Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

臉部超科學回春!光影、老化與比例對外觀的影響

MedPartner_96
・2016/09/16 ・4728字 ・閱讀時間約 9 分鐘 ・SR值 507 ・六年級

大家有不小心把自己畫成白鼻心,或者是臥蠶畫成眼袋過嗎?有畫鼻影的時候有不小心把自己畫成阿凡達的納美人過嗎?原本就方方的臉有沒有好像覺得越畫越寬?相信很多人都有這樣的慘痛化妝經驗,特別是在新手期 XD

6997798116_6963bfc972_z
臉中白一線的白鼻心。圖/Tony Hara@flickr

之前在分享過一些有關解剖結構的文章,希望大家對這些知識更有掌握,可以把妝化得更好。其實化妝品 「cosmetics」是希臘文的「kosm tikos」,翻譯過來大概是「裝扮巧妙,使自己更具魅力」。字首的「kosmos」的意思,就是裝飾。既然要裝飾成「某個樣子」,那你心裡面就不可能「沒有某個樣子」。對多數人來說,「某個樣子」通常代表「更年輕」、「更有吸引力」。以現在人的標準來看,更有吸引力通常代表「更立體」、「更精緻」的五官比例。

所以今天我想分享的是:

 1. 光影如何影響人臉的視覺效果
2. 人類的臉部老化過程——比較年輕的臉跟老化的臉的差異
3. 符合東方美學概念的臉部比例

-----廣告,請繼續往下閱讀-----

如果要保養,也必須知道到底哪些是可逆的,哪些是不可逆的。看懂之後就不用亂花錢囉!

累了嗎,我們聽首歌吧!痾,不是啦,先來看一下影片~片長兩分多鐘,大家看個三十秒就可以停了。

光線的顏色與明暗對人臉視覺上的影響

https://www.youtube.com/watch?v=uqTuo2yQBXM

從這部影片,你可以清楚看到,不同顏色、不同角度的光,對人臉在視覺上會產生很大的影響。如果全都是強光,沒有明暗,就不會有立體感。你想想看,這不就是化妝在做的事情嗎?另外你也可以知道,為什麼在某些餐廳、某些店家,照鏡子照起來就會特別好看?這除了鏡子的原因以外,光線的顏色跟角度也都有差喔!!!下次如果不小心又沈浸在某個讓自己看起來很瘦的鏡子前,趕快回想一下這篇文章,醒醒吧阿宅,這一切都只是幻覺啊!

-----廣告,請繼續往下閱讀-----

人臉自然老化的過程

從一個小蘿莉,長成花樣年華的少女、再到輕熟女、然後熟透,然後過熟(誤),慢慢步入中老年的過程,到底是怎麼回事呢?我們來看一下這支影片,一分鐘帶你走過女人臉部的八十年。

https://www.youtube.com/watch?v=tTBlFC-oAnw

人的臉部老化是「全面性的」,從皮膚、皮下脂肪、肌肉到骨骼,都有各自老化的過程。

臉部皮膚的老化

2

皮膚從外到內有很多層次,我們就由外而內說明:

-----廣告,請繼續往下閱讀-----

皮膚變薄:老化過程中,膠原蛋白跟彈性纖維變性,結締組織也會流失,所以皮膚就會變薄。老人的皮膚常常一擦到就破,就是這個原因。

皮膚鬆弛:皮膚變薄加上重力的影響,臉部皮膚就會呈現鬆弛。

皮膚粗糙:表皮的角質層因為角化異常,就會導致皮膚粗糙。

乾燥:青春期腺體分泌旺盛,但老了就功能下降。皮脂腺和汗腺分泌不足,無法形成正常的皮脂膜,皮膚就會乾燥。

-----廣告,請繼續往下閱讀-----

黑斑:正常的黑色素小體會均勻分布。但如果色素調節異常,就會出現局部的黑色素增加,產生黑斑或曬斑。

白斑:有時候某些黑色素細胞會退化,就會在它負責的區域產生一點一點的白斑。

老人斑:表皮細胞不正常的角化,會產生脂漏性角化症或俗稱的老人斑。

老年性紫斑:老年人血管及周遭的膠原蛋白跟彈性蛋白都減少,所以微血管變得脆、硬,很容易一碰撞就出現一大片的出血。年紀越大就越容易出現!

