遠鏡,跟把太空人送往月球一樣管用。舉例來說,這樣的火箭可以在不耗費大量成本且把主鏡切片折疊的艱難條件下,就把詹姆士.韋伯太空望遠鏡發射出去。它也能讓更大的 TPF 式軌道天文台變得更便宜。然而,當這計畫的科學預算蒙上一層飢餓的陰影時,事情變得事與願違。

在完成最後一次哈伯維修任務後,2010 年年初,格朗菲德離開 NASA,前往馬里蘭州巴爾的摩太空望遠鏡科學研究所擔任副所長。在差不多兩年的任期內,他與研究所所長—天文學家麥特.曼騰(Matt Mountain)緊密合作,替該研究所某天可能也會著手的 TPF 式望遠鏡打下基礎。他們把自家設計很巧妙地縮寫為 ATLAST(總算),全名為技術進階大口徑太空望遠鏡(Advanced Technology Large- Aperture Space Telescope),讓它成為一台除了其他功能外,還能傳送可能可居住的系外行星影像的重負荷天文學儀器。哈伯大夫就此成為了「類地行星發現者大夫」,或是「總算大夫」。

-----廣告,請繼續往下閱讀-----

格朗菲德擺脫了備受矚目的 NASA 公僕角色之後,在新職位任職的他講起話來變得熱心而詳盡,甚至會主動提及打造新軌道天文台,來尋找其他行星及生命的重要性和價值。然而,2011 年下半年,格朗菲德的電話響起,那通電話來自一個 NASA 工作的朋友。NASA 希望他回來擔任科學任務部的副行政官—這職位將會讓格朗菲德執掌全球最大一筆純科學預算,儘管這筆預算過去未曾達成 NASA 的無數任務。

他接受了,並在回歸 NASA 後,馬上收斂起自己過去對打造「生命搜索用太空望遠鏡」暢所欲言的擁護,取而代之的是一種強調 NASA 所有科學計畫都要保持平衡的謹慎公眾人格。雖然在外星地球搜尋方面沒有給予大膽的新資助,但格朗菲德的好友和舊交都沒忘記他以前的熱情。在我花了將近一年與 NASA 媒體團隊進行徒勞的 e-mail 往來,期盼能採訪到格朗菲德副行政官後,我對先前訪談中格朗菲德副所長的暢所欲言,充滿了欣慰與確幸之情。

「哈伯和韋伯太空望遠鏡,可能會讓宇宙中是否有其他生命的問題懸而未決,」他說。「在下一世代的大型太空望遠鏡中,我們需要的能力,是觀察最靠近我們的一千顆恆星周圍,每顆可能可居住行星的大氣層和其表面特色。」

我們終將發現自己並不孤單,我們終將發現其他可居住行星,原則上每一顆人類都能造訪,這就是未來的大局面。

「而我想說服公眾、美國國會以及未來的政府當局,這樣的下一步是值得投資的。」很明顯地,格朗菲德讀過齊奧爾科夫斯基。

-----廣告,請繼續往下閱讀-----

 

 

本文摘自《五十億年的孤寂:繁星間尋找生命》,八旗文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
八旗文化_96
34 篇文章 ・ 20 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。

0

0
1

文字

分享

0
0
1
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3708 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

7
0

文字

分享

1
7
0
韋伯太空望遠鏡運作滿週年,它看到了什麼?
PanSci_96
・2023/09/02 ・3306字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

古老星系中發現有機分子?我們離第三類接觸還有多遠?

韋伯正式展開拍攝任務已經屆滿週年,最近也傳回來許多過去難以拍攝到的照片。六月初,天文學家在《自然》期刊上發表了這張照片,在藍色核心外,環繞著一圈橘黃色的光環。

這是一個星系規模的甜甜圈?這是一個傳送門?還是外星文明的戴森環?

——都不是!其實,這是一個含有有機物多環芳香烴的古老星系,其名為 SPT0418-47。因為名字很長,以下我們就簡稱為 SPT0418 吧!

-----廣告,請繼續往下閱讀-----

這個觀測結果有什麼特殊意義?這代表我們發現外星生命了嗎?

