Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

你在地球跳 0.5 公尺高,在 67P 彗星上會跳多高呢?—《丈量宇宙》

azothbooks_96
・2016/10/14 ・534字 ・閱讀時間約 1 分鐘 ・SR值 555 ・八年級

假定你在地球上能跳 0.5 公尺高,那麼你在月球、木星或某顆小行星上,各能跳得多高?成績取決於天體質量和大小。若是太小太輕的天體,恐怕你就永遠回不來了。

(點擊看大圖)在地球跳 0.5 公尺高,相對於在各天體跳高之高度一覽。/圖《丈量宇宙》
(點擊看大圖)在地球跳 0.5 公尺高,相對於在各天體跳高之高度一覽。/圖《丈量宇宙

在地球上跳高 0.5 公尺,相對等於:

木星上的 0.2 公尺

火星上的 1.52 公尺

月球上的 3 公尺

司琴星上的 520.38 公尺

火衛一上的 845.11 公尺

而要是在丘留莫夫-格拉西緬科彗星(67P/C-G,也就是羅賽塔和菲萊造訪的那一顆彗星上,以地球 0.5 公尺的力道一跳:

就再也回不來了。


《丈量宇宙》書封。

 

 

本文摘自《丈量宇宙:INFOGRAPHIC!一眼秒懂全宇宙!100 幅視覺資訊圖表,穿梭 140 億年星際太空》,漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
比人還早上太空的是牠們!—《丈量宇宙》
azothbooks_96
・2016/10/12 ・874字 ・閱讀時間約 1 分鐘 ・SR值 504 ・六年級

人類並不是唯一冒險上太空的物種,甚至連第一個都不是。

第一次有紀錄的太空飛行是在 1947 年進行。當時的先驅太空生物是果蠅,而且牠們還活著回來了。到了 1949 年,頭一批太空猴也尾隨升空,不過直到 1959 年,艾伯兒(Able)和蓓克(Baker)才成為第一批從太空飛行生還的猴子。

猴子 Baker 在 1959 年乘著 Jupiter IRBM 登上太空。圖/wiki
猴子 Baker 在 1959 年乘著 Jupiter IRBM 登上太空。圖/wiki

第一批熬過真正太空飛行情境的哺乳動物是 1951 年升空的小鼠。緊接其後是,牠們在 1951 年成功上了太空,接著在 1957 年完成第一趟繞軌飛行。1961 年 3 月,一群小鼠(加上青蛙、天竺鼠和昆蟲)領先人類數週,成為第一批成功繞行地球軌道的動物。

-----廣告,請繼續往下閱讀-----

1968 年 9 月,阿波羅 8 號升空前三個月,探測器 5 號頭一次搭載地球生靈繞月飛行並平安返回地球。船員包括一隻陸龜、一些酪蠅黃粉蟲

(點擊看大圖)地球物種進入太空大事紀。圖/《丈量宇宙》
(點擊看大圖)地球物種進入太空大事記。圖/《丈量宇宙》

地球物種進入太空大事記:

第一個上太空:果蠅(1947)

第一次完成繞地軌道航行:狗(1957)

第一批在太空生殖:水母(1991),約兩千四百隻升空,六萬隻返航。

第一批進入繞月軌道:陸龜、酪蠅、黃粉蟲(1968)

第一個登入月球:人類(1968)

人類的太空大事記:

1961-登上太空並完成繞地軌道飛行。

1968-進入繞月軌道並且登入月球。

在哺乳類之外:

1985-蠑螈成為第一個登上太空的兩棲類動物。

1994-加拿大底鱂成為第一種進行太空生殖的魚類。

2007-蟑螂在水母之後成為第二種在太空生殖的無脊椎動物。

2013-完成繞地飛行的守宮是第二種登上太空的爬蟲類。


getImage

 

 

本文摘自《丈量宇宙:INFOGRAPHIC!一眼秒懂全宇宙!100 幅視覺資訊圖表,穿梭 140 億年星際太空》,漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

0
0

文字

分享

0
0
0
人類的太空飛行紀錄—《丈量宇宙》
azothbooks_96
・2016/10/10 ・1675字 ・閱讀時間約 3 分鐘 ・SR值 544 ・八年級

