0

0
0

文字

分享

0
0
0

為植入式醫療裝置充電:照光而非更換電池

only-perception
・2012/01/20 ・862字 ・閱讀時間約 1 分鐘 ・SR值 529 ・七年級

心律調節器與其他植入式醫療裝置需要靠電流來運作。更換電池則需要額外的手術,那對病患來說是一種額外的壓力。一個由日本產業技術綜合研究所(National Institute of Advanced Industrial Science and Technology,AIST)都英次郎(Eijiro Miyako)所領導的日本團隊現在在 Angewandte Chemie 期刊中引介一種替代方法:一種可植入式轉換器,能被透過皮膚的雷射照到。

生物電子裝置幫助許多病患活的更久並體驗更好的生活品質。節律器並非今日所用的唯一一種植入式電子裝置;這裡還有緩和嚴重慢性疼痛的「疼痛節律器(pain pacemakers)」。那是種神經刺激器(neurostimulators),將電脈衝直接送到脊椎以阻斷將疼痛傳送到腦部的訊號路徑。另一個例子是可植入式藥物幫浦,那可引導脊椎附近的鎮痛劑,或著提供胰島素給糖尿病患者。

像這樣的電子裝置移植通常由鋰電池供電,最多能撐十年。電池必須在另一次手術中進行更換。可充電的版本自然令人滿意。目前有各種替代方案出爐,例如,由體內葡萄糖驅動的電池(electric cells)或是肌肉驅動的發電機(dynamos)。缺點是它們所產生的電流無法獲得控制。其他方法則是透過(電)磁(電)流發電來運作,但這會擾亂鄰近電子裝置。

這個日本團隊現在開發出一種有趣的替代方案 — 一種依雷射照射來傳遞電流的裝置。該系統的核心是非常精細劃分的奈米碳管,內嵌在矽基質(silicon matrix)中。這些奈米碳管吸收雷射光並將光能非常有效率地轉換成熱。這種熱能接著透過這個微小裝置被轉換成電流。這透過席貝克效應(Seebeck effect)運作:在一個以二種不同導體製成的電路中 — 在此例中是一種以特殊方式排列的半導體材料 — 接點間的溫度差異會導致微小的電壓。只有塗布矽/奈米碳管複合物的那一側,會因照射而升溫,提供所需要的溫度差。因奈米碳管的良好吸收波長範圍,剛好能通過組織,故此裝置(其所需空間,邊長不會超過半公分)可以被植入皮下。單單是照雷射就能讓它產生足夠電壓為節律器或其他裝置的電池充電。

-----廣告,請繼續往下閱讀-----

這些研究者現在正在研究要製造出更有效率的能源轉換裝置,並為了醫療應用而增加其安全性。

資料來源:PHYSORG:Shine a light instead of changing the battery[December 1, 2011]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

6
1

文字

分享

0
6
1
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
194 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

4
0

文字

分享

1
4
0
「真.無線充電」?試試電磁波獵能手環,你的身體就是最好的捕能裝置!
PanSci_96
・2023/04/22 ・2679字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

你的手機能無線充電嗎?不過,雖說是無線充電,但還是得要放在充電盤上,由充電盤連結一條電線,這樣的充電方式,想必跟大家期待的「真.無線充電」有落差。

好消息是,有人提出一種藉由捕捉空間中的無線電波、獲得電能的無線充電方式,所以代表這些電能是完全免費的!但……這是真的嗎?

隔空充電可行嗎

現在我們已經可以透過無線網路串連全球的資訊,但是遠距能量傳輸卻尚未成真。

當代的無線通訊裝置,舉凡手機電話、wifi 網路、無線電、衛星定位等,都可以靠著不斷地發射無線電波來交換訊息。不過其實仔細想想,無線電波、電磁波其實就是不斷變化的電磁場。既然可以透過磁場變化來傳遞能量,那這些強大的電磁波網絡,是不是也可以拿來傳遞電能呢?

