0

0
0

文字

分享

0
0
0

對面的E.T.看過來!韋伯太空望遠鏡曲折的追星路──《五十億年的孤寂》

八旗文化_96
・2017/04/04 ・5468字 ・閱讀時間約 11 分鐘 ・SR值 514 ・六年級
  • 【科科愛看書】在浩瀚無垠的宇宙中,誰願意寂寞寂寞就好?自古以來,每當人們仰望星空,都希望找到其他生命的痕跡,即便旅途漫長艱辛,我們也從未停止腳步。讓我們跟著《五十億年的孤寂:繁星間尋找生命》了解人類探詢外星生命的故事,或許有生之年,你我便能在光年以外,找到外星好厝邊。

劃時代望遠鏡,揭開宇宙面紗

當哈伯望遠鏡在二十一世紀頭十年或二十年達到使用年限後,它就會脫離軌道墜入太平洋,一台更具革命性的全新自動軌道天文台,將會取代它的位置。1996 年,發布了哈伯望遠鏡的後繼者──「新一代太空望遠鏡」(Next Generation Space Telescope);2002 年,為了向在阿波羅計畫光榮時代帶領 NASA 團隊的局長致敬,而改名為「詹姆士.韋伯太空望遠鏡」(James Webb Space Telescope,JWST)。

這台望遠鏡的任務是全面揭開宇宙最初星系的面紗,這個星系在哈伯望遠鏡的最深空影像中,只顯現為一個小紅點。詹姆士.韋伯太空望遠鏡將只是個開頭,因為美國天文學社群很快就會擬定計畫,設計出更多又大又有野心的太空望遠鏡;就像一名貪得無厭的饕客,在菜單上選了好幾道足以撐破肚皮的前菜一樣。

向在阿波羅計畫光榮時代帶領 NASA 團隊的局長致敬的「詹姆士.韋伯太空望遠鏡」。圖/By NASA, Public Domain, wikimedia commons

正當 NASA 持續加碼在詹姆士.韋伯太空望遠鏡上的時候,系外行星學也開始快速興起。天文學家第一次能理性地討論找到另一個類地行星的可能,並得到可觀的公眾利益和人們的讚揚。

這些行星獵人計算出來,若是隔著星際距離觀看我們的行星,在一張哈伯深空的影像中,地球會比一個典型的星系還要稍微黯淡一些。理論上來說,那是詹姆士.韋伯太空望遠鏡可以偵測到的東西,且該望遠鏡確實在「讓和恆星有段距離的年輕氣體巨行星呈現在影像中」這點上表現傑出。

但實際上,可居住行星太靠近比它們亮太多的母星,這會導致計畫中的望遠鏡,無法獲取能滿足行星獵人或其大眾粉絲所需的高動態影像。舉例來說,在可見光的範圍內,我們的地球就比太陽暗了大約一百億倍,這個數字代表著,地球每反射一個光子到太空,太陽就會噴出超過一百億個。在紅外線中,其對比則會稍微好一些—在這個波段中,太陽只比地球亮大約一千萬倍。

天文學家喜歡把「拍下繞著似日恆星的另一個地球」和「從幾千英哩外,拍攝一隻螢火蟲在一個明亮光點附近飛舞」做類比,但簡單的事實更有力:要拍下一顆環繞恆星的岩石行星,就有如捕捉一粒靠在熱核能火球邊緣的灰暗砂粒,或是像拍攝一根緊貼著點燃氫彈但自己沒有點燃的火柴一般。要做到這點,你得先要有辦法擋住上百萬或十億個熱核光子,才能讓行星的光子被看見。對幾乎所有的恆星來說,地球大氣的模糊干擾,排除了從地面做出準確測量的可能性—只有太空中的軌道天文台,才能傳收任何環繞其他恆星的可能可居住行星光芒。

想找外星生命?重重考驗等著你

在 1996 年初美國天文學會於德州聖安東尼奧(San Antonio)舉行的一場會議上,就在傑佛瑞.馬西揭露其研究團隊首度發現熱木星後不久,日後將成為 NASA 局長的丹.高丁(Dan Goldin)登台報告了關於「NASA 在後詹姆士.韋伯太空望遠鏡時代可以立刻做些什麼,來支援搜索其他可居住行星」的誘人前景。

