0

0
3

文字

分享

0
0
3

不只是災難掃把星,你不知道的彗星事

臺北天文館_96
・2016/10/31 ・7232字 ・閱讀時間約 15 分鐘 ・SR值 571 ・九年級

-----廣告,請繼續往下閱讀-----

文/胡佳伶|任職於臺北市立天文科學教育館

1997年來訪的海爾波普彗星帶給大家許多驚喜。圖 / http://www.astropix.com/HTML/SHOWCASE/970401.HTM
1997 年來訪的海爾波普彗星帶給大家許多驚喜。圖 / http://www.astropix.com/HTML/SHOWCASE/970401.HTM

編按:新海誠的動畫電影《你的名字》中那顆關鍵的彗星,緊緊牽動著整部片的劇情發展。人類對於彗星的觀察與想像,很早就出現在中外古代的史書記載中,直到今天我們仍然對於這個拖著長長尾巴的星體有許多好奇。在這篇文章中,我們將從歷史、來源和結構帶你重新認識彗星。

大家常說天文愛好者有四個畢生一定得要看到的天文奇觀:日全食、流星雨、極光、大彗星,不知道您親眼目睹了幾個?

彗星的歷史

古時不論中外,彗星皆被當作不祥之物,認為它預兆著天災人禍,這從中國古代對彗星的其它稱呼:孛星、星孛、妖星、異星、蓬星、長星……便不難看出。中國對於彗星的歷史紀錄悠久而詳細,在《准南子.兵馬訓》一書中「武王伐紂……彗星出,而受成殷人以柄。」便記載著公元前十一世紀的一次彗星天象;《春秋》魯文公十四年「秋七月,有星孛入於北斗。」是有確切年代可考的最早記載,更是世界上關於哈雷彗星的最早史料(西元前 613 年);《晉書·天文志》「彗星所謂掃星,本類星,末類彗,小者數寸,長或經天。彗星本無光,傅日而為光,故夕見則東指,晨見則西指。在日南北皆隨日光而指,頓挫其芒,或長或短。」則是首次對彗星的性質、型態和彗尾的成因有了比較詳細且正確的描述。

古人對於彗星之戒慎,更可以從長沙馬王堆三號所出土的西漢古墓帛書看出,內有 29 幅各種彗星形態,記錄了古代所觀測到各種不同形狀的彗核與彗尾。

-----廣告,請繼續往下閱讀-----
馬王堆帛書中的彗星臨摹圖。圖 / http://www.phys.ncku.edu.tw/~astrolab/e_book/special_topics/essays/comets/images/ma_wang_dway.jpg
馬王堆帛書中的彗星臨摹圖。圖 / 成功大學物理學系

西方對彗星本質的解釋,始於亞里斯多德的 宇宙論,他認為彗星是種大氣現象。1543 年哥白尼(Nicolas Copernicus)出版《天體運行論》提出日心說,卻也未對彗星提出新見解。直到 16 世紀末期,麥可.麥斯特林(Michael Maestlin)及第谷.布拉罕觀測 1577 年出現的大彗星時,才首次注意到彗星在天空移動的角速度要比月亮還要慢上許多,證明彗星距離比月球還來得遠,也就是說彗星並非屬於亞里斯多德主張的地球領域,而是在以太構成的天域之中。

西方歷史中,彗星與災難的連結也不遑多讓。 著名的貝葉掛毯記載著西元 1066 年,英格蘭國王哈勒德二世被告知哈雷彗星的出現,預兆黑斯廷斯戰役諾曼征服英格蘭。即使到了現代,彗星仍常被部份媒體或宗教渲染成災難和世界末日的徵兆, 1998 年海爾波普彗星接近地球,天文迷雀躍歡騰之際,卻有美國加州天堂之門教派 39 名教徒集體自殺。但其實每年前來拜訪地球的彗星有數十顆之多,只要對這太陽系天體稍有了解,應該會覺得能遇到大彗星造訪這樣難得的天象, 並非災難,而是件幸運的盛事!

出現在貝葉掛毯上的哈雷彗星。圖 / By Myrabella, Public Domain, wikimedia commons.
出現在貝葉掛毯上的哈雷彗星。圖 / By Myrabella, Public Domain, wikimedia commons.

說文解字

彗星之名,其來有自,不論中西皆然。「彗」的本意就是帚,在《說文》中便記載著:「彗,埽竹也。」在甲骨文中,字01是象形字,象徵掃帚之形。在篆文中,字02為會意字,上方的字03是指細枝茂盛的草,下方的字04則是手持的意思,其造字的本意是用一種細枝茂盛的乾草紮成的掃帚,這也就是為什麼彗星俗稱為「掃把星」或「掃帚星」了!

西方語言中的「彗星」一詞(如英語:comet;法語:comète;德語:Komet), 源自拉丁文的 cometes,這是拉丁化的希臘文 κομήτης(komētēs),意為「長髮」,而κόμη(komē)這個字的本意就是頭髮的意思。希臘哲學家亞里斯多德是第一位使用κόμη/κομήτης 這個字,來形容他看見的「長頭髮的星星」。彗星的天文學符號Image 3,也清楚地描繪了它的外觀,由小圓盤象徵彗核,和三個突起的短線段象徵彗尾。

-----廣告,請繼續往下閱讀-----

彗星的來源與分類

彗星是太陽系形成之初所遺留下來的小天體。約 46 億年前,一團巨大的分子雲因重力坍縮,中央溫度升高達數百萬度,點燃核融合反應形成原恆星,周圍雲氣因自轉在赤道方向形成環星盤。環星盤中距太陽越近溫度越高,熔點較高的物質逐漸聚集形成了類地行星。距太陽越遠溫度越低,氣體的逃脫速度較慢,外圍行星核心周圍包覆了熔點較低的物質,核心重力吸附原始雲氣中最豐富的氫和氦,形成外圍巨大的類木行星。環星盤最外圍溫度已低至水的熔點以下,物質密度相當低,不足以形成行星,這些剩餘的岩石、冰塊組成的太陽系小天體,形成環帶狀分布,稱為古柏帶(Kuiper Belt)。在太陽系形成早期,環星盤中眾多小天體,可能因受到大行星的重力彈射,被拋向太陽系外圍,形成球狀分布的歐特雲(Oort Cloud)。