-----廣告,請繼續往下閱讀-----

實際上還真有類似的例子,一百年前最早的收音機竟然完全不需要插電!礦石收音機只需要天然礦石、金屬針、線圈和一些電線,就能收到附近廣播電台送出的訊號,轉換成聲音並放出。

那麼為什麼沒有沿用至今呢?主要就是效率的問題。礦石收音機需要不斷調整金屬針接觸礦石的位置,還得拉長長的天線來捕捉更多的無線電波;市售的礦石收音機玩具,甚至附有一條長長的鱷魚夾電線,可以接到大型金屬家具,產生更清楚、更大聲的聲音。當然這種收音機很快就被以電驅動的真空管收音機取代了。

2021 年初小米曾發表過隔空充電技術專利,利用指向型遠距充電,系統會先定位出手機的位置,再透過多個天線組成的陣列將電波瞄準發射給手機,克服電磁波發散的問題,據稱能在數公尺內進行無線 5W 的無線充電,雖然還不到快充,但也算是革命性突破。不過目前還在技術發表階段,尚未正式推出。

礦石收音機是利用天然礦石或晶體,加上天線、地線和調諧電路,所製成的收音機。圖/維基百科

無線射頻獵能

再換個角度思考,能量在傳遞的時候會向四周發散,而我們生活周遭到處都是會發出電磁波的 3C 產品,那能不能反過來,捕捉這些由其他電器溢散的電磁波,並轉為能量呢?

-----廣告,請繼續往下閱讀-----

還真的有人這麼做了。收集這些廢能,並轉化成可用電能的技術,就稱為「無線射頻獵能」。近十年來,有許多相關的技術與研究,不過效率大多還未到達實用階段。

就在今年一月,美國麻州大學團隊發表了一種可以用於無線射頻獵能的線圈手環,而且功率竟然比一般的線圈天線高十倍以上。

有趣的是,其實他們當時並不是在研究無線充電,而是如何使用 LED 快速閃爍來傳遞訊息;這種名為可見光通訊 VLC 的技術,有望成為未來 6G 通訊的方式。但發現到,這種技術需要 LED 以每秒數百萬次的頻率閃爍,過程中會釋放出大量不可用的無線電波,浪費掉許多能量;於是轉念一想,嘗試用線圈收集這些逸散的能量,降低傳訊時的能量浪費。

研究團隊發現,當線圈靠近金屬片時,收集能量的效率會變得更好。透過反射增強訊號,金屬片吸收環境中的電磁波再向外放出;隨著金屬片面積越大,攔截到的電磁波也越多,收集能量的效果也越好。

-----廣告,請繼續往下閱讀-----

但是無線充電就是要擺脫這些笨重的金屬板,於是研究人員開始拿生活周遭的 3C 產品來進行實驗。從獵能的功率來看,效果最好的依序是筆電、平板、手機。這和預期的一樣:面積越大,獵能效果越好。

然而,意想不到的是,實驗效果最好的,竟然是人體!

推測這是因為人體中含有大量水分,其容易導電、被極化的特性有助於蒐集空間中的電磁波。人體就是一根巨大的共振天線,能增加無線電訊號的發射效率,同樣的道理,也可以用來收集環境中的無線電波能量。

人體是巨大的共振天線!圖/GIPHY

研究團隊將線圈手環的設計稱為「Bracelet+」,是第一個借助人體的獵能裝置;後續又嘗試將線圈做成戒指和手環,希望能打造出輕便的隨身獵能裝置。

-----廣告,請繼續往下閱讀-----

那這樣是不是以後只要綁條線圈在手上,就再也不需要幫手機充電了呢?該線圈手環目前在數公尺的距離外最多可以捕獲微瓦等級的功率,也就是百萬分之一瓦。用這種電壓當然不可能幫手機充電,不過已經足以供應一些低功耗的隨身裝置,像是常見的智慧健康手環,或是負責監控體溫或血糖的元件,甚至類似心律調節器的植入式醫療器材,或許就可以利用該線圈設計,減少充電的頻率。

在 5G 物聯網的架構中,各種居家和隨身裝置必須隨時維持連線,如何為這些獨立、低功耗的裝置供電便成了重要的課題。在這種情況下,如果可以汲取周遭無線電波的廢能,不只可以節省能源,還能免去定期更換電池或充電的麻煩。

遠距充電熱潮

目前的 5G 和開發中的 6G 技術,都持續往電磁頻譜中更高頻率的部分去探索,設置覆蓋率更高、頻譜更寬的無線通訊網絡,而這些頻率的電磁波也將為無線充電帶來新的發展機會。