高丁企圖重塑 NASA 與天體生物學相關的整體科學計畫,並由新的生命搜索太空望遠鏡擔任主打明星。他解釋,「大約從現在開始的十年後,」NASA 將準備好發射「行星發現者」這種軌道天文台,它不但可以定位可能可居住的行星,還能透過多種星光阻擋技術,拍攝該行星的低解析影像。這個軌道天文台將在每一小團行星碎點的光譜中,尋找大氣中的生物標識。

這是 NASA 第一次向公眾提及日後所謂的「類地行星發現者」任務概念,高丁對入迷的觀眾說,如果「類地行星發現者」在鄰近恆星發現了有機會的行星,那麼「或許在二十五年內」就會打造企圖心更大的望遠鏡,以「能看見海洋、雲朵、大陸和山脈的解析度」,來拍攝那些行星。高丁為一個並不遙遠的未來做出排程,在那之中,多虧美國的財富智慧,外星地表地圖可讓全球各地學校教室的牆壁增色。他接著又說,在二十一世紀的某一刻,那些顯現為可居住的行星,會成為自動星際探測機的首要目標。

在高丁的如意算盤中,「類地行星發現者」可能會在 2006 年升空,未來則由一座 2020 年代前半登場的太空望遠鏡接班;屆時那台新望遠鏡將開始在任一鄰近的系外類地行星上,實施蘭德麥奈利(Rand McNally)地圖繪製。

然而不幸地,詹姆士.韋伯太空望遠鏡的發展,最終比計畫要困難許多。為了要拍攝最早的恆星和星系,這台望遠鏡需要比哈伯大上很多的主鏡,並且需要為拍攝分子雲、巨行星和最早星系最明亮放射的紅外線而特別進行優化。它也得要進行低溫冷卻,好讓其內在熱度不會洗去宇宙曙光期的微弱光線。最後,它不能在近地軌道上運作,因為我們地球有如電燈泡一樣的紅外線光芒,會污染精細的觀測結果。

經過許多年的眾多開發週期,設計終於拍板定案:詹姆士.韋伯太空望遠鏡將配備 6.5 公尺的主鏡,其集光區域將近哈伯的七倍,並安置於地球與太陽連線上的一個穩定點,離地球有一百萬英哩,約比地球跟月球的距離遠四倍。

這望遠鏡的每一個方面,都需要大規模的新技術。一面有波音七三七那麼長、那麼寬的多層「太陽罩」,保護著望遠鏡以及整套特製最先進的儀器和偵測器。這整套組合無法讓任何現有火箭裝載,因此為了要發射出去,整個軌道天文台要像摺紙一樣折疊起來;在它於太空深處張開之前,就像蛹中的蝴蝶一樣。為了要能摺疊,詹姆士.韋伯太空望遠鏡的主鏡會分成十八片可調整角度的鍍金六角形,每一片都以極輕且高毒性的鈹金屬雕製而成。

韋伯太空望遠鏡將安置於地球與太陽連線上的一個穩定點,離地球有一百萬英哩,約比地球跟月球的距離遠四倍。然而它所需要的技術實在太高,發展比預期難上非常多。圖/By NASA/ESA, Public Domain, wikimedia commons

多個國際夥伴簽約打造這個儀器或是提供發射載具,但 NASA 將負擔主要成本,初估大約是十五億美元。發射時間則預定在 2010 年前後。隨著該計畫真正的複雜度和實際規模逐漸明朗,成本預估不斷持續上修,但該增加的資助卻越來越不見蹤影,以至於詹姆士.韋伯太空望遠鏡所需的費用,得從 NASA 其他太空科學計畫挪來使用。到最後,光是技術開發就要花上二十億美元。

詹姆士.韋伯太空望遠鏡的進度表開始失控,計畫總成本不斷膨脹,只好將越來越多的主要支出向後挪移。到了 2012 年,詹姆士.韋伯太空望遠鏡的建造、測試、發射,以及頭五年的運作費用,總共估計將近九十億美元,而發射日期不會早於 2018 年。

