Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

學術論文的圖片該怎麼處理?國外期刊早有規範—《科學月刊》

科學月刊_96
・2017/03/05 ・2859字 ・閱讀時間約 5 分鐘 ・SR值 607 ・十年級

文/曹哲嘉|美國羅徹斯特大學生物學博士,現任教於國立臺南大學生物科技學系。

台大論文造假案引發學界爭議。圖/Richy Li, CC BY-SA 3.0, https://zh.wikipedia.org/

這幾個月來,臺大多篇論文遭質疑圖片有問題,至今已有 2 篇撤銷發表。此事件引發不小的風波,案情至今仍在調查處理之中。科技部部長楊弘敦在立法院接受質詢時表示會有造假是人性使然,古今中外皆有,因此應強化學術倫理教育,並且在制度面檢討來杜絕弊端。到底當今生醫發表內容,有多少比例的可信度有問題?造假是否中外皆有?早在臺大案例受到注目之前的 2016 年 6 月,在美國微生物學會(ASM)出版的電子期刊 mBio 上就刊出一篇文章「生物醫學研究期刊中不當圖像重複的普遍性(The prevalence of inappropriate image duplication in biomedical research publications)」, 3 位美國學者檢視了 1995 至 2014 年間,於選定的生醫相關領域期刊上、共 2 萬餘篇論文,發現幾乎每 25 篇就有一篇(3.8%)出現了圖片重複使用或修改的情況。

該文作者定義出 3 種有問題的圖片類型:

  1. 單純重複使用同一圖片:在標示為不同樣品或處理的實驗之間,使用了相同的圖片來呈現結果。最常出現此類問題的是作為比對量化標準的載入控制組(loading control)。在利用免疫轉漬法偵測不同樣品中某一蛋白質含量變化的實驗時,通常需選用一種量多恆定、在該實驗條件下各樣品間均不會明顯改變的物質,以作為相互比對的基準;並亦用以顯示待測蛋白的變化是有針對性的,而不是每種成分都概括改變。因為這是判讀實驗結果的基準,每次實驗操作都應重做這種控制組的測試。
  2. 經過截切與調整位置後使用同一圖片:在生化電泳或是顯微照片中,將來自同一個樣品的部分圖片截切擷選出來,經過上下或左右翻轉之後,標示為不同的樣品或處理。
  3. 經過變造後使用同一圖片:這比前兩類更進一步,不僅截切圖片或改變位向,而且修改增刪了圖片的訊息:包括將某一部份圖片局部複製貼上、添加原本沒有的內容,或是塗色遮蔽、抹去某部分細節。

雖然無法確知出現這幾類圖片的確切因素,但可推想其動機的「惡意」顯然有別。第一類有可能是疏忽造成的,因為許多載入控制組的圖像十分類似,沒注意時確有可能誤用到同一張圖。但也可能是刻意的,作者有心挑選符合某種情況的圖片,來迎合自己的理論或期望的結果;或是根本沒做控制組的測試而便宜行事,挪用其他的結果來塘塞。至於第二類與第三類的圖片,都需經過後製加工處理,幾乎不可能是疏忽大意,刻意造假的成分甚高。當前臺大生醫論文爭議的案情,即因為遭檢舉論文中多個圖片,分別符合上述第一或第二種類型。

-----廣告,請繼續往下閱讀-----

這個研究指出早期問題圖片數量較少,但自 2003 年之後出現問題圖片的情況增多並大致維持一定比例。這趨勢可能與近年來數位影像處理的便捷與普及有關。而各期刊出現問題論文的比例差別甚大:表現最佳的如《細胞生物學期刊》(Journal of Cell Biology)只有 0.3% 有爭議,而《國際腫瘤學期刊》(International Journal of Oncology)則高達 12.4% 。概括來說,引用率高、影響因子(Impact Factor)高的科學引文索引(Science Citation Index, SCI)期刊,出錯比例愈低。這顯示期刊編輯團隊的管控與重視與否,直接影響了該期刊論文的真偽程度。