歐特雲的概念是 1950 年由荷蘭天文學家 Jan Oort 所提出,可能有 1000 億到 2 兆個冰體組成的彗星核,以球殼狀分布在距離太陽 5,000 至 100,000 天文單位處。有時當巨大的分子雲或恆星經過太陽系附近, 或是與銀河盤面的潮汐作用,會使歐特雲外圍天 體受到擾動進入太陽系內部,形成所謂的長週期彗星。這些彗星有著極為狹長的橢圓軌道,要好幾千年到好幾億年才能繞行太陽一圈,且軌道面非常凌亂,平均散落在各個方向,這一類的彗星軌道也可能是雙曲線或是拋物線,終其一生只造訪內太陽系一次。2004 年發現的「賽德娜」(Sedna), 週期長達 10,500 年,軌道非常橢圓,近日點和遠日點分別是 76 和 1,000 天文單位,極有可能是來自於歐特雲內側的天體。

週期短於 200 年的短週期彗星,軌道傾角幾乎都集中在黃道面 30 度內,它們來自於約 30-55 天文單位處,海王星外圍呈環狀分布的古柏帶,因受重力擾動進入內太陽系,預測有數十萬個大於 100 公里的冰質天體及上兆個小彗核散布此處。

古柏帶與歐特雲的相對關係(想像圖)。圖 / http://upload.wikimedia.org/wikipedia/commons/0/03/Kuiper_oort.jpg
古柏帶與歐特雲的相對關係(想像圖)。圖 /By NASA, Public Domain, wikimedia commons.

大部分的彗星都以安全的距離通過太陽附近,像是哈雷彗星與太陽的最近距離就有 8 千 9 百萬公里,但有些彗星的近日點非常接近太陽,可能近至只有數千公里,這類的彗星被稱為「掠日彗星」(sungrazing comet)。在太陽強大的潮汐力影響下,小彗星可能蒸發殆盡,大彗星也難逃粉身碎骨的命運。軌道類似的掠日彗星,可能源自於一顆大彗星母體。德國天文學家克魯茲首度注意到 1843 年、1880 年及 1882 年的掠日彗星共通點,指出這些彗星可能來自於 1066 年解體的一顆大彗星碎片,稱為「克魯茲族彗星」(Kreutz Sungrazers)。1965 年明亮的池谷.關彗星,和  2011 年掀起許多驚呼的 Lovejoy(C/2011 W3)彗星,也都是克魯茲族彗星成員。

-----廣告,請繼續往下閱讀-----

2013 年 11 月 28 日通過近日點的C/2012 S1 ISON 彗星,與太陽表面的距離僅 110 萬公里,天文學家莫不希望它能像 Lovejoy 彗星(其近日點距離據太陽表面約 14 萬公里)一樣,能順利在通過近日點後存活,成為耀眼明亮的大彗星!自 SOHO 太陽觀測衛星(Solar and Heliospheric Observatory) 升空以後,業餘天文愛好者靠著檢查 SOHO 的影像,在電腦前就能發現掠日彗星,臺灣的蔡元生先生就曾在 2004 年及 2005 年分別發現兩顆 SOHO 彗星呢!

2011年來訪的Lovejoy彗星是顆非常明亮的掠日彗星。圖 / http://www.skyandtelescope.com/observing/home/136099108.html
2011 年來訪的 Lovejoy 彗星是顆非常明亮的掠日彗星。圖 / skyandtelescope

彗星不僅保存了 46 億年前太陽系形成的早期歷史,它所攜帶的水冰和有機物極有可能為早期的地球帶來生命的起源,因此彗星的研究是行星科學中相當重要的課題。

彗星的結構

彗星的結構(經修改加上中文)。圖 / http://spot.pcc.edu/~aodman/GS%20107%20web/outerobject/comet%20and%202%20tails.jpg
彗星的結構(經修改加上中文)。圖 / spot.pcc.edu

彗星的結構主要可以分為三部分:彗核彗髮彗尾

彗核是彗星遠離太陽時,唯一存在的部分,這個小小的冰凍核心,大小從幾百公尺到幾十公里不等,目前紀錄上最大的彗核,是約四十幾公里的海爾‧波普彗星。1950 年 Whipple 提出的「髒雪球模型」(Dirty Snowball Model),認為彗核主要是由冰雪(水、一氧化碳、二氧化碳、氨、甲烷)和灰塵(矽化物、金屬)組成,此外彗核蘊藏著許多有機物,如甲醇、氰化氫、甲醛、乙醇、乙烷等,還有許多複雜分子,如長鏈狀的碳水化合物及胺基酸存在。彗核反照率非常低,約只有 0.04 左右,可以說是太陽系內最黑暗的天體,接近太陽時彗核表面溫度升高,易揮發的物質昇華噴發產生噴流,因此不易直接觀察,目前只有數艘太空船曾近距離觀察彗核。其本身的重力並不足以使之形成球狀,因此大部分都呈現和小行星一樣的不規則形。近距離觀察彗星發現,表面是岩石及塵埃所覆蓋的薄殼,大部分的冰可能都藏在彗核內部。

-----廣告,請繼續往下閱讀-----
太空船曾近距離觀察彗核的形狀及大小(經修改加上公制單位。圖 / http://minsex.blogspot.tw/2010/11/fab-five.html
太空船曾近距離觀察彗核的形狀及大小(經修改加上公制單位。圖 / http://minsex.blogspot.tw/2010/11/fab-five.html