-----廣告,請繼續往下閱讀-----

大家要注意的是,上面有些事情是你可以阻止的,例如防曬;但有些就幾乎難以預防,只能順其自然。有些廠商會隨便宣稱他的東西有療效,聽聽就算,不要浪費錢。

臉部脂肪的老化

3

臉部在老化的過程中,脂肪會流失,另外也會伴隨著軟組織一起下垂,所以逐漸就從一個倒三角的 V 臉,變成一個正三角形的下垂臉了。年輕的女生常常在哭自己有嬰兒肥,你不知道那是甜蜜的負荷啊!等你老了,該有肉的地方沒肉,肉都垂到不該有的地方你就欲哭無淚啊……。

臉部肌肉的老化:張力增加

4

有句玩笑話,什麼是老男人:就是該軟的都硬了,該硬的都軟了……該硬的不硬,不該硬的血管啊、攝護腺啊通通都硬了。但肌肉這件事情更是老天爺的玩笑,四肢的肌肉常會因為老化萎縮,但臉部的表情肌反而會因為老化而張力增加……,經年累月的拉扯加上過強的肌肉張力,就會出現很多表情紋路。像是抬頭紋啊、魚尾紋啊、法令紋啊、皺眉紋之類的,讓我忍不住想起這首歌啊:如果說一切就是天意,一切就是命運,終究……(透露年齡…)。

臉部骨質的老化

5

大家可能比較難想像,骨頭這麼硬的東西也會變?其實骨頭是「活的」,隨時都有「生骨細胞」在製造新的骨質,也隨時有「蝕骨細胞」在吃掉老化的骨質。老了之後,製造新骨的能力低於蝕骨的能力,就會慢慢看到骨質流失了。在臉部常可看到眉骨被吸收、眼眶骨更凹陷,下頷角更往下垂等現象。可以對照骨骼圖看:

-----廣告,請繼續往下閱讀-----

6

年輕的臉 VS 老化的臉

所以一張年輕的臉,基本上會是:

1. 皮膚緊實、平滑
2. 肌肉張力不過強,沒有皺紋
3. 輪廓呈現一個倒三角形(inverted triangle face)

整張臉也不是只有一個大的倒三角,你可以把它拆解很多個,把整張臉用很多個倒三角來設計 。例如把整個臉當一個大的倒三角,或者眼睛一區、嘴巴下巴一區之類的都可以。 總之臉上可以區分成很多三角,但一定是倒三角 ,絕對不能是正三角 !不然就是老的臉……。

近年也有人提出好看的臉是大小兩個心形:

-----廣告,請繼續往下閱讀-----

7

不管是哪種,照著這樣的輪廓去化妝,或者是作為保養、治療的目標方向就對了。所以接下來的目標,就是讓他趨近倒三角,或所謂大小雙心的結構!我們能做的,就是光影的明暗效果,或者是立體效果。亮的顏色就是顯大,暗的顏色就是顯小。越立體你看上去就是小,越平面你看上去就是大。 要讓他變寬,就讓他平面化發展 ;要讓他看起來窄,就讓他立體化發展 。

這有點像是一個三角做圖法,你可以在臉上取兩個不會動的點,例如兩邊的眉尾,然後選定一個第三點去動作。不管是化妝還是整形。

8

像是上面這張圖,左邊的女生下巴就短了一點點,不管是用拍照角度、化妝或是整形拉長了比例,就變更好看了。

所以最好看的臉就是又小又精緻又立體。 大家想想看喔,如果你臉白,就會顯大。所以要在螢幕上,又白、看起來又小,那就必定要有立體的五官。有沒有這種人呢?有一個歷史上很標準的正妹:

8+9
1956 年(左)和1978 年(右)的奧黛麗赫本。圖/wikihuffingtonpost

但這只是一個美的典型,別忘了美是有很多很多種的喔!而赫本當然也抵擋不了老化的力量,大家可以觀察其中的變化。

符合東方美學的臉部比例:三庭五眼和各種黃金比例

大家可能會想知道,符合東方美學的臉部比例是什麼樣子?其實也是有些客觀的分析標準,有興趣的朋友可以看隆鼻懶人包第一集,有更完整的角度介紹。但這邊就先讓大家看個最基本的三庭五眼圖。

11

記住,整型是非必要的,化妝、髮型、微整形、手術都是可能的選項,當然要花你比較多錢,或承擔比較多風險的,就一定要想清楚喔!

同場加映:視錯覺原理在化妝與整形的應用

講到化妝或整形,就不能不知道「視錯覺原理」。它可以分成由感覺器官引起的「生理錯視」,以及由心理原因導致的「認知錯視」。詳細的視錯覺成因跟機制可以講到很複雜,但這邊先簡單說,基本上視錯覺原理就是個愚蠢的「人類自行腦補的故事」。

好啦,也不能這麼片面把人類當作這麼愚蠢啦~人類的認知功能是有限的,必須在很短的時間做出判斷,然後把認知功能專注放在重要的事情上,所以對於很多事情我們會傾向直接腦補……所以你就會出現錯覺。視錯覺廣泛出現在我們生活中,這邊我們舉幾個可能用得上的例子吧~

案例一:A 和 B 兩個長方形,哪個比較長?

12

其實這是兩個一模一樣的長方形。人在看兩個相同的長方形時,會傾向於把 A,擺成豎起來的這個看得更修長。所以可以在化妝時或穿搭時,設計一些豎長的線條,都會顯得比較修長。這道理很簡單,叫胖子穿橫條紋就是個悲劇不是嗎……。

案例二

13

A 和 B 其實是同一個人。只要把其中一部分地方遮住,只露出剩下的部分,人們就會腦補被遮住的畫面。所以不管在穿衣服還是化妝還是設計髮型的的時候,想辦法露出自己最瘦的地方,或者遮住自己最胖的地方,或者顯露出五官最立體的部分,遮住比較平或角度不好看的部分,大家就會把你腦補成又瘦又五官立體的正妹惹(無誤)。

案例三:這兩個女孩哪個比較高?

14

答案是一樣高。但大家都覺得戴帽子的那個高。這就是「視覺動線」的作用,這是一個利用「顯眼的視覺焦點」,大家就會把視覺動線往上拉,或者是往下拉,這個戴帽子的女孩就是因為你的視覺動線上移所以看起來高。當然也可以往左拉,或往右拉(但這類運用較少)。例如有個寬臉妹子,又同時帶了很亮眼的耳環,你在看她的時候,視線跟著耳環左右移動,恩,那就悲劇惹。所以如果你的臉部比例不是標準的三庭五眼,都可以利用這招,不管是用帽子、髮型、首飾等小心機做出效果喔~

案例四:哪條線比較長?

15

最後一定要介紹一下上港有名聲,下港有出名的「萊依爾錯視」。三根線明明一樣長,但在箭頭的作用下,B 顯得最短,A 顯得最長。

這個可以解釋非常多事情!!!在穿搭上這就是V領衫可以顯得臉小的原理。在臉型上,這就是 V 臉為什麼看起來臉小的原理。活用這個錯視,你可以搞出一大堆變化!一統自拍界指日可待啊哈哈哈哈哈!

今天這篇文章是希望讓大家知道,化妝跟整型都是可以很科學、很醫學的。有更多的知識,就可以用更低的成本,達到更好的效果。不會因為不懂成分,結果買了一堆可怕的產品毀掉自己的臉,如果要整形也不會因為搞不清楚狀況,接受了一個根本不適合你的手術。

另外也希望大家正確認知「老化」這件事情,但不是要大家害怕老化,然後趕快去亂買抗老產品。知道什麼是老化、理解老化的機制,接下來我們會慢慢找機會補上其他相關機制,告訴大家哪些對預防老化是「實證有效的」,哪些是「持續爭議中的」,哪些是「根本沒效不要再被騙的」。錢跟時間是你最需要掌控的。把這兩樣東西運用好,人生就會有餘裕。但要把錢跟時間運用好,其實是需要很多正確的知識啊!!!

