0

0
0

文字

分享

0
0
0

天文學家逮到4個正在消耗類地系外行星物質的白矮星

臺北天文館_96
・2012/06/24 ・1291字 ・閱讀時間約 2 分鐘 ・SR值 561 ・九年級

英國華威大學(University of Warwick)Boris Gänsicke等人,觀測到4顆白矮星周圍有塵埃環繞,這些塵埃可能一度是類似地球的系外行星,只是已經破碎,且白矮星們正毫不客氣的正在享用這些碎屑。

白矮星是質量類似太陽的恆星們因核心核融合材料用盡、演化到生命末期時,核心部分向內收縮而形成的。利用哈柏太空望遠鏡進行白矮星大氣組成的大規模巡天觀測,總共在離太陽數百光年範圍內發現了80幾顆白矮星,其中,Gänsicke等人發現有4顆白矮星大氣中最常見的元素就是氧、鎂、鐵和矽,而地球本身有93%以上就是由這4種物質所組成。更有趣的是:白矮星大氣物質所含有的碳元素比例極低,狀況與地球及太陽系其他幾顆類地行星非常近似。

這是天文學家測量受到塵埃碎屑污染的白矮星大氣中,首度發現碳元素比例如此低的狀況。這不僅可明確證明這些白矮星曾一度擁有至少一顆岩質系外行星,只是這些岩質行星都已經被摧毀,而且這些觀察結果還呈現了這些系外世界最後的死亡階段究竟是什麼景象。

白矮星的大氣層主要由氫元素組成,有時還含有氦,大氣中若有任何氫氦以外的重元素,都會在數天之內被白矮星強大的重力拽向白矮星核心而不得見。有鑑於此,Gänsicke等人估計:要達到這4顆白矮星大氣中類似地球的這些重元素比例,必定是每秒有100萬公斤以上的物質不斷落向白矮星表面的結果。

-----廣告,請繼續往下閱讀-----

其中一顆編號為PG0843+516的白矮星,由於大氣中的塵埃含有極其豐富的鐵、鎳與硫,使得它比其他白矮星更特別。鐵和鎳一般存在於類地行星的核心部分,這是因為夠大的行星形成過程中,由於重力而使得比較重的元素沈向核心的關係,即所謂的「分異作用(differentiation)」,地球也曾在形成之初經歷過分異作用,因此而有地核、地函和地殼的分層;而硫則因化學性質本就易於受鐵吸引,因此也會隨著鐵沈到核心去。因此,這些天文學家相信:PG0843+516不僅正在吞噬它的破碎行星的殘渣,而且是這顆或這些行星原本的核心部分。

Gänsicke等人指出:這些白矮星距離地球都在數百光年遠,但類似白矮星吞噬其周遭行星碎屑的這種劇碼,很可能未來有一天也會在我們的太陽系中上演。天文學家預估我們的太陽還有約50億年左右的壽命,因此約數十億年太陽核心的氫含量不足以繼續進行核融合反應,太陽外層大氣將逐漸膨脹形成紅巨星,逐漸將最內層的水星、金星吞沒,雖不清楚地球是否也會被變成紅巨星的太陽吞噬,不過地球即使逃過被吞噬的命運,也躲不過因太陽表面逐漸接近而使地球表面液體都被太陽炙烤後蒸發殆盡的末日結局。

當太陽逐漸從紅巨星階段轉變到白矮星階段時,將會隨外層大氣膨脹、逸散到太空中而損失大量質量,所有行星也會被推離原本的位置。這將導致行星軌道變得不穩定而引起互撞,如同太陽系誕生之初那段不穩定時期一樣。這個過程可能讓所有的岩質行星被毀,形成大量小行星,有一部份小行星便是來自原本岩質行星核心。在我們太陽系中,木星可能可以在這場浩劫中倖免於難,並將因行星破碎後形成的小行星、或是原本就存在的小行星彈向變成白矮星的太陽。

資料來源:Four white dwarf stars caught in the act of consuming ‘earth-like’ exoplanets[2012.05.03]

-----廣告,請繼續往下閱讀-----

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 43 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

14
4

文字

分享

1
14
4
核融合發電有望實現?從美國 NIF 的最新研究看未來發展——《科學月刊》
科學月刊_96
・2023/05/13 ・3291字 ・閱讀時間約 6 分鐘