圖/PEXEL
圖/PEXEL

人類第一次上太空(定義:抵達地表上空一百公里處)由蘇聯太空人尤里.加加林(Yuri Gagarin)在 1961 年實現。隨後第一位女性在 1963 年升空──蘇聯的范倫蒂娜.泰勒斯可娃(Valentina Tereshkova)。阿波羅時代登上太空的人數還完全稱不上高峰,到了和平號太空站與太空梭計畫時期,這個數字在 1980 和 1990 年代仍然逐步攀升。自從 2000 年 10 月 31 日起,人類就持續待在太空,棲身永久有人值班的國際太空站。

考量上太空要面臨的凶險,至今相關死亡案例所幸仍屬少數。1967 年,弗拉基米爾.科馬洛夫(Vladimir Komarov,蘇聯)重返時因降落傘故障墜地身亡。格奧爾基.多布羅沃爾斯基(Georgi Dobrovolski,蘇聯)、維克托.帕察耶夫(Viktor Patsayev,蘇聯)和弗拉季斯拉夫.沃爾科夫(Vladislav Volkov,蘇聯)都在 1971 年喪生,事發之前,他們才剛脫離禮炮 1 號太空站,準備返回地球。挑戰者號太空梭在 1986 年發射時爆炸,罹難組員包括:格雷格.賈維斯(Greg Jarvis,美國)、克麗斯塔.麥考利芙(Christa McAuliffe,美國)、羅納德.麥克內爾(Ronald McNair,美國)、鬼塚承次(Ellison Onizuka,美國)、茱蒂絲.雷斯尼克(Judith Resnik,美國)、邁克爾.史密斯(Michael Smith,美國)和迪克.斯科比(Dick Scobee,美國)。

2003 年,哥倫比亞號太空梭重返時由於隔熱磚受損解體失事,罹難組員包括:邁克爾.安德森(Michael Anderson,美國)、大衛.布朗(David Brown,美國)、卡爾帕娜.喬拉(Kalpana Chawla,美國)、勞蕾爾.克拉克(Laurel Clark,美國)、里克.哈斯班(Rick Husband,美國)、威廉.麥庫爾(William McCool,美國)和伊蘭.拉蒙(Ilan Ramon,以色列)。兩起太空梭事故都導致人類中斷太空飛行,投入調查起因。

-----廣告,請繼續往下閱讀-----

(點擊看大圖,後文有分解小圖)人類的太空飛行。圖/漫遊者文化提供
(點擊看大圖,後文有分解小圖)人類的太空飛行。圖/漫遊者文化提供

  • 以下圖片:綠色表示女性太空人(年份左側)、橘色表示男性太空人(年份右側)、黑色表示執行任務死亡的太空人;姓名、國籍|首開先例依國別註記。

1961~1980 年

1961 年人類首度登上太空

1963 年第一位女性太空人進入太空

1967 年首位太空人在執行任務過程身亡

1969 年美國阿波羅 11 號載著阿姆斯壯(Neil Armstrong)登月

1973 年太空實驗室啟用,直到 1979 年停用

(點擊看大圖)1961~1980 年宇航員到太空旅行的紀錄。圖/《丈量宇宙》
(點擊看大圖)1961~1980 年太空人到太空旅行的紀錄。圖/《丈量宇宙

1981 ~ 2000 年

1986 年挑戰者號發射時爆炸;和平號太空站啟用(至 2001 年停用,墜入地球大氣層)

1988 年國際太空站啟用

(點擊看大圖)1981~2000 年宇航員到太空旅行的紀錄。圖/《丈量宇宙》
(點擊看大圖)1981~2000 年太空人到太空旅行的紀錄。圖/《丈量宇宙

2001~2014 年

2003 年哥倫比亞號災難;楊利瑋成為中國首位登上太空的太空人

2012 年劉洋成為中國首位登上太空的女太空人

(點擊看大圖)2001~2014年宇航員到太空旅行的紀錄。圖/《丈量宇宙》
(點擊看大圖)2001~2014年太空人到太空旅行的紀錄。圖/《丈量宇宙

-----廣告,請繼續往下閱讀-----

《丈量宇宙》書封。

 

本篇圖文摘自《丈量宇宙:INFOGRAPHIC!一眼秒懂全宇宙!100幅視覺資訊圖表,穿梭140億年星際太空》,由漫遊者文化出版。

泛科學 2016 年 10 月選書。

-----廣告,請繼續往下閱讀-----
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。