當彗星接近太陽到約 5 天文單位,太陽 的熱使彗核的冰昇華為氣體,形成一團包覆在外圍的球形大氣層,稱為彗髮,彗髮會隨彗星接近太陽變得越來越大,直徑可達數十萬到數百萬公里。彗髮包含了中性分子及灰塵,彗核中的氣體母分子(CH4、 CO2、NH2、H2O)接近太陽時被釋放出 來,生命週期短暫不易觀測,這些母分子 因光解離作用產生第二代和第三代的分子 (CN、C2、C3、CH3、NH3、OH),生命週期長達數十萬到數百萬秒。圍繞在彗髮外圍,還有由氫原子雲氣所形成的龐大 包層(hydrogen envelope,halo),由於氫 原子輕、擴散速度快,其大小可達到數千萬公里,其波長為 Lyman-alpha 譜線的 1216 Å,僅太空望遠鏡的紫外波段影像可見。

太陽光的輻射壓和高速太陽風粒子, 將彗髮的物質吹向背對太陽的方向,形成 長長的彗尾,這也是彗星最迷人的部分。 彗星的彗尾有兩種,一種是塵埃尾(dust tail),一種是離子尾(ion tail),這兩種彗尾的外觀、成分和形成原因都不太一樣。

1997年海爾‧波普彗星的塵埃尾與離子尾相當明顯。圖 / http://commons.wikimedia.org/wiki/File:Comet_Hale-Bopp_1995O1.jpg
1997 年海爾.波普彗星的塵埃尾與離子尾相當明顯。圖 / http://commons.wikimedia.org/wiki/File:Comet_Hale-Bopp_1995O1.jpg

黃白色的塵埃尾瀰散而彎曲。富含塵埃的彗星產生各種不同大小的塵埃,塵埃受太陽重力與太陽光壓影響,由於萬有引力正比於質量(~體積,塵埃半徑的三次方),輻射光壓正比於截面積(塵埃半徑的平方),因此越大的塵埃其向內的萬有引力大幅抵銷了向外的輻射光壓,越小的塵埃所受萬有引力較小,所以受到向外的淨力反而較大(如下圖),被推向較外圍;且根據克卜勒第三運動定律,距離太陽愈遠,塵埃運動速度也越慢,因此塵埃尾常呈扇形而瀰散,當彗星接近太陽時,扇形角度甚至 可超過 90 度。塵埃尾大致上背離太陽,但隨著彗星前進, 塵埃會被留在軌道後方,因此塵埃尾會彎向軌道前進的反方向。塵埃顆粒因反射和散射太陽光呈現黃白色,另外也受太陽光加熱發出紅外線,其長度可達 106 -107 公里。

大小不同的塵埃,受到向內的萬有引力和向外的輻射光壓的大小差別,越小的塵埃所受到向外的淨力越大(a為塵埃半徑)。敘述相反?!(我覺得沒有啊,是”向外的淨力”較大,我改了內文的文字了,這樣會比較容易理解嗎?)。圖
大小不同的塵埃,受到向內的萬有引力和向外的輻射光壓的大小差別,越小的塵埃所受到向外的淨力越大(a為塵埃半徑)。圖/《臺北星空》提供

藍色的離子尾狹長而筆直,方向則永遠背向太陽。 離子尾的成因是彗髮的中性物質經過太陽風的光解離游 離作用,形成離子態的 H2O+ 、CO+ 、N2+ 、CO2+ 、OH+ , 這些離子和電子共存呈電漿狀態,因此也被稱為電漿尾(plasma tail),長度可達 107-108 公里。離子尾在可見 光主要的發光物質是波長約 4273 Å 的 CO+ ,這也是離子尾常呈藍色的原因。離子尾指向沿太陽磁力線方向背離 太陽,與軌道方向無關。太陽的劇烈活動如日冕物質噴發,在太陽風磁場拉扯下,有時會造成離子尾的分叉、 斷裂、再生等現象。

-----廣告,請繼續往下閱讀-----
鹿林彗星的離子尾產生斷裂的現象(紅圈處)。圖 / http://www.fototime.com/%7B9C1CC635-B45B-4B04-811D-802DC4DDFFAD%7D/picture.JPG (Ernesto Guido、Giovanni Sostero、Paul Camilleri,http://remanzacco.blogspot.com)
鹿林彗星的離子尾產生斷裂的現象(紅圈處)。圖 / http://www.fototime.com/%7B9C1CC635-B45B-4B04-811D-802DC4DDFFAD%7D/picture.JPG
(Ernesto Guido、Giovanni Sostero、Paul Camilleri,http://remanzacco.blogspot.com)

有時彗星的塵埃尾看起來反而朝向太陽,稱為「逆尾」(anti-tail)。彗星較大且重的塵埃,比較不受太陽輻射光壓影響被推向背離太陽,反而留在軌道後方。若 地球通過彗星軌道平面附近,因地球視角產生的幾何投影效應,塵埃尾看起來便朝向太陽。有時候彗核表殼破裂,物質從縫隙向外噴發形成的噴流,恰巧在向著太陽 的那一面,也會形成真正的逆尾。歷史上曾出現明顯逆尾的彗星包括 1957 年的 Arend-Roland 彗星、2007 年的海爾波普彗星(C/1995 O1 Hale-Bopp)、2009 年的鹿林彗星 (C/2007 N3 Lulin),以及 2013 年的泛星彗星(C/2011 L4 PANSTARRS)。

逆尾的成因。圖 / http://spaceweather.com/swpod2009/27feb09/tosar4.jpg?PHPSESSID=vnd799uc8out792pvma1bh38e6
逆尾的成因。圖 /spaceweather.com 
逆尾的成因。圖
逆尾的成因。圖/《臺北星空》提供。
2009年的鹿林彗星有非常明顯的逆尾(左側),右側是背向太陽的離子尾。圖 / https://en.wikipedia.org/wiki/File:C2007N3Lulin2panel_brimacombe.jpg
2009 年的鹿林彗星有非常明顯的逆尾(左側),右側是背向太陽的離子尾。圖 / By Joseph Brimacombe, Cairns, Australia, CC BY 2.5, wikimedia commons.