SPT0418 是怎麼被拍到的?扭曲時空的重力透鏡!

一年前,在韋伯望遠鏡傳回第一組令人震撼的照片時,我們製作了兩期節目來介紹韋伯望遠鏡,和它在天文觀測史上跨時代的重要意義。在那之後,也有不少泛糰敲碗,希望我們可以再繼續介紹韋伯望遠鏡的後續發展。

這次在週年前夕公開的這張 SPT0418 照片,是一張標標準準因為重力透鏡而形成的美麗照片。「重力透鏡 Gravitational Lensing」這個概念,相信有在關注天文物理的泛糰們,應該都有聽過。愛因斯坦的廣義相對論告訴我們,星系與星系團的龐大質量會扭曲它們周圍的時空,就像一面星系尺度的超級放大鏡一樣,可以在光線通過時改變它們的走向,從而扭曲背景星系的影像。而如果背景星系與前方的前景星系剛好前後對齊的話,重力透鏡效應還能將背景星系扭曲成美麗的環型,這個環型被稱為「愛因斯坦環 Einstein Ring」。

背景星系從黑洞後面經過時的重力透鏡效應模擬影像。圖/Wikimedia

乍聽之下,重力透鏡會扭曲背景星系影像,好像會干擾觀察,是個缺點。但實際上重力透鏡在扭曲影像的同時,也會聚焦背景星系發出的光,從而讓背景星系變得更加明亮而容易觀測,讓天文學家可以看到更遠或更暗的天體。因此雖然扭曲的影像會增加分析上的麻煩,但天文學家其實非常喜歡觀測這些受重力透鏡效應影響的天體們。甚至會專門安排觀測計畫,拍攝這些受重力透鏡效應影響的區域。這次的主角 SPT0418,正是韋伯太空望遠鏡針對重力透鏡效應開展的「TEMPLATES 」觀測計畫的其中一個觀察對象。

-----廣告,請繼續往下閱讀-----

SPT0418 是一個位於時鐘座(Horologium)方向,距離地球約 123 億光年遠的古老星系。最早在南極望遠鏡(SPT)的觀測資料中被發現,並在後續以阿塔卡瑪大型毫米及次毫米波陣列 ALMA 進行的觀測中,確認了它是一個富含大量塵埃,而且正在以每年約 350 個太陽質量的超高速率生成恆星的星系。

在我們與 SPT0418 之間,還存在著一個前景星系。正是這個前景星系的質量扭曲了周圍的時空,像一片巨大的放大鏡一樣將背後的 SPT0418 扭成了漂亮的愛因斯坦環。

當觀察者、前景星系和背景星系在同一直線上時,就可以透過重力透鏡效應觀測到愛因斯坦環。圖/PanSci YouTube

在這張經過調色的照片中,中間的藍色部分就是前景星系,旁邊的橘色環則是因為重力透鏡而扭曲的 SPT0418 。得益於這個重力透鏡,SPT0418 的影像被增亮了三十倍以上,非常適合讓天文學家一窺早期宇宙中星系的狀態,因此被選為韋伯的觀測目標。

韋伯望遠鏡藉由重力透鏡效應拍攝到的扭曲的古老星系 SPT0418-47。圖/J. Spilker/S. Doyle, NASA, ESA, CSA

那麼,這次的觀測又有什麼重要意義呢?

-----廣告,請繼續往下閱讀-----

多環芳香烴是什麼?看見它代表什麼意義?