期刊編輯者的態度影響到品質管控,可拿《細胞生物學期刊》為典範來探究。早在 2004 年,該期刊就以專文探討數位圖片處理的準則。他們體認到當今分子生物與生化實驗的結果,常是膠體電泳或轉漬檢測的幾個顯影色帶,多一條少一條、顏色相對深淺就影響判讀結果,偏偏這些都可用影像軟體輕易地修飾。問題雖重要,但當時各期刊尚未把規範明確講清楚,所以《細胞生物學期刊》挺身而出訂定規則,並附上範例實驗來講解:

  1. 圖片整體調整是可接受的,但不可只修改一小部分。可利用軟體以線性方式把整體明暗對比調整清楚,但絕不能只選取某個區域而片面局部調整,這會被視為是造假。此外,若用到非線性的處理方式,應該註明清楚。
  2. 調整背景的對比亮度時,不應使得背景完全消失看不見,因為許多資訊細節可能就此被濾除。
  3. 不可把不同膠體使用的對照組剪貼到另一片膠體的圖中;不可以自行增添內容到圖片上,也不可以把自認多餘的的訊息抹去。
  4. 若因故要把數個小圖拼成一個大圖,不論是電泳圖片、轉漬檢測顯影或顯微照片,拼接的小圖之間要留下白邊作區隔,讓讀者知悉這些原始來源不同。
  5. 如果顯微照片上想顯示的某個結構或特徵不清楚,即使是確有其事,也不可自行描繪。應在旁加上箭頭或標記,或利用人工著色的方式來突顯。讓讀者得以了解要強調的重點為何,也能自行判斷真確與否。

而在 mBio 刊出的這篇研究中另指出 2 種圖片處理方式,作者雖未採計為有爭議但也特別指出要注意,這 2 種方式為「過度美化圖片背景」與「圖片拼接未標明」──這些都已在《細胞生物學期刊》的準則中。因此,目前早有明確的規範,只是學界同儕是否知悉?是否重視?是否真的自我要求、嚴謹遵守?此篇研究中也探討到論文中作者人數的多寡與是否出現問題圖片,兩者之間有無相關性。結果發現兩者並無關連,並未因為共同作者人數增多,在投稿前就能多幾個人仔細檢閱文稿,得以自己內控發現問題。這顯示當前生醫研究對內容的「量」要求愈來愈多、日益龐雜,因而要靠專業分工而造成零碎「片段化」:許多共同作者僅是負責其中一小部分的實驗或提供材料,無法掌握文稿整體。另一方面,這也是否暗示著無法負責或不具實質貢獻的共同作者,因為種種緣由而掛名其上的現象盛行?

值得警惕的是這篇研究的圖七: 3 位作者選定了發表於 PLOS ONE 這個開放取用之期刊上的論文為對象,以各國學者所發表的總論文數所占比例,與有疑義的論文數所佔比例來分析,有 3 國的爭議性論文之出現比例明顯偏高,分別是印度、中國、臺灣。

-----廣告,請繼續往下閱讀-----

回到本文最初的提問:生醫論文圖片造假確實是古今中外皆有,但是有的常出包,有的少犯錯。不幸地,臺灣就是常出包的慣犯。該地域研究的取材樣本或許不夠大,但應足以反映出部分實情。無獨有偶,近年來臺灣的工程學門也出現嚴重違反學術倫理的案例:有虛創假冒審查者帳號來自我審查論文的;有擅將他人論文改寫逕自列名發表且一稿多投的;也有提不出特殊關鍵實驗的原始數據、號稱數據來自神秘人士於神祕地點的產出,且對實驗細節毫無所知。這些匪夷所思的案例,已讓臺灣學界的聲譽受損。

再經過此篇研究,臺灣學界的某些造假歪風(或輕忽成習)的現況,更經過同儕審查認證了。人們會怎樣看待臺灣?為何導致如此?原因可能與當前政府獎勵學術發展的政策手段偏差,與大學經營的扭曲管理方針等結構問題糾纏在一起。個人或許無法扭轉,但若多數人都能正視此事,不再犬儒或鄉愿,或許能改變。既為身在學術圈裡的一員,不論是涉入、默許、旁觀、還是無感,你我都是共業一環。只想獨善其身,就莫怨嘆自己本分規矩做研究遭人連累。因為沒有內省檢討反叛與行動,覆巢之下,也是咎由自取。

參考資料:

  1. Bik, E.M., A. Casadevall, and F. C. Fang, The prevalence of inappropriate image duplication in biomedical research publications, mBio, Vol. 7(3):e00809-16, 2016.
  2. Rossner, M. and K. M. Yamada, What’s in a picture? The temptation of image manipulation, J. Cell Biol., Vol. 116: 11-15, 2004.

