這些結果分別寫成三份論文,發表在 11/18 當期的 Science 期刊中。三項研究的領導者是 Nicolas Lehner(印第安納州 South Bend 的聖母大學);Jason Tumlinson(馬里蘭州 Baltimore 的 Space Telescope Science Institute);以及 Todd Tripp(Amherst,麻州大學)。
遙遠恆星的 COS 觀測證明,大量的雲氣(clouds)落入我們銀河系巨大的銀暈中,為其持續進行的恆星形成加油。這些熱氫雲氣位於二萬光年的銀河圓盤(disk)內,且包含足以製造 1 億顆太陽的材料。這種氣體中有某些是回收材料,那因恆星形成、新星與超新星的爆炸能量(那將富含各種化學成份的氣體踢回銀暈中)而持續獲得補充。
雖然來自星系的熱氣體「風」已為人所知有一段時間了,但這項新 COS 觀測卻揭露,熱外流物所延伸的距離比先前所以為的還要更遙遠,而且能將極大量的物質帶離星系。某些熱氣體會移動的更加緩慢,最後可能被回收。這些觀測證明「富含氣體恆星形成的螺旋狀星系」如何能演化成不再有恆星形成的橢圓星系。
這種熱電漿所發出的光不為人眼所見,所以當來自背景似星體(quasars)的某些色光被氣體吸收後,研究者才得以用 COS 偵測出這些氣體的存在。似星體為宇宙中最明亮的天體,而且是活躍星系的明亮核心,那包含活躍的中央黑洞。似星體身為遠方的燈塔,光線穿透富含氣體、圍繞星系的熱電漿「迷霧」。在紫外線波長下,COS 對於重元素(例如氮、氧、氖)的存在很敏感。COS 的高敏感度使得許多位於距離更遙遠的似星體之前的星系能被研究。這些離子化的重元素是估計一星系的星系暈中有多少質量的標記。
嗯,就算看原文也看不是很懂。COS measured 10 million solar masses of oxygen in a galaxy’s halo, which corresponds to about one billion solar masses of gas — as much as in the entire space between stars in a galaxy’s disk.
根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。
科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。
NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。
他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。