  • 張博宇/目前專研於高能高密度電漿、電漿推進、核融合等領域。

Take Home Message

  • 美國國家點火設施(NIF)在去年使用慣性控制核融合,首次在可控的核融合反應中,令能量的輸出大於輸入,朝核融合產能邁進了一大步。
  • NIF 將 2.05 百萬焦耳(MJ)的雷射能量注入靶材,經過核融合反應產生了 3.15 MJ 的能量,靶材增益為 1.5。但若將產生雷射能量的耗能考慮進去,則並沒有真正的能量輸出。
  • 臺灣各學校的物理系、核工系、電漿所其實都有學者針對核融合投入理論、模擬、實驗的研究,期望這次NIF的成果能推動相關領域進展。

去(2022)年 12 月,美國能源部(Department of Energy, DOE)、DOE 所屬的國家核安全管理局(National Nuclear Security Administration, NNSA)、勞倫斯利佛摩國家實驗室(Lawrence Livermore National Laboratory, LLNL),以及 LLNL 所屬的國家點火設施(National Ignition Facility, NIF)召開了一場記者會。

在記者會中,他們共同宣布在實驗中實現增益值(gain)大於一的結果,意即實現了第一次在可控的核融合(controlled nuclear fusion)反應中,輸出的能量大於輸入的能量,朝核融合產能邁進了一大步。然而,這項結果是否代表著核融合發電即將被實現?

產生能量的核融合反應

在核融合反應中,若兩個較輕的原子核可以融合成一個較重的原子核,且反應之後的總質量減少,那麼根據愛因斯坦(Albert Einstein)質能互換的關係(E = mc2),減少的質量將會轉換成能量。

-----廣告,請繼續往下閱讀-----

最容易產生的核融合反應是將氫(1H)的兩個同位素氘(2H,或稱為 D)及氚(3H,或稱為 T)的原子核融合,產生一個 α 粒子(即氦原子核,4He)加一個中子(neutron, n),同時產生 17.6 百萬電子伏特(MeV)的能量:

D+ T+ α2+ n ——公式一

在公式一的核融合反應中,兩個帶有正電的原子核必須互相靠近才能融合在一起。然而,兩個帶正電的粒子互相具有排斥力,而且愈靠近排斥力就愈大。因此,除非這兩個粒子互相靠近的速度快到排斥力無法阻止它們相撞,核融合才能發生。除此之外,還必須要考量到庫倫散射(Coulomb’s scattering)的現象——若兩個帶正電的原子核沒有正面對撞,則兩者會因為排斥力的原因轉向——更增加了兩者靠近的難度。

因此,只能把氘與氚氣體加熱到高溫,長時間侷限這些高溫的燃料,讓極少數高速的原子核有機會互相靠近並發生核融合反應、產生能量。但即便是最容易發生的氘加氚核融合反應,也需要將燃料加熱到 50 千電子伏特(keV,約為 5.8 億 ℃)才能有最高的反應速率。

-----廣告,請繼續往下閱讀-----

有什麼方法可以將燃料加熱到所需要的溫度呢?看回公式一,氘與氚的核融合產物中具有能量為 14.1 MeV 的中子,及 3.5 MeV 的 α 粒子。我們可以讓高能的中子將能量攜出後再轉換為電能,但讓帶有較少能量的 α 粒子保留在系統中加熱燃料。因此普遍實現核融合產能的系統,目標都是將燃料加熱到溫度約 10 keV(約為 1 億 ℃),讓核融合產生的 α 粒子能繼續加熱燃料。

帶來重大進展的核融合研究

目前國際間研究的核融合反應主要可分為磁場控制核融合(magnetic confinement fusion)與慣性控制核融合(inertial confinement fusion),NIF 去年的實驗便是使用間接驅動(indirect-drive)的慣性控制核融合。

在這次的實驗中,當 2.05 百萬焦耳(megajoule, MJ)的雷射能量注入環空器(hohlraum)1並加熱中間的球殼靶材後,經過核融合反應產生 3.15 MJ 的能量,意即靶材增益(target gain)約為 3.15 / 2.05 = 1.5,是人類首次在可控的核融合反應中,輸出的能量大於輸入的能量。

然而,若將產生 2.05 MJ 的雷射能量考慮進去,需要耗掉的能量約為 300 MJ;換言之,這次實驗的真正能量增益(energy gain)約為 3.15 / 300 ≈ 0.01,並沒有真正的能量輸出。

-----廣告,請繼續往下閱讀-----

不過,NIF 使用的是 90 年代的雷射技術,它的建造目的是為了國防研究所需,因此並不是最適合核融合的研究場域,在雷射技術上還有很大的進步空間。再者,回顧 NIF 從 2011 年開始進行的核融合實驗,歷經了超過十年終於第一次實現靶材產生的能量超過了雷射的能量,對 NIF 而言可說是向前邁進了一大步。