所以拜託千萬不要隨便放棄治療,或者是手滑亂買東西啊……。腦袋空空,錢包就會空空,這是不變的真理啦!!!科學其實沒這麼難,希望大家卸下心防,讓我們幫助你輕鬆學習,然後實際應用在日常生活中~

看完這篇文如果覺得有幫助,趕緊用底下按鍵分享給所有好朋友吧!不傳的沒朋友啊啊!(不夠要好的就不用傳了,認真。因為化妝或整形就是一種競爭,如果大家都超正,就顯不出你的正了…科科)

助人省錢,功德無量,阿彌陀佛~~~

編按:愛美是每個人的天性,不過對你而言光是看滿架的化妝品、保養品,各種醫美產品就令你眼花撩亂,更別說還有玻尿酸、膠原蛋白、類固醇這些有聽沒有懂的名詞來搗亂嗎?如果你想要聰明的美,不想要被各種不實廣告唬得團團轉,那麼泛科學這位合作夥伴 MedPartner 美的好朋友,就是你我的好朋友。

本文轉載自MedPartner 美的好朋友

-----廣告,請繼續往下閱讀-----
文章難易度
MedPartner_96
49 篇文章 ・ 18 位粉絲
一位醫師用一年時間和100萬,夢想用正確醫美和保養知識扭轉亂象的過程。 Med,是Medicine,醫學的縮解。Med 唸起來也是「美的」。我們希望用醫學專業,分享更多美的知識。Partner則是我們對彼此關係的想像。我們認為醫師和求診者不只是醫病關係,更應該是夥伴關係。 如果您也認同我們的理想,歡迎和我們一起傳播更多正確的醫美知識。 我們的內容製作,完全由MedPartner專業醫療團隊負責,拒絕任何業配。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

6
0

文字

分享

3
6
0
Deepfake 辨偽技術如何在魔高一尺時,能道高一丈呢?——成大統計所許志仲專訪
A編編
・2022/01/26 ・3499字 ・閱讀時間約 7 分鐘

2021年末,小玉的「Deepfake 換臉事件」讓大眾正視 Deepfake 技術的濫用問題。  Deepfake 發展至今不只有造假技術在進步,辨偽也是:目前任職於成大統計所的許志仲老師,從 2018 年開始便在這個主題中專研,並於 2020 年發表相關研究結果,該篇文章起今已有超過 50 次的引用次數。「以這篇論文發表的期刊影響指數(Impact Factor,簡稱IF值)來說,這個引用數相對來說是高的,這代表 Deepfake 辨偽的議題開始變得重要,但研究的人可能沒那麼多。」

許志仲坦言,自己 2018 年研究 Deepfake 辨偽時,Deepfake 影片品質並沒有特別好。沒想到短短兩三年的時間,Deepfake 的效果就已經好到可能會造成問題了。

雙面刃的 Deepfake

Deepfake 技術起初是希望能藉由電腦產生各種不同的逼真圖片或影片,來因應特效製作或老照片修復之類的工作,而要產生逼真圖片或影片,有許多不同的方法都能達成這個目的,目前 Deepfake 最常使用的方法為 2014 年提出的「生成對抗網路(Generative Adversarial Network, 簡稱 GAN)」,透過生成網路與判別網路的對抗,產生逼真的圖片或影片,因此說到 DeepFake,通常都會說起 GAN。

「我們會說 Deepfake 就是 GAN,是因為就目前生成技術還是以 GAN 最好,當然也有新的方法正在發展,所以未來未必還是以 GAN 作為主體,可能用別的方法偽造,也能做得很漂亮。」

-----廣告,請繼續往下閱讀-----

許志仲也表示,Deepfake 的發展目標是正面的,技術本身是中立的,但使用者怎麼使用這項技術,就成了重要問題。而在不能確保使用者心態的情況下,辨偽技術成了這項技術的最後一道防線。而 Deepfake 辨識的主要問題,可以分為偏向研究的「偽造特徵不固定」,以及偏向實務面的「辨偽系統的使用情境差異」兩個面向。

Deepfake 辨識的研究困難:偽造特徵不固定

現在已經有可以辨識貓狗、車牌等物體的影像辨識系統,這些辨識系統也相當成熟可靠,直覺來說,要做出一套辨識 Deepfake 的辨識系統,應該也不會太困難吧?