彗星留在軌道上的塵埃,還會帶來另一場驚喜!當地球通過彗星軌道附近,軌道上的殘骸受地球重力影響,短時間內大量掉落地球大氣層,就會形成流星雨,若正逢母彗星回歸後幾年內,流星雨有可能特別壯觀。造成獅子座流星雨的母彗星是週期 33 年的 55P/Tempel-Tuttle, 1998 年的回歸就造成了之後數年的獅子座流星雨大爆發,相信大家對於 2001 年 ZHR 值達數千顆的獅子座流星雨都還印象深刻。

流星雨的成因與彗星有關。圖 / http://tamweb.tam.gov.tw/v3/tw/item_img/8/comet_meteor.jpg
流星雨的成因與彗星有關。圖 / 台北市立天文科學教育館

彗星的命名

彗星是極少數可以用發現者名字命名的天體(小行星的命名權雖然屬於發現者,但卻不能以發現者的名字命名),臺 灣第一顆發現且命名的彗星是在 2009 年來訪的 C/2007 N3 Lulin 鹿林彗星,由中央大學鹿林天文台所發現。天文愛好者若在夜空中發現可疑的模糊天體,必須確認並非其他的可能性(如亮星的鬼影、昏暗的星群等),並以第二台觀測儀器確認,將所見到的影像每隔 15 分鐘或半小時記錄下來,確認其是否有在背景星空中移動,另外可以使用CBAT(中央天文電報局, Central Bureau for Astronomical Telegrams)的彗星辨認程式(comet-identification program)確認觀測天區是否有任何已知的小行星或彗星,如果可能的話,請有經驗的彗星觀測者協助確認,便可以將詳細的觀測記錄通報 CBAT

在有系統性的命名規則之前,彗星的命名有幾種不同的原則。像是二十世紀前,大部分的彗星僅簡單地以出現的年份或加上月份為名,像是 「1680 年大彗星」(C/1680 V1,Kirch’s Comet)、 「1882 年 9 月大彗星」(C/1882 R1,great September comet of 1882)、和「1910 年白晝大彗星、1910 年 1 月大彗星」(daylight comet of 1910、Great January Come t of 1910)等等。而在哈雷計算出 1531、 1607、1682 年造訪的彗星其實是同一個天體,並成功預測它在 1759 年的回歸之後,這顆彗星就被命名為「哈雷彗星」(Halley),第二顆和第三顆被確認的週期彗星——恩克彗星(Encke)和比拉彗星 (Biela),也同樣是以計算出軌道的天文學家,而非當初的發現者命名。

-----廣告,請繼續往下閱讀-----

至二十世紀早期,以發現者名字為彗星命名已非常普遍,直至今日皆然,彗星名稱至多可以有三位獨立發現者的名字,像是海爾波普彗星(C/1995 O1 Hale-Bopp)就是以兩位獨立發現者 Alan Hale 與 Thomas Bopp 來命名,另外以著名的彗星獵人麥克諾特(Robert H. McNaught)命名的彗星就已經超過 50 顆。近年來,許多彗星是由天文計畫或大型儀器所發現,便會以之命名,像是 PanSTARRS 彗星是由泛星計畫(Panoramic Survey Telescope And Rapid Response System,Pan-STARRS)發現。

1995 年以前,除了以發現者的姓名為彗星命名之外,另外也會以發現的西元年份,加上代表當年發現順序的小寫英文字母,給予彗星暫時性名稱,像是 1969i Bennett 彗星,就是 1969 年第九顆被發現的彗星。一旦軌道確定之後,則會以通過近日點的年份和代表順序的羅馬數字給予彗星永久名稱,像是 Bennett 彗星是 1970 年第二顆通過近日點的彗星,因此它的永久命名是 1970 II。如果一 年裡被發現的彗星不只 26 顆,這時便會在英文字母後面加上阿拉伯數字繼續編號,像是在 1989 年 的彗星編號就達 1989h1 之多。

但這套命名系統存在著一些缺陷,像是歷史上 的彗星由於缺乏軌道元素而在永久命名上會有些困擾,於是 1994 年 8 月 24 日於荷蘭海牙舉行的國際天文聯合會(IAU)大會中,決議修改舊有的彗星命 名規則,並自 1995 年開始使用新的彗星命名規則。 彗星在一年中以每半個月為單位使用英文大寫字母 表示被發現的時間,略過字母 I 和 Z(詳下表):

慧15

再加上數字表示該時段內被宣布發現的順序(這和小行星的命名規則雷同)。因此像是 C/2012 S1 ISON 彗星就是在 2012 年 9 月下半月第一顆被發現的彗星。另外還會依彗星的性質在名字加上前綴標示如下:

-----廣告,請繼續往下閱讀-----

慧16

如果彗星被觀測到回歸,或是經由觀測通過 遠日點確定其週期性,則會在 P/ 或 D/ 前冠上一個由國際天文聯合會小行星中心(MPC)所指定的官 方序號,例如 1P/1682 Q1 為哈雷彗星、3D/1832 S1 為比拉彗星。如果彗星分裂成好幾個碎片,則在名字後面加上 -A, -B,… 來區分每個碎核。


61cover

 