〈本文選自《科學月刊》2017年2月號〉

-----廣告,請繼續往下閱讀-----

什麼?!你還不知道《科學月刊》,我們47歲囉!入不惑之年還是可以當個科青

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3742 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
有圖有真相嗎?要怎麼分辨 AI 生成影像避免受騙?
泛科學院_96
・2024/04/28 ・719字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

2 月 15 日 OpenAI 發佈 Sora,隔一周後 Stable diffusion 3 隨後推出,以前人家都說有圖有真相,現在眼見不實的時代要來臨了,你說?還有什麼可以相信的?

AI 生成的影像到底有沒有方法可以辨識出來?今天,我們來談談近期關於辨識 AI 生成,找出 AI 生成的破綻!

先說結論,理論上可以!但現實很困難,很容易被破解,這集我們回答三個問題:

  1. AI 生成影像有什麼破綻?
  2. 還有哪些方法可以辨別 AI 生成的影像?
  3. 最後來談談這些辨識方法,在現實中會遇到什麼問題?

回到最基礎的問題眼見不再為憑,接下來只會越來越多,不會越來越少,謠言進化成謠圖跟謠影片,現在還真的沒有其他武器,來辨識 AI 生成的內容,說到底還是得回歸自身的媒體識讀、確認訊息來源!

-----廣告,請繼續往下閱讀-----

最後也想問問你,在這個大 AI 生成的時代,你會怎麼避免自己被 AI 騙呢?

  1. 相信大公司,相信聯合制定的浮水印規範終將落實
  2. AI 問題要用 AI 解決,相信辨識系統一定會完成
  3. 網路上的影像全是假的,是我眼睛業障重
  4. 其他答案也歡迎留言分享

更多、更完整的內容,歡迎上科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
泛科學院_96
44 篇文章 ・ 53 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

1

2
0

文字

分享

1
2
0
論文騙局:故弄玄虛的用字,就算內容都是假的一樣可以發表?——《集體錯覺》
平安文化_96
・2023/01/13 ・2144字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

精心策畫的論文騙局

1996 年,紐ㄝ大學物理學教授艾倫.索卡,在後現代研究期刊《社會文本》設計了一場論文騙局。圖/Envato Elements

一九九六年,紐約大學物理學教授艾倫.索卡(Alan D. Sokal)在後現代研究期刊《社會文本》(Social Text)上發表了一篇論文〈跨越邊界:朝向量子重力的轉形詮釋學〉(”Transgressing the Boundaries:Toward a Transformative Hermeneutics of Quantum Gravity” in the postmodern journal Social Text)。

根據論文摘要,你覺得這篇論文是在講什麼?

「本文的目標,是藉由探究量子重力的最新發展,進一步地深析指出,海森堡的量子力學和愛因斯坦廣義相對論,如今已經被合成和取代。本文將指出,在物理學的這項新興分支中,時空流形不再是客觀的物理實體;幾何學變成了仰賴脈絡的相對關係;過去科學的基本概念已經變成可以質疑的相對性範疇,就連存在本身也不例外。我認為這種觀念革命,對於後現代的自由科學,具有深遠意義。」