被金融海嘯沖垮的太空計畫

詹姆士.韋伯太空望遠鏡的「分娩痛」,又因為反覆的國家與全球經濟災難加劇,並在 2008 年開始的經濟大衰退達到頂點。在大衰退中,美國政府花了上兆美元,來防止主要銀行和其他金融機構全面崩盤。一度預期會穩定成長的 NASA 預算,此刻還幸運地維持平盤,但即便如此仍無法趕上通貨膨脹的速度。1990 年代由總統柯林頓所儲存建立的上兆元聯邦剩餘資產,在 2000 年代因減稅和繼任總統小布希的失控開支,轉為數兆美元的虧損。

在哥倫比亞號太空梭事故之後,小布希委任一項大膽的新任務給 NASA,讓這單位又回到 NASA 原本的後阿波羅時代計畫:打造新的重型運載火箭,然後用它們回到月球,並把人送往火星。這任務日後被稱做「星座計畫」(Constellation program)。

但小布希其實並沒有提供足夠的資助,也沒有來自美國國會的大力支持,更沒有在他首度發表後再度提起這計畫。就跟小布希任內開始的眾多政府計畫一樣,星座計畫看起來唯一的長處,就是把幾十億美元的公共資金與聯邦資金,轉移到與此脈脈相連的私人承包商金庫裡,而那些單位總是只回報一丁點結果而已。

小布希委任一項新任務給 NASA,後阿波羅時代計畫:打造新的重型運載火箭,然後用它們回到月球,並把人送往火星。這任務日後被稱做「星座計畫」。然而這個計畫更加劇了韋伯太空望遠鏡的難產。圖/By NASA, Public Domain, wikimedia commons

2006 年,NASA 選擇從它的科學預算中挪用數十億美元,支撐小布希這個失敗的計畫,而讓詹姆士.韋伯太空望遠鏡的開發陷入混亂之中,並讓一個即刻的 TPF 開發與發射計畫正式宣告「無限期延遲」,而沒了指望。並不是每個人都為這損失哀悼—許多不是研究系外行星的天文學家已經開始覺得,「類地行星發現者」的狹隘目標和預計成本,對於他們同樣需要太空望遠鏡但乏人關照的子領域來說,幾乎是種生存威脅。確實,有些人甚至主動透過具影響力的研究團體和計畫委員會,以遊說方式阻止它的進行。

經過多年不上不下的結果和超過一百億的支出後,星座計畫在 2010 年由總統歐巴馬中止,但這已經對 NASA 科學計畫造成損害。為了資助詹姆士.韋伯太空望遠鏡,整個單位被迫縮編,延後或取消幾乎所有下一代天文物理學及行星科學的主要任務。這個軌道天文台若想成功,只有在有效排除 NASA 絕大多數太空科學代表作的龐大花費下,才有可能辦到。隨著前一代老化的太空望遠鏡一台接一台地破損故障,不論詹姆士.韋伯太空望遠鏡最終何時升空,屆時天上都可能只剩下這台望遠鏡,獨自在一個突然沒有其他大型軌道天文台的天空中,望向宇宙的邊緣以及時間的起點。

在缺乏金錢和強大機構支援的情況下,「類地行星發現者」就跟那些遙遠的恆星一樣,如此地遙不可及。因為計畫持續延遲超支,美國國會也反覆威脅要把支助詹姆士.韋伯太空望遠鏡的資金抽掉,哈伯望遠鏡的接班計畫也就可能無法達成。就算達成,望遠鏡的可用年限也只有十年,因為屆時其燃料儲存將會用盡,設備也會退化。天文學家私下議論,由哈伯開啟的黃金時代恐怕就要結束了。

哈伯大夫:我們並不孤單

這個想法讓約翰.格朗菲德(John Grunsfeld)的心情格外沉重。這位留著大八字鬍的天文物理學家,也是歷經五次太空梭任務的 NASA 太空人。他的五次任務中,其中三次就是造訪哈伯望遠鏡。哈伯望遠鏡能夠成功,有不少部分得歸功於格朗菲德在三次哈伯維修任務中,在創紀錄的五十八小時半太空漫步時,套著太空裝展現了精湛的修復工夫。媒體盛讚格朗菲德是個英雄,稱他為「哈伯大夫」。透過將太空梭駛入軌道,維修史上最具生產力的太空望遠鏡,再以同一台望遠鏡研究脈衝雙星以及其他異常迷人的天文現象,格朗菲德經歷到 NASA 載人太空計畫與科學太空計畫的強大協同利益。