本文轉載自台北市立天文館期刊《臺北星空》第 61 期,2013 年秋季號,點此看線上 pdf

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

2

5
3

文字

分享

2
5
3
披著喜劇外皮的警世寓言:《千萬別抬頭》背後的科學真相
PanSci_96
・2022/01/06 ・3626字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

2021 年底在 Netflix 上架的《千萬別抬頭》(Don’t Look Up)講的是一個彗星撞地球的故事,但這並不是一部普通的科幻災難片,而是帶有黑色幽默的諷刺電影,用來嘲諷拒絕科學、對科學冷漠的社會大眾。雖然製作團隊原先是想諷刺那些否認全球暖化的言論,但在 COVID-19 疫情肆虐的現在,恰巧也能影射抵制口罩和疫苗的行為、煽動對立的政治操作,以及人們對於社交媒體的過度依賴。即使整部電影看似穿插了不少笑點,仍能從中感受到一股壓抑和無力感。

《千萬別抬頭》還請來了星光熠熠的卡司陣容,包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯、喬納.希爾和凱特.布蘭琪等多位奧斯卡得主。飾演美國總統的梅莉.史翠普更表示這是她拍過最重要的電影!

Don't Look Up Poster.jpg
《千萬別抬頭》的演員陣容十分豪華,主演群包括李奧納多.狄卡皮歐、珍妮佛.勞倫斯等人。圖/WIKIPEDIA

製作人亞當.麥凱(Adam McKay)希望這部電影能夠如實描繪科學事實以及科學家面臨的挑戰,於是,他邀請知名天文學家艾米.邁因策爾博士(Dr. Amy Mainzer)擔任電影的科學顧問。

邁因策爾博士現為亞利桑那大學月球與行星實驗室的教授、全球頂尖的小行星探測和行星防禦專家,以及 NASA NEOWISE(Near-Earth Object Wide-field Infrared Survey Explorer)計畫的首席研究員,負責監督這項史上規模最大的小行星探測計畫。在 2020 年 3 月,計劃內的一名天文學家成功發現了一顆新的彗星,並且將它命名為 NEOWISE,就跟計畫名稱一樣。

-----廣告,請繼續往下閱讀-----
Photo of Dr. Amy Mainzer
邁因策爾博士。 圖/NASA

科學家眼中的災難片

本片的科學顧問邁因策爾博士與北美天文學新聞網站《今日宇宙》(Universe Today)的編輯南西.阿特金森(Nancy Atkinson)聊了《千萬別抬頭》這部片,以及電影中的科學。

邁因策爾博士醉心於彗星和小行星的研究,所以她表示,自己非常喜歡隕石浩劫這類電影題材!非常開心能看到以彗星為主題的電影,也十分慶幸能夠成為災難電影的科學顧問。

雖然目前實際上沒有任何小行星或彗星運行在可能撞擊地球的軌道上,也沒有任何一顆即將撞上地球。但本片畢竟是科幻電影,需要設定一顆真的即將撞上地球的彗星,更像是「拋磚引玉」的功能。邁因策爾博士以「科學實在論」打造故事框架,希望觀眾重視科學家的警告,不再相信虛假的謠言。

而《千萬別抬頭》之所以涵蓋這麼多科學知識,是因為製作團隊對科學深感興趣,非常重視電影中的科學。因此電影畫面中,團隊設計的彗星既要符合電影的視覺需求,又要符合科學上真實彗星的樣貌。劇情不僅描述了發現彗星的過程,包括如何識別、確定彗星軌跡,還刻畫了科學家在探索未知事物時的反應。這不只描繪了科學家的形象,也告訴觀眾科學家是什麼樣的人,還有他們是如何傳播科學知識——有時很順利,但有時真的困難重重。

-----廣告,請繼續往下閱讀-----

這部電影讓《今日宇宙》編輯印象最深刻的是,科學家試圖警告災難,卻沒有被當一回事。若是套用在氣候變遷和傳染病肆虐等全球議題上,這種冷漠的態度似乎有點太寫實了。

邁因策爾博士也認為,這齣電影想強調人們對於科學新聞的態度。就像《今日宇宙》編輯平時所從事的科普工作,將複雜的概念轉化為淺顯易懂的文字是很困難的,因為科學家慣用的詞語與日常生活中的用詞完全不同。

例如,「不確定性」(Uncertainty)代表測量結果是一個可能的數值範圍,而不是指我們不確定自己測量的是什麼。在不同的情境下,詞語意思也會不一樣,確實有可能造成溝通障礙——這只是其中一個例子而已。

對邁因策爾博士來說,這部電影講述的是科學家如何傳播知識,如何讓眾人瞭解這些知識,還有如何根據科學做出明智的決定。這樣的題材很有挑戰性,因為這是一部喜劇,希望觀眾可以在笑著看完的同時,能夠更加理解科學家們多麼努力想做到這些事,「可是也請容許我們偶爾做不到。」

-----廣告,請繼續往下閱讀-----
陨石, 天空, 云, 火焰, 日落, 山, 人, 幻想, 数字艺术
《千萬別抬頭》希望透過反諷與幽默,能讓更多人抬起頭、睜開眼,開始關心環境議題。圖/Pixabay

幕後花絮:真正的 NEOWISE 計畫在做什麼?