如果你覺得這整段話只是用一堆意義不明的術語堆砌起來的胡扯,恭喜你猜對了

-----廣告,請繼續往下閱讀-----

索卡教授瞎掰了一篇論文,投稿到《社會文本》期刊,六名編輯審查之後決定接受,當成嚴肅的學術著作放在該期刊的特刊。

然後索卡發文說整件事都是他設計的騙局。他之所以煞費苦心做這種事,是為了要證明很多學術界的人都會用故作高深的方式騙取名聲。

索卡教授為了證明學術界會用故作高深的方式騙取名聲。圖/Envato Elements

住在拉普達裡的學者

強納森.斯威夫特(Jonathan Swift)在一七二六年的《格列佛遊記》(Gulliver’s Travels)就諷刺過這種事情,故事中的天空之城拉普達,住著一群偏執的學者和理論家,整天只會研究一些脫離現實的沒用東西。

索卡跟斯威夫特一樣虛構了很多荒謬的東西來諷刺這種現象,他在論文中塞進許多解構主義的流行術語:「偶然的」(contingent)、「反霸權的」(counterhegemonic)、「知識論的」(epistemological)。事後他對《紐約時報》表示,「這篇文章是在刻意模仿某些學者胡亂引述數學與物理概念的行為。我把這些胡扯連在一起,然後發明一個說法去吹捧。整篇文章完全不需要符合任何知識標準,也不需要符合邏輯,所以超好寫的。」

索卡一邊諷刺文化研究與文學批評期刊那種用字吹毛求疵的無聊文化,一邊用詰屈聱牙的高深術語來諷刺那些學界的派系鬥爭。學界彼此批判時候很愛使用一些沒人看得懂的術語,經常搞到即使是同領域的學者,也看不懂作者在說什麼。

-----廣告,請繼續往下閱讀-----
索卡與《社會文本》高層兩方唇槍舌戰。圖/Envato Elements

事件發生之後,《社會文本》高層發表了一篇相當酸的回應:「索卡博士認為我們是知識相對主義者,他搞錯了。」共同創立該期刊的紐約大學教授史丹利.阿諾維茲(Stanley Aronowitz)表示,「而且這是因為他書讀得太少,學的東西也不夠多」。

索卡看到回應反唇相稽,「光是《社會文本》接受這篇文章,就已經證實那些後現代文學理論家的傲慢,已經誇張到可以無視邏輯。難怪他們從來不去問物理學家,那些引述物理的文字有沒有意義。在他們的世界裡,無法理解變成了某種美德;典故、隱喻、雙關語取代了證據跟邏輯。我的文章只是提供了一個例子,證明了這個流派多年以來的作風。」

學術界、法律界、醫學界這些白領人士,最容易被這種聲望連鎖反應所影響。當聲望決定一切,金字塔頂層的聲音就會過度放大,很多時候他們的說法可以廣傳,並不是因為說法有價值,而是因為其他人希望自己聽得懂他們在說什麼。即使其他專業人士聽不懂,通常也都會為了守住自己的飯碗而默默跟隨。

當聲望決定一切時,很多時候並不是因為說法有價值,而是其他人希望自己聽得懂他們在說什麼。圖/Envato Elements

扁桃體切除術就是個好例子。這種手術的效果欠缺科學根據,但因為「專業醫學意見」普遍認同,一度盛行了幾十年。在二十世紀最時興的時期,上百萬名兒童接受了扁桃體切除術,其中許多甚至因此受傷或死亡;直到某一天,醫學界才終於願意仔細檢查該手術的效果,然後很快就淘汰了它。

-----廣告,請繼續往下閱讀-----

當我們為了保障自身聲譽而服從權威時,我們會相信某一套既定的敘事,聽不進任何新資訊,所以很容易繼續以訛傳訛。這種時候,敘事的真假並不重要,因為在其他人眼中,我們這群附和的人都是專家,不太可能搞錯。

不過雖然以訛傳訛的效力很大,但它並非無懈可擊的高牆,反而更像一座疊疊樂——只要抽掉那根關鍵的木條,整座塔就會瞬間崩毀。

——本文摘自《集體錯覺:真相,不一定跟多數人站在同一邊!》,2022 年 12 月,平安文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
平安文化_96
5 篇文章 ・ 3 位粉絲
皇冠文化集團旗下的平安文化有限公司以出版非文學作品為主,書系涵蓋心理勵志、人文社科、健康、兩性、商業……等,致力於將好書推廣給廣大讀者。