但實際上卻並非如此,過往辨識系統的做法是抓取容易辨別的特徵,例如貓與狗兩者在形態上就有明顯的差異,只要給電腦夠多的訓練資料,就能有一組精確區分貓與狗的判別式,且能用到各種需要分辨貓與狗的情況下。

貓跟狗的形態差異很大,所以電腦能輕易辨別這兩種物種。圖/envato elements

先不談分辨人臉真假,就人臉辨識本身來說,就是個值得研究的問題,每個人的臉都長得差不多,差異在於五官的相對位置、形狀或大小有微小的差異,這使人臉辨識本身就難有通則可以去分辨。而不同方法生成相似的 Deepfake 圖片,並不一定具有相同的偽造特徵,從人臉特徵到偽造特徵都不固定,使得 Deepfake 辨識具有一定的困難度。

-----廣告,請繼續往下閱讀-----

此外,即便用同一種方法製作同樣的 Deepfake 圖片,也會因為當初給的資料不同,使得偽造特徵出現差異,這讓「一組判別式就能判斷是否為 Deepfake」成為近乎不可能實現的夢。

也許,偽造特徵根本不在人臉上!?

面對 Deepfake 辨識的棘手問題,許志仲說:「要辨識的特徵太多元。我們覺得倒不如去尋找有什麼線索是 GAN 一致會產生的,這線索也許是我們眼睛看不到的,但是電腦可以透過學習的方式去挖掘,所以我就用了這種學習機制去抓出,會不會大部分的這種生成系統,都可能有共同的瑕疵。」

一張 Deepfake 照片並不只有人臉與五官,也包含了背景。而許志仲的論文指出,Deepfake 的偽造特徵,經常出現在背景,或是背景與人臉的交界處:

「臉通常都合成的很漂亮,但是背景跟臉的交界處會不自然。通常在髮絲的地方,髮絲的地方會糊掉這是一種,或是眉毛或者是額頭中的髮線也會有明顯差異。另外就是背景,會明顯看不出背景是什麼東西。大家都忽略看這裡(背景)很正常,而實驗結果也確實看到這些部分具有相對好的辨識度。」

-----廣告,請繼續往下閱讀-----
使用 GAN 生成的 Deepfake 人臉。圖/This Person Does Not Exist

然而,即便該篇論文是近期發布的,許志仲也不敢肯定這套辨識方式是否能套用在目前的狀況下,他表示目前每半年,GAN 生成的 Deepfake 影像的逼真度,就會有顯著的突破,且沒有消退的趨勢。

Deepfake 辨識的實務困難:辨偽系統的使用情境差異

在實務上,許志仲認為目前還有更為棘手的問題需要解決,那就是辨偽系統的使用情境差異。以一段 Deepfake 影片上傳 Youtube 平台為例,上傳的時候 YouTube 就會先對影片進行壓縮,這時原有的 Deepfake 偽造特徵很可能會因為壓縮而被破壞,許志仲解釋:「有些人會故意加上一些雜訊、加一些後處理,比方說整個畫面做類似美肌之類的處理,這些都會破壞掉偽造的線索,我們發現這些狀況十分常見,而且很難克服。這也是為什麼現在幾乎沒有軟體或網站,提供 Deepfake 辨識服務。」

DeepFake 的歐巴馬與演員的解析度就不同。

在實驗室裡,我們可以拿到 GAN 生成的原始影像去做分析,但在網路世界裡,每一個影像都可能像上述的情況一樣,做了各種後處理才放到網路上,就算現在有研究指出某種辨認方式是有效的,也未必真的能應對網路上的複雜情況。