約翰.格朗菲德是歷經五次太空梭任務的 NASA 太空人。哈伯望遠鏡能夠成功,有不少部分得歸功於格朗菲德在三次哈伯維修任務中,在創紀錄的五十八小時半太空漫步時,套著太空裝展現了精湛的修復工夫,因此被稱為「哈伯大夫」。圖/By NASA, Public Domain, wikimedia commons

他針對花在國際太空站與太空梭上的上億美元,以及維持太空望遠鏡黃金時代所需的資助深思。並思考 NASA 生氣蓬勃的載人探索計畫,該怎麼像太空梭和大型軌道天文台計畫一樣,再一次與這機構純然的科學研究一同打造強大的合作關係,好讓雙方都大幅獲益。2003 和 2004 年間,他擔任 NASA 的首席科學家,協助開發小布希星座計畫的科學應用;結果發現,巨大火箭拿來發射特大號天文望遠鏡,跟把太空人送往月球一樣管用。舉例來說,這樣的火箭可以在不耗費大量成本且把主鏡切片折疊的艱難條件下,就把詹姆士.韋伯太空望遠鏡發射出去。它也能讓更大的 TPF 式軌道天文台變得更便宜。然而,當這計畫的科學預算蒙上一層飢餓的陰影時,事情變得事與願違。

在完成最後一次哈伯維修任務後,2010 年年初,格朗菲德離開 NASA,前往馬里蘭州巴爾的摩太空望遠鏡科學研究所擔任副所長。在差不多兩年的任期內,他與研究所所長—天文學家麥特.曼騰(Matt Mountain)緊密合作,替該研究所某天可能也會著手的 TPF 式望遠鏡打下基礎。他們把自家設計很巧妙地縮寫為 ATLAST(總算),全名為技術進階大口徑太空望遠鏡(Advanced Technology Large- Aperture Space Telescope),讓它成為一台除了其他功能外,還能傳送可能可居住的系外行星影像的重負荷天文學儀器。哈伯大夫就此成為了「類地行星發現者大夫」,或是「總算大夫」。

格朗菲德擺脫了備受矚目的 NASA 公僕角色之後,在新職位任職的他講起話來變得熱心而詳盡,甚至會主動提及打造新軌道天文台,來尋找其他行星及生命的重要性和價值。然而,2011 年下半年,格朗菲德的電話響起,那通電話來自一個 NASA 工作的朋友。NASA 希望他回來擔任科學任務部的副行政官—這職位將會讓格朗菲德執掌全球最大一筆純科學預算,儘管這筆預算過去未曾達成 NASA 的無數任務。

他接受了,並在回歸 NASA 後,馬上收斂起自己過去對打造「生命搜索用太空望遠鏡」暢所欲言的擁護,取而代之的是一種強調 NASA 所有科學計畫都要保持平衡的謹慎公眾人格。雖然在外星地球搜尋方面沒有給予大膽的新資助,但格朗菲德的好友和舊交都沒忘記他以前的熱情。在我花了將近一年與 NASA 媒體團隊進行徒勞的 e-mail 往來,期盼能採訪到格朗菲德副行政官後,我對先前訪談中格朗菲德副所長的暢所欲言,充滿了欣慰與確幸之情。

「哈伯和韋伯太空望遠鏡,可能會讓宇宙中是否有其他生命的問題懸而未決,」他說。「在下一世代的大型太空望遠鏡中,我們需要的能力,是觀察最靠近我們的一千顆恆星周圍,每顆可能可居住行星的大氣層和其表面特色。」

我們終將發現自己並不孤單,我們終將發現其他可居住行星,原則上每一顆人類都能造訪,這就是未來的大局面。

「而我想說服公眾、美國國會以及未來的政府當局,這樣的下一步是值得投資的。」很明顯地,格朗菲德讀過齊奧爾科夫斯基。


 

 

本文摘自《五十億年的孤寂:繁星間尋找生命》,八旗文化出版。


數感宇宙探索課程,現正募資中!

文章難易度
八旗文化_96
34 篇文章 ・ 17 位粉絲
外部視野,在地思索, 在分眾人文領域,和你一起定義、詮釋和對話。


0

22
2

文字

分享

0
22
2

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
29 篇文章 ・ 26 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。