去年在 Scientific Reports 期刊上,有篇研究提出了 5G 網路作為電力網的想法。團隊針對 5G 使用的頻率設計出一種天線以及搭配的電路,可以在 180 公尺外接收到 6 微瓦,為無線電力網的夢想邁出了第一步。

-----廣告,請繼續往下閱讀-----

不過,在這波遠距無線充電的熱潮下,市面上也出現許多令人半信半疑的遠距充電技術。

例如 2011 年一家新創公司推出了超音波充電技術,宣稱可以透過空氣的震動替手機充電;然而,雖說超音波充電雖然在原理上可能可以運作,但在充電效率和經濟成本上根本不切實際,對人體健康的影響也相當有爭議。

除此之外,還有一家叫做 TechNovator 的公司推出了前所未聞的量子充電技術,他們宣稱可以透過「能量量子化」來傳輸能量,並且在「空間中創造能量結構」,還不需要任何形式的電磁場,就可以達成 100 瓦的無線充電!至於到底有沒有這麼好的事,就留給各位判斷了。

在所有物品與資訊都以無線網路相連的這個時代,無線的電力傳輸與電力網是關鍵的下一步;能夠有效的無線傳輸能量,才能讓我們生活周遭的智慧裝置擺脫電線的束縛,減少電池的消耗,成為一個自由移動,自給自足的物聯網。

-----廣告,請繼續往下閱讀-----

不論是透過可見光、wifi、還是 5G 訊號,無線且遠距的充電與獵能,將來勢必會有讓人驚豔的發展。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

所有討論 1
PanSci_96
1214 篇文章 ・ 2091 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
2

文字

分享

0
4
2
快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限
PanSci_96
・2023/03/11 ・2703字 ・閱讀時間約 5 分鐘

除了線材,市場上也到處可看到標榜使用氮化鎵、可支援大電流快充的充電頭。但為什麼之前充電速度一直快不起來呢?為什麼現在要改用氮化鎵呢?快充能變得更快更快更快嗎?

快充加速了充電速度

在快充出來以前,我們的智慧型手機充電器,功率大約是 5 瓦特(W)或是 2.5 瓦特,現在最夯的的氮化鎵快充頭功率則高達 65 瓦特,相差了 13 倍,理想上充電時間也會縮短為十三分之一。

實際上,這幾年快充的發展速度可能比想像的還要快上許多。

還記得在 21 世紀的 Nokia 3310 嗎?其功率僅 4.56 瓦特,而蘋果一直到 2014 年的 iPhone6 才支援更快的 10 瓦特快充。然而,現在不僅已經出現不少支援 50 瓦特以上快充的手機,今年二月中國手機品牌 realme 推出的 GT Neo5,甚至出現 240 瓦特的超快充技術,是目前充電最快的智慧型手機。

提升充電器功率的關鍵

從過去到現在,充電器不僅功率大幅提升,充電器的大小同時也縮小了許多。過去的線性充電器,除了有條細細長長的尾巴外,最大的特徵就是不僅大、充電時還會發熱的變壓器;為了將市電的 110V 交流電轉為手機可以使用的 5V 直流電,就需要變壓器協助降壓。

-----廣告,請繼續往下閱讀-----

變壓器的發熱來源來自內部占了絕大部分體積的線圈,在電路學中被稱為「電感器」。輸入與輸出的線路會以線圈的形式綑在一組鐵芯上,兩端的線圈數量十分關鍵,線圈數量的比值就是兩側電壓的放大大小;若想從 110V 變成 5V,則為輸入的線圈圈數是輸出的 22 倍,那麼輸出的電壓就會減少 22 倍。

在變壓的過程中,輸入端的線圈與鐵芯就像一顆大電磁鐵,讓磁通量通過鐵芯,將能量傳到輸出線圈,輸出線圈則會因為電磁感應,產生相同頻率但電壓不同的交流電,完成降壓。只要再把 5V 交流電轉成 5V 的直流電,就可以幫手機充電啦。

過去的線性充電器最大的特徵就是體積大、充電時還會發熱。圖/Envato Elements

聰明的你應該已經想到,提升充電功率的關鍵就在於——線圈數量

如果希望變壓器的輸出提升,必須在維持線圈比值的情況下,等比例增加輸入與輸出端的線圈數量;更多的線圈就意味更多的磁通量能透過鐵芯傳到另一端,更多的能量也隨之傳遞。但如此一來,早已被塞滿的變壓器,為了塞進更多的線圈就只能繼續增加充電器的體積,還會因能量耗損放出大量的熱。