許志仲表示,目前看到有希望突破壓縮這個問題的辨認方式,是去抓人臉在一段影片中的五官變化是否足夠自然,這個線索可以克服壓縮的一點點問題,因爲是藉由五官相對位置的變化來偵測,這就跟壓縮沒太大關係。但正如前面提到的,人臉辨識是困難的,人臉的五官定位本身就無法做到精準,真要使用這套方法辨識 Deepfake,還需要更多研究來確認可行性。

-----廣告,請繼續往下閱讀-----

也有研究者認為 GAN 理論雖然看似完美無瑕,但在產出 Deepfake 過程中仍可能會出現某些關鍵操作,只要藉由偵測畫面中是否有經歷這些操作,就能間接推測這個畫面是否為 Deepfake,不過這個做法的缺點也很明顯,那就是這些關鍵操作,也很可能只是正常的影片後製造成的,並造成不是 Deepfake 的影像也被歸類到 Deepfake 中。

情境逐個突破,讓研究能落地使用

說到這裡,許志仲語重心長地說:「我們研究做了這麼多偵測 Deepfake 的方法,但都不一定能在真實世界使用,這讓我非常意外,而上述的這些情境,也只是冰山一角。」

其實大家都在研究差不多的特徵,像是五官的落差,說話的時候嘴巴的動態變化會比較小或模糊之類的,但這些特徵面在真實的使用情境中,還能有多少辨識度,就真的是未知數。考量到真實情境的複雜度,目前許志仲認為逐個突破不同的情境下它們適合的辨偽方式,才是比較實實際的。

「我們必須先確認好問題是正確的,才能找到正確的答案。」許志仲說,要在實驗室裡做出一套數據漂亮的辨識系統並不困難,但要做出實際能用的辨識系統卻非常不簡單。

-----廣告,請繼續往下閱讀-----

許志仲也嘗試將自己的研究成果運用在實際情境中,但面對製作公司精心製作的 Deepfake 影片,許志仲換了好幾套模型,也只有一套能判別出來,也呼應了「使用情境差異」才是辨識 Deepfake 無法落地的最大問題。

辨識系統在實驗室中可以使用、但在現實生活中卻不一定。圖/envato elements

各界都在防範 Deepfake 影響生活

GAN 要能生成以假亂真的 Deepfake 圖像,必須建構在有訓練完善的生成模型上,而一個訓練完善的生成模型,並不是隨便餵幾筆資料給 GAN 就會跑出來的,必須要有足夠算力的電腦,配合大量的資料才能完成。除了像 Google 或 Facebook 這種規模的公司有能力製作外,也只有部分研究單位,能做出這種以假亂真的生成模型。

許志仲說:「由於 Deepfake 對社會的影響很大,現在他們都只公開自己的程式碼,但不會公開自己的模型,主要就是怕模型被拿去幹壞事。」許志仲也坦承,對於辨偽技術的研究來說,目前的狀況是非常不利的,這代表研究者必須自己用程式碼生出不那麼精良的模型,來製作 Deepfake 圖片測試。

面對未來 Deepfake 是否會無法辨別,許志仲表示就影像上來說,這件事情是做得到的,總會有方法做出不被任何辨識系統偵測,堪稱完美的 Deepfake 影像。但身為防禦方的我們,並不是只能靠圖片辨識真偽,上傳的使用者、社群平台的 meta-data,這些能標示來源的訊息,都可能是我們辨識這部影片是否為 Deepfake 的線索。

-----廣告,請繼續往下閱讀-----
影片的上傳者、發布的社群平台等等,都可能是我們辨識這部影片是否為 DeepFake 的線索。圖/envato elements

面對持續進化,仍看不見消退的 Deepfake 技術,許志仲也希望未來能有更多人一同加入 Deepfake 辨偽的研究行列,針對 Deepfake 辨偽系統的使用情境,我們還有非常多的問題等著被解答。

-----廣告,請繼續往下閱讀-----
所有討論 3