其實,現實中新發現的 NEOWISE 彗星就是電影裡那顆彗星的原型。那是一顆長週期彗星,以驚人的速度從遠方朝太陽系飛來。邁因策爾博士在 2020 年 3 月發現 NEOWISE,7 月時它就接近地球了,就真的像電影中的彗星一樣,我們來得及反應的時間非常短。 

好消息是,我們已經開始監視那些能釀成全球性災難的近地小行星。以超過 1 公里的近地小行星來說,科學家已經找到了其中 90%,而且沒有一個會對地球造成威脅。

但長週期彗星就是另一回事了。比起小行星,長週期彗星相當稀有,但這不代表它們不存在。雖然科學家持續監測,還是無法推估總數到底有多少。在邁因策爾博士看來,任何物體接近地球的機率都不是零,我們需要獲得更多知識,才能做好準備,方法就是不斷尋找彗星和小行星,並且全面性地監測、追蹤。

邁因策爾博士也花了很多時間和導演討論小行星監測系統。當科學家們發現未知的小行星或彗星時,會透過這個系統比對所有已知的星體,如果確定是未知星體,系統就會公開觀測資訊,讓其他天文學家看見。從科學家的角度來看,他們努力地傳播科學資訊,但問題在於每個人對於科學的接受程度不同,這樣的矛盾在劇情中也有不少著墨。

-----廣告,請繼續往下閱讀-----

電影中的科學家發現彗星只是湊巧,他本身並不是研究彗星的專家,但製片團隊仍花了不少時間呈現他們識別彗星、確定軌道,以及將結果轉告其他科學家的過程。雖然這畢竟是電影,多少美化了實際情況,但還是希望能藉此讓觀眾看見科學論證的嚴謹之處。

Comet 2020 F3 (NEOWISE) on Jul 14 2020 aligned to stars.jpg
NEOWISE 彗星 或音譯尼歐懷茲彗星 ,又稱為 C/2020 F3,是一顆具有接近拋物線軌道的逆行長週期彗星。圖/WIKIPEDIA

科學講述事實,但藝術掌管對事實的感受

本片中有許多大咖演員,他們才華洋溢,而且都有自信能展現出科學家感性的一面。他們都熱衷科學、關心科學在日常生活中扮演的角色,也相信如果人們根據科學做決定,就能找到更好的問題解決方法。邁因策爾博士還花了很多時間陪演員練習台詞,因為劇本裡有很多艱澀的科學術語。這麼做還有另一個好處,就是當他們沒有在聽博士講話時,博士可以表達身為科學家的感受,供他們揣摩。

邁因策爾博士一直覺得科學和藝術之間的關係很有趣。科學告訴我們事情的本質,但藝術掌管我們對這些事情的感受。這部電影呈現出科學家和大眾對於科學的看法:科學家想改變社會,以做出基於科學的決定,但也必須設法讓大眾傾聽科學的聲音——這種矛盾和拉扯,就是這部電影的核心所在。

科學家有所隱瞞?他們更想說個沒完

那些拒絕科學的大眾普遍認為 NASA 或政府隱瞞了一些事情,可是所有科學家卻都說,如果他們發現太空有危險物體,絕對會爬上屋頂告訴全世界。

-----廣告,請繼續往下閱讀-----

如果換成是邁因策爾博士,她也會這樣做!當科學家學到新的酷東西時,就像一班人去了一趟很棒的旅行,回家後,他可能會讓其他人感到厭煩,因為他不斷提起旅行中的所見所聞。大多數科學家不會停止談論自身所學,因為他們熱愛這些知識,也希望其他人知道這些酷東西,或許他們就會因此愛上科學!

邁因策爾博士希望觀眾看完這部電影後,能夠理解科學家也是人,而且和一般人沒什麼兩樣。「作為科學家,我們經常遇到溝通方面的挑戰,但我們正在努力,而且我們不會放棄!」

圖/twitter @dobrienloml
所有討論 2

1

7
3

文字

分享

1
7
3
Just Look Up!小行星監測系統「哨兵」全面升級
EASY天文地科小站_96
・2022/01/03 ・2549字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳子翔|師大地球科學系、EASY 天文地科團隊創辦者

看到下圖密布於太陽系的小行星軌道,你是否會對小行星撞地球這樣的災難感到擔心呢?

對地球有潛在撞擊威脅的 2200 個小行星軌道。圖/NASA/JPL-Caltech

事實上面對小行星的撞擊風險,科學家也是嚴陣以待。畢竟即便是一顆直徑只有數十公尺的小行星撞上地球,其威力也足以摧毀一座城市。更何況還有許多直徑數百公尺,甚至數公里的近地小行星(near-Earth asteroids)存在。因此,對於這些小行星的觀測、研究與監控就顯得格外重要。

揪出藏身夜空中的小行星

對近地小行星監測的第一步,就是要先找出「它們在哪裡」。如同在戰場上比起收到敵方要發動攻勢的情報,更可怕的就是連敵人是誰、敵人在哪裡都還不清楚就被暗中襲擊了。

然而棘手的是,由於直徑小,反照率低的特性,小行星的亮度往往非常低,需要仰賴觀測性能強大的天文台才有辦法看見它們。但大型天文台的觀測視野卻通常很小,難以有效率的「掃描」廣大的夜空,而且這些天文台本來就有很多天文研究工作要進行,能撥給小行星觀測的時間也相當有限。

有鑑於這些因素,專門設立搜尋近地小天體的計畫與望遠鏡,就成了更合適的選項。像是林肯近地小行星研究小組(Lincoln Near-Earth Asteroid Research, LINEAR)、卡特林那巡天系統計畫(Catalina Sky Survey, CSS)以及泛星計畫(Pan-STARRS)等。它們扮演「小行星獵人」的角色定期掃視夜空,尋找移動中的可疑光點。目前透過這些計劃發現的近地小行星已經多達數萬個。

-----廣告,請繼續往下閱讀-----
https://upload.wikimedia.org/wikipedia/commons/7/7d/Neo-chart.png
每年由近地小天體搜尋計畫找到的近地小行星數量,藍色為林肯近地小行星研究小組,綠色為卡特林那巡天系統計畫,紫色為泛星計畫。圖/Wikipedia