-----廣告,請繼續往下閱讀-----

若想提升功率,又能減少電感器大小,最好的方法就是——增加工作頻率

透過「高頻變壓器」的幫忙,將原先市電 60 赫茲的頻率提升到 50K 赫茲,被轉為高頻的交流電再進行變壓,如此一來就能降低能量損耗,所需的電感器大小也會大幅降低。

然而,要注意的是,要想改變交流電的頻率,是無法直接轉換的。要先將交流電轉為直流電,再經由特殊的「開關」電路將直流電轉為特定頻率的交流電;這類型的充電器就被稱為「開關充電器」,現在的智慧型手機就是使用開關充電器。

救世主材料

但隨著手機電池容量不斷增加,手機充電效率的需求永無止盡,充電器又開始一個比一個大。

-----廣告,請繼續往下閱讀-----
智慧型手機所使用得充電器為開關充電器。圖/Envato Elements

不是繼續提升工作頻率就好了嗎?那是因為,我們遇到了「矽的極限」。

開關電路中將直流轉為交流的關鍵,就是我們熟知的半導體元件電晶體。裡頭的原料過去都以我們熟知的矽為主,然而以矽為材料的半導體工作頻率極限僅在 100k 以下,如果超過 100k,轉換效率會大幅下降,更有嚴重的能量浪費問題。

解決的方法就是:尋找下一個材料。沒錯,就是最近最夯半導體的——氮化鎵(GaN);其能隙是矽的 3 倍,電子遷移率為 1.1 倍,崩潰電壓極限則有 10 倍。

顯然,氮化鎵擁有更良好的電特性,還能在高頻、高電壓的環境下工作,使用氮化鎵為材料的快充頭因此誕生!氮化鎵最高的工作頻率是 1000K,是矽的 10 倍,除了讓變壓器的電感線圈能再次縮小,連帶縮小充電頭的體積;亦能降低能耗並減少電容與散熱器的大小,成為好攜帶的快充豆腐頭。

-----廣告,請繼續往下閱讀-----

到這裡,或許你會想問,提高充電效率應該不只有換材料一條路吧?還會有更快的充電技術出現嗎?

當然會的;和矽相比,氮化鎵仍有很大的研究性。

而且不僅手機,就以現在市面上正夯的電動車來說,也需要快充技術支援,來減少充電時所需要的時間;為應對龐大的充電市場需求,綜觀整個半導體材料的發展歷史,已經有許多材料問世。除了氮化鎵,還包括矽、鍺、三五族半導體「砷化鎵」(GaAs)、「磷化銦」(InP),以及化合物半導體「碳化矽」(SiC);在能源產業中,又以氮化鎵和碳化矽的發展最令人期待。

電動車也需快充技術的支援,來縮短充電所需時間。圖/Envato Elements

氮化鎵與碳化矽的未來與挑戰

不論以技術發展還是成本考量,這兩位成員還不會那麼快取代矽的地位。

-----廣告,請繼續往下閱讀-----

兩者應用的範圍也不完全相同。氮化鎵擁有極高的工作頻率,在高頻的表現佳,並且耐輻射、耐高溫,除了運用在充電技術內外,在高功率 5G 基地台、航空通訊、衛星通訊也都將大展身手。碳化矽則在高溫及高電壓下擁有良好的穩定性,尤其在未來電動車快充的需求增加,1000 伏特以上的充電需求,將使得僅能承受 600 伏特的矽半導體無法負荷,預期將接手電動車中的關鍵元件。

兩者看來潛力無窮,但目前在製程上仍需克服許多問題;如:材料介面的晶格缺陷及成本考量;在它們能像矽材料應用在各方領域之前,還需要投入更多研發能量。

但令人興奮的是,駛向下個半導體世代的鳴笛聲已經響起,不論是台積電、晶圓大廠環球晶,國內外各家半導體大廠,都早以搭上這班列車。不同的材料也意味著,從磊晶、製程、元件設計、晶圓製造都將迎來改變,陸續也有廠商開始使用 AI 輔助設計氮化鎵半導體元件。

未來半導體與科技產業將迎來何種轉變,就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----
半導體未來的發展令人興奮!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1214 篇文章 ・ 2091 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。