這次的拍攝結果不能完全說是意外,因為在這個研究中,韋伯的目標非常明確,就是要尋找古老星系中的多環芳香烴。

在天文學上,多環芳香烴通常指兩個以上的苯環所組成的有機化合物的統稱,人們一般以它的簡稱「PAH」來稱呼它。

發現有機分子,難道這代表有生命存在於古老星系中嗎?其實不能這麼快下定論。

因為 PAH 廣泛存在於各式各樣的星系中,與其他由碳和矽組成的塵埃顆粒,同屬於星際塵埃的一部分。甚至在彗星、小行星、隕石中,都能發現各式各樣的 PAH。目前認為,宇宙中可能有超過 20% 的碳原子,都是以 PAH 的方式存在,只是環數不盡相同。

-----廣告,請繼續往下閱讀-----
圖中右側的黑色暗帶為星際塵埃。圖/NASA, ESA, and the LEGUS team

所以,雖然科學家認為,宇宙中的生命誕生,可能與這些這些遍布其中的有機分子有關。但發現 PAH,不能直接與發現生命劃上等號。

過去數十年的天文觀測結果也顯示,PAH 確實廣泛存在於星系之中,但是天文學家對於這些分子究竟如何形成?又是什麼時候形成的?目前還沒有共識。因此迫切需要更多觀測,例如這次的目標 SPT0418 是個距離我們非常遙遠的古老星系,對於研究宇宙早期星系以及 PAH 的起源就很有幫助。

觀察 PAH 的困難及韋伯望遠鏡的重大突破

然而,要觀察 PAH 卻不太容易。原因是這些 PAH 發出的光,波長主要都集中在幾微米到十幾微米的近紅外與中紅外線波段。這個波段的光線受到大氣層的吸收非常嚴重,幾乎無法從地面觀測,因此過去我們很難取得相關數據。想要尋找 PAH 的蹤跡,勢必得使用紅外線太空望遠鏡才行。

這時,就是韋伯大展身手的時候了。比起同樣專注於紅外光譜的前輩史匹哲太空望遠鏡,韋伯的鏡片直徑大了超過七倍,集光面積更是大了將近六十倍,這不僅讓韋伯能夠拍攝遠比史匹哲更清晰的影像,更可以在更短的時間內拍攝到更暗的目標。

-----廣告,請繼續往下閱讀-----

得益於韋伯強大的觀測能力,在這個研究中它僅僅對著 SPT0418 曝光了不到一個小時的時間,就在 3.3 微米的波段找到了清晰的 PAH 發射譜線,確認了PAH的存在的同時,也打破了觀測到最遠的 PAH 訊號的紀錄。

此外天文學家也發現,韋伯所拍攝到的 SPT0418 與前幾年使用 ALMA 觀測到的影像並不全然相同。

由於觀測波段不同,不同的望遠鏡拍攝同一天體的亮部分布會產生差異。圖/PanSci Youtube

由於韋伯拍攝的是 PAH 發出的近紅外光,而 ALMA 拍攝到的則是毫米尺寸的大顆粒塵埃所發出的遠紅外線,因此這可能代表 SPT0418 這個星系的不同部分,有著不同的塵埃組成。為甚麼會這樣呢?天文學家目前也沒有肯定的答案,需要更多的觀測來進一步釐清。

任務還在繼續!TEMPLATES 計畫持續追蹤 PAH 足跡

韋伯對 SPT0418 拍攝的照片,不僅打破了人類探測過離太陽系最遠的 PAH 訊號紀錄,更展示了在重力透鏡加韋伯的攜手合作下,能大幅拓展人類觀測遙遠星系的能力。除了 SPT0418 之外,天文學家還預計觀測另外三個被重力透鏡放大的星系,尋找並研究其中 PAH 的足跡,以解開星系與星際塵埃的演化之謎。

-----廣告,請繼續往下閱讀-----
韋伯望遠鏡的「TEMPLATES 」計畫預計觀測四個被重力透鏡效應放大的天體。圖/JWST ERS Program TEMPLATES

雖然還有許多未解之謎,但韋伯傳回來的每張相片,都能讓我們能更了解這個宇宙一點點。最後想問問大家,韋伯望遠鏡正式展開拍攝工作屆滿一年,你最喜歡,或最希望我們繼續來講解的照片是哪一張呢?

  1. 土星、天王星和海王星的行星環高清照
  2. 大爆炸後 3.2 億年就誕生的的古老星系
  3. 即將蛻變為超新星的恆星照
  4. 更多你覺得美麗的照片,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

-----廣告,請繼續往下閱讀-----
所有討論 1
PanSci_96
1261 篇文章 ・ 2388 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。