用自動化的監測系統,找出小行星中的「危險份子」

發現這些小行星的下一步,就是由觀測資料計算出它們的軌道,並找出哪些小行星對於我們的威脅比較大。而面對數量龐大的近地小行星資料,NASA 噴射推進實驗室(Jet Propulsion Laboratory, JPL)早在 2002 年就開發出一套名為「哨兵(Sentry)」的監測系統,運用設計好的演算法,自動化的評估每個近地小行星撞擊地球的機率,並列出對地球威脅比較大的小行星名單。

以目前的速率來看,每年大約有 3000 個新的近地小行星被發現。而未來隨著更多更先進的天文台投入小行星搜尋的計畫,可以預期小行星的發現數量還會出現顯著的成長。因此就在不久前,NASA 的天文學家已發展出下一代更先進的小行星監測系統:哨兵 II(Sentry II),以因應未來更龐大的資料,同時也對已經使用了近 20 年的哨兵系進行補強。

監測系統升級上線,更完善的為地球把關

就如同各種應用程式都會進行版本更新,並在更新中修正上一個版本的缺點,這次哨兵 II 系統的升級,也從哨兵一代系統多年累積的經驗進行修正。

首先,第一代哨兵系統只有計算萬有引力對小行星軌道的影響,並沒有考量其他外力,例如來自太陽的輻射壓等等。這些力量雖然相對微小,但積少成多、聚沙成塔,長期下來也能影響小行星運行的軌道。另一方面,由於小行星本身會自轉,因此小行星的受光面和背光面會不停改變方向,如此一來熱輻射對小行星造成的力,也會隨著轉動而變化,這個效應被稱作「亞爾科夫斯基效應」(Yarkovsky Effect)。而哨兵 II 的演算法都有將這些因素納入考量,讓小行星的軌道估計算更為精準。

-----廣告,請繼續往下閱讀-----
亞爾科夫斯基效應的動畫。影片/NASA

再來,當小行星的非常靠近地球時,受到地球引力的影響,軌道以及速度都會大幅改變。其原理與太空探測器借助行星的引力來改變自身的軌道和加減速的「重力彈弓」效應相同。

然而太空探測器上面有很多精密的儀器提供科學家精準的定位,小行星卻只能透過地面觀測來估算出它的軌道,科學家其軌道掌握的精確度當然就比較差。而當小行星接近地球時,軌道的計算誤差就會被大幅放大。一個小行星飛掠地球時幾百公尺的誤差,到了下一次來訪時可能就成了幾千公里的差別了。而這幾千公里,就有可能是「撞上地球」和「安全通過」的差距。好消息是,由於在軌道計算上考量的因素更全面,演算法也更加精密,讓哨兵 II 即使在面對這樣的狀況,也能計算出更為精準的結果。

最後,哨兵 II 系統在計算小行星的撞擊風險時,判斷的方式也相較上一代系統更縝密。如同任何觀測與測量,小行星的軌道也會存在誤差,而哨兵 II 會從小行星軌道的誤差範圍內隨機取樣進行計算,以檢查小行星有沒有撞上地球的可能性。相比於第一代哨兵系統預先將有撞擊風險的軌道推算出來後才評估撞擊機率的做法,這樣的更新能降低漏網之魚出現的可能性。

流星, 小行星, 空间, 灾难, 彗星, 天文学, 陨石, 宇宙, 星星, 星系, 坠落, 天空, 科学
隨著科技不斷在更新換代,人類對小行星的認識越來越深入,但我們也仍未擺脫小行星撞擊的威脅。圖/Pixabay

持續探索可能的威脅

小行星、彗星等天體的撞擊一直以來都是很多科幻作品的題材。從科學的角度來看,太陽系中也的確存在非常多小天體,可能對地球上的生命構成威脅。雖然對於近地小天體的災害預防,當今的科學與科技還遠達不到萬無一失的程度,但過去三十年,人類對近地小行星的認識已有了顯著的進展。從搜尋小行星的各個計畫,到針對小行星的太空探測任務,以及本篇文章介紹的兩代哨兵監測系統,都帶給我們許多重要資訊,立下人類面對小行星撞擊風險時不可或缺的基石。

-----廣告,請繼續往下閱讀-----

延伸閱讀

參考資料

所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1436 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

7
1

文字

分享

1
7
1
整個宇宙都是我的動物園?——歡迎進入「天文化學」的思考領域
ntucase_96
・2021/09/24 ・3150字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 撰文|許世穎

本文轉載自 CASE 科學報整個宇宙,都是我的動物園——天文化學

整個宇宙就像是一座「分子動物園」,藉由研究的分子光譜,我們可以得知這分子的分佈、溫度等性質;而由於不同的分子有著不同的「習性」,我們還可以得知孕育這些分子的星際環境。

要了解星際環境,可以從透過分子開始!圖/ESA/Hubble, CC4.0

天文化學是什麼?

天文學是研究宇宙間天體的自然科學,除了一般大眾較為知道的「天文物理學」以外,宇宙擁有很多的面向,其中一個就是本文的主題:「天文化學」。

同樣都是研究「物質」的科學,物理學與化學卻是以不太一樣的方式來觀察這個世界。天文化學著重那些宇宙間「不同天體環境中的原子、分子、離子」等,研究它們的形成、分布、彼此之間的交互作用,或是與環境的交互作用。(接下來為了方便起見,我們將分子、離子等統稱為分子。)

天文學雖然是最古早的科學之一,但是天文化學這個學門,則要到 20 世紀中期才開始慢慢出現。理由很簡單:因為分子看不到呀!星星那麼大一顆,用望遠鏡都不一定能看清楚了,更何況是擺在眼前都看不到的分子呢?