更重要的是,在去年的實驗中,靶材都進入了 α 粒子能夠繼續加熱燃料的燃燒電漿(burning plasma)範圍,是過去核融合研究從未達到的條件,只要稍微最佳化實驗條件便能讓輸出能量有顯著的提升。因此,這次的重大突破顯示了核融合的可行性並非天方夜譚。

臺灣的核融合相關研究發展

核融合研究本身是一個複雜的系統,在科學上及工程上都有許多的挑戰,許多名字上並沒有「核融合」的研究,其實也都間接與核融合相關。以這次的慣性控制核融合為例,相關的研究就包含了雷射技術、靶材製作技術、粒子量測技術、高速攝影技術等。

若以磁場控制核融合來說,也包含了高溫超導、微波技術、高壓脈衝技術、粒子加速器等科技。當然,最重要的就是電漿科學、電漿加熱、電漿量測技術等研究,因為任何材料在高溫的條件下,都會變成電漿態。 

-----廣告,請繼續往下閱讀-----

在臺灣各個學校的物理系、核工系、電漿所分別都有 1~2 位老師在研究電漿相關的領域,尤其成功大學的太空與電漿科學研究所,更有針對核融合投入理論、模擬、實驗的研究。然而,相較於國外蓬勃發展核融合的環境相比,臺灣投入核融合研究的人數仍然明顯不足。

期盼這次NIF的實驗成果,能夠吸引更多臺灣的學生及研究人員投入核融合的相關研究,更刺激政府、民間團體投入更多的資源在核融合研究上。

兩種不同的核融合方式

當物質被加熱到 1 億 ℃ 時,原子內部帶負電的電子便會脫離帶正電的原子核,形成帶負電的電子及帶正電的原子核混合在一起的狀態,稱為電漿(plasma)。我們可以利用帶電粒子的特性侷限高溫的電漿,目前廣泛被研究的核融合反應可分為磁場控制核融合與慣性控制核融合,它們的原理有哪些不同?

磁場控制核融合

-----廣告,請繼續往下閱讀-----
熱核融合反應器。圖/科學月刊。

其中一種方式便是藉由稱為「托卡馬克」(tokamak)的環形容器產生核融合。透過環磁場線圈及延著環形方向的電漿電流(plasma electric current),在環磁場線圈的內部形成一個扭曲但繞著環磁場線圈的螺旋磁力線(helical magnetic field),讓電漿不斷延著螺旋磁力線移動,被侷限在環磁場線圈形狀的真空腔中但不與真空腔的腔壁接觸。

最後,再將電漿加熱到 10 keV的溫度。此核融合的方式能透過磁場將低密度(接近真空)的電漿侷限在真空腔中上百秒或更久的時間,讓高溫的氘、氚原子核有機會互相靠近並發生核融合反應。

慣性控制核融合

慣性控制核融合是利用電漿本身的「慣性」來侷限電漿。由於粒子本身的質量不等於零,所以離開系統需要時間,只要燃料在離開系統前反應完畢,那是否被持續侷限就不重要了。

因此,慣性控制核融合必須將氘與氚的燃料加熱到近 10 keV,並壓縮到高壓力(約千兆大氣壓,gigabar)及高密度,讓粒子間碰撞的頻率在極高的密度下大幅度提升,增加核融合發生的頻率。因此僅需要將系統維持/侷限在奈秒(ns)內,同樣能將燃料燒完。

-----廣告,請繼續往下閱讀-----

慣性控制核融合可分為直接(direct drive)或間接驅動,不過兩種驅動方式都是為了快速加熱球殼外層。當球殼中心的氘及氚溫度達到 10 keV 時,核融合反應便會從中心開始發生,產生的能量可以由內而外藉由核融合反應燃燒球殼。

因為球殼本身的慣性向外推,因此產生能量。圖/科學月刊。

球殼內部在前述的過程中因為壓縮產生高壓,外部的雷射也會停止使得外部的壓力減少,因此球殼又會被向外推。然而,因為球殼本身的慣性,被向外推較為耗時,因此只要向外燃燒球殼的速度大於球殼被向外推的速度,便能將整個球殼再被外推前燃燒殆盡,產生能量。

註解

  • 〔註 1〕環空器是一種腔壁與腔內達到輻射熱平衡的空腔,在慣性控制核融合實驗中燃料球會被放入環空器,再於環空器兩端孔洞射入雷射提供能量。
  • 〈本文選自《科學月刊》2023 年 4 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
-----廣告,請繼續往下閱讀-----
所有討論 1
科學月刊_96
249 篇文章 ・ 3706 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。