-----廣告,請繼續往下閱讀-----

因此要研究宇宙中的分子,必須要靠特別的技術才行;其中,最重要的技術之一,就是「光譜學」。

研究宇宙中的分子,必須依賴「光譜學」才行。圖/envato elements

光譜(spectrum)是將光依照波長或頻率排列出來的圖案,像「彩虹」就是一種光譜,是太陽光依照不同頻率分開來的圖案。而光的範疇除了可見光以外,還有很多肉眼看不到的波段,例如無線電波、紅外線、紫外線、X光……等。

每一種分子都有著屬於自己的光譜,在地球上的我們,如果想要知道分子的光譜長什麼樣子的話,除了可以做實驗量測以外,更多的是用電腦做精密的模擬計算來預測。分子的光譜就像它們的「指紋」,就像警察會將採集到的指紋與資料庫比對,來得知這枚指紋是哪個人留下來的,天文學家則是將觀測到的光譜與資料庫比對,來得知遙遠星際的另一端有哪些分子,甚至是它們的含量、溫度等(圖 1)。

想要了解更多天文學家如何使用光譜學,可以參考:<把光拆開來看:天文學中的光譜>。

-----廣告,請繼續往下閱讀-----
銀河系中央的光譜,從中可以分析出很多不同的分子,甚至包括他們的含量、溫度、分佈等等。圖/ESO/J. Emerson/VISTA, ALMA (ESO/NAOJ/NRAO), Ando et al. Acknowledgment: Cambridge Astronomical Survey Unit [2]

為什麼宇宙是「分子動物園」

動物們往往能反應出當地的環境,舉例來說,看到河馬就知道那邊是有水有草的環境;看到櫻花鉤吻鮭就知道有水溫偏低的溪流 [3]。將宇宙視為分子動物園也是一樣的,觀察分子的分佈、含量,也可以讓我們回推物理環境。目前,我們已從星際間,觀測到了約 200 多種分子,這裡就介紹幾種常見的星際分子吧!

宇宙中有很多不同的分子,分佈在不同的地方(示意圖)。圖/EAS2020[4]

氫分子(molecular hydrogen, H2

宇宙中含量最高的分子,也是「分子雲」的主要成分。分子雲中每一立方公分大約有一萬個氫分子(104 cm-3)。

分子雲是恆星、行星誕生的地方,所以了解氫分子的分佈,能幫助我們研究恆星形成。同時,氫分子能與較重的元素反應,是許多化學反應的催化劑,產生其他的分子如一氧化碳(CO)、二氧化碳(CO2)、 氰基自由基(CN)等。

氫分子對天文化學來說相當重要,可惜在分子雲這種均溫只有零下 200 多度的環境,幾乎是不太可能觀測到(因為它是個對稱的分子,有興趣的讀者可以再進一步了解。)[5][6]

-----廣告,請繼續往下閱讀-----

一氧化碳(carbon monoxide, CO)

一氧化碳分佈在星際間低溫、高密度的區域。它是星際間含量第二高的分子。

比起氫分子,一氧化碳容易觀測太多了,所以天文學家更容易從一氧化碳的圖像,來得知分子雲的分佈。由於分子雲幾乎沒辦法用可見光直接觀測,早期的科學家根本不知道我們周邊有這麼多分子雲的存在,直到觀測了一氧化碳的圖像之後才大開眼界。 [5][6][7]

被戲稱為「中指星雲」的分子雲。圖/維基百科, CC0

氨(ammonia, NH3

氨也是很容易被觀測到分子。歷史上第一個觀測到的分子是就是氨。氨有許多譜線,而這些譜線的強度對於環境變化非常敏感,能對應到很多種不同的星際環境。對氨的觀測能讓我們更精確地回推出該處的環境狀況 [8][9]

宇宙中的環境變化太大了,不同的環境下化學反應可能會有很大的差異。宇宙間的發散星際雲(diffuse cloud)、密集分子雲(dense cloud)、恆星形成的熱原恆星核(hot core)等這些已經偵測到大量分子的區域,溫度分佈從 10 K~1000 K(約攝氏 -200 度到 +800 度)、密度從每立方公分一百顆粒子到十兆顆粒子(102 cm-3~1013 cm-3)都有!

-----廣告,請繼續往下閱讀-----

這裡接著再介紹幾種分子含量高的星際環境。

恆星形成區域(star-forming region)

分子雲內部高密度、正在形成恆星的地方。獵戶座 KL 星雲(Orion KL)是獵戶座大分子雲中,恆星形成最活躍的區域。在這裡有許多的「複雜飽和有機分子」出現,如:甲醇(CH3OH)、甲酸甲脂(HCOOCH3)等,也有一些長鏈的碳分子,如:氰基乙炔(HCCCN)[10]

獵戶座 KL 星雲。圖/NASA, ESA/Hubble [10]

彗星 67P/Churyumov-Gerasimenko (comet 67P/C-G)

在近幾年的觀測資料中,科學家在這裡看到了含量極高的氧分子(molecular oxygen, O2),這讓他們感到非常意外。因為氧分子在宇宙中很容易起反應、變成其它的分子,而在彗星這麼樣一個容易揮發的環境中,卻能有高含量的氧分子存在,代表這些氧分子很有可能是在彗星形成的時候,就已經存在周遭的環境中,並且冰封在彗星上 [11][12]

彗星 67P/C-G(右)以及它的光譜(左)。圖/ESA/Rosetta/NAVCAM [12], CC 3.0(右)A. Bieler et al. (2015) (左)[11]

天文化學所牽涉到的範圍很廣,橫跨了許多不同的領域。 整個宇宙就是一座「分子動物園」。天文學家觀察這些宇宙中的分子,來得知遙遠天體中具有什麼樣的環境。星際間也發現了許多有機分子,研究這些分子甚至能幫助我們理解生命的起源,這是現在天文化學研究的一個重點方向。

-----廣告,請繼續往下閱讀-----

參考資料

所有討論 1
ntucase_96
30 篇文章 ・ 1351 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。