0

0
1

文字

分享

0
0
1

臉部超科學回春!光影、老化與比例對外觀的影響

MedPartner_96
・2016/09/16 ・4728字 ・閱讀時間約 9 分鐘 ・SR值 507 ・六年級

大家有不小心把自己畫成白鼻心,或者是臥蠶畫成眼袋過嗎?有畫鼻影的時候有不小心把自己畫成阿凡達的納美人過嗎?原本就方方的臉有沒有好像覺得越畫越寬?相信很多人都有這樣的慘痛化妝經驗,特別是在新手期 XD

6997798116_6963bfc972_z
臉中白一線的白鼻心。圖/Tony Hara@flickr

之前在分享過一些有關解剖結構的文章,希望大家對這些知識更有掌握,可以把妝化得更好。其實化妝品 「cosmetics」是希臘文的「kosm tikos」,翻譯過來大概是「裝扮巧妙,使自己更具魅力」。字首的「kosmos」的意思,就是裝飾。既然要裝飾成「某個樣子」,那你心裡面就不可能「沒有某個樣子」。對多數人來說,「某個樣子」通常代表「更年輕」、「更有吸引力」。以現在人的標準來看,更有吸引力通常代表「更立體」、「更精緻」的五官比例。

所以今天我想分享的是:

 1. 光影如何影響人臉的視覺效果
2. 人類的臉部老化過程——比較年輕的臉跟老化的臉的差異
3. 符合東方美學概念的臉部比例

-----廣告,請繼續往下閱讀-----

如果要保養,也必須知道到底哪些是可逆的,哪些是不可逆的。看懂之後就不用亂花錢囉!

累了嗎,我們聽首歌吧!痾,不是啦,先來看一下影片~片長兩分多鐘,大家看個三十秒就可以停了。

光線的顏色與明暗對人臉視覺上的影響

https://www.youtube.com/watch?v=uqTuo2yQBXM

從這部影片,你可以清楚看到,不同顏色、不同角度的光,對人臉在視覺上會產生很大的影響。如果全都是強光,沒有明暗,就不會有立體感。你想想看,這不就是化妝在做的事情嗎?另外你也可以知道,為什麼在某些餐廳、某些店家,照鏡子照起來就會特別好看?這除了鏡子的原因以外,光線的顏色跟角度也都有差喔!!!下次如果不小心又沈浸在某個讓自己看起來很瘦的鏡子前,趕快回想一下這篇文章,醒醒吧阿宅,這一切都只是幻覺啊!

-----廣告,請繼續往下閱讀-----

人臉自然老化的過程

從一個小蘿莉,長成花樣年華的少女、再到輕熟女、然後熟透,然後過熟(誤),慢慢步入中老年的過程,到底是怎麼回事呢?我們來看一下這支影片,一分鐘帶你走過女人臉部的八十年。

https://www.youtube.com/watch?v=tTBlFC-oAnw

人的臉部老化是「全面性的」,從皮膚、皮下脂肪、肌肉到骨骼,都有各自老化的過程。

臉部皮膚的老化

2

皮膚從外到內有很多層次,我們就由外而內說明:

-----廣告,請繼續往下閱讀-----

皮膚變薄:老化過程中,膠原蛋白跟彈性纖維變性,結締組織也會流失,所以皮膚就會變薄。老人的皮膚常常一擦到就破,就是這個原因。

皮膚鬆弛:皮膚變薄加上重力的影響,臉部皮膚就會呈現鬆弛。

皮膚粗糙:表皮的角質層因為角化異常,就會導致皮膚粗糙。

乾燥:青春期腺體分泌旺盛,但老了就功能下降。皮脂腺和汗腺分泌不足,無法形成正常的皮脂膜,皮膚就會乾燥。

-----廣告,請繼續往下閱讀-----

黑斑:正常的黑色素小體會均勻分布。但如果色素調節異常,就會出現局部的黑色素增加,產生黑斑或曬斑。

白斑:有時候某些黑色素細胞會退化,就會在它負責的區域產生一點一點的白斑。

老人斑:表皮細胞不正常的角化,會產生脂漏性角化症或俗稱的老人斑。

老年性紫斑:老年人血管及周遭的膠原蛋白跟彈性蛋白都減少,所以微血管變得脆、硬,很容易一碰撞就出現一大片的出血。年紀越大就越容易出現!

-----廣告,請繼續往下閱讀-----

大家要注意的是,上面有些事情是你可以阻止的,例如防曬;但有些就幾乎難以預防,只能順其自然。有些廠商會隨便宣稱他的東西有療效,聽聽就算,不要浪費錢。

臉部脂肪的老化

3

臉部在老化的過程中,脂肪會流失,另外也會伴隨著軟組織一起下垂,所以逐漸就從一個倒三角的 V 臉,變成一個正三角形的下垂臉了。年輕的女生常常在哭自己有嬰兒肥,你不知道那是甜蜜的負荷啊!等你老了,該有肉的地方沒肉,肉都垂到不該有的地方你就欲哭無淚啊……。

臉部肌肉的老化:張力增加

4

有句玩笑話,什麼是老男人:就是該軟的都硬了,該硬的都軟了……該硬的不硬,不該硬的血管啊、攝護腺啊通通都硬了。但肌肉這件事情更是老天爺的玩笑,四肢的肌肉常會因為老化萎縮,但臉部的表情肌反而會因為老化而張力增加……,經年累月的拉扯加上過強的肌肉張力,就會出現很多表情紋路。像是抬頭紋啊、魚尾紋啊、法令紋啊、皺眉紋之類的,讓我忍不住想起這首歌啊:如果說一切就是天意,一切就是命運,終究……(透露年齡…)。

臉部骨質的老化

5

大家可能比較難想像,骨頭這麼硬的東西也會變?其實骨頭是「活的」,隨時都有「生骨細胞」在製造新的骨質,也隨時有「蝕骨細胞」在吃掉老化的骨質。老了之後,製造新骨的能力低於蝕骨的能力,就會慢慢看到骨質流失了。在臉部常可看到眉骨被吸收、眼眶骨更凹陷,下頷角更往下垂等現象。可以對照骨骼圖看:

-----廣告,請繼續往下閱讀-----

6

年輕的臉 VS 老化的臉

所以一張年輕的臉,基本上會是:

1. 皮膚緊實、平滑
2. 肌肉張力不過強,沒有皺紋
3. 輪廓呈現一個倒三角形(inverted triangle face)

整張臉也不是只有一個大的倒三角,你可以把它拆解很多個,把整張臉用很多個倒三角來設計 。例如把整個臉當一個大的倒三角,或者眼睛一區、嘴巴下巴一區之類的都可以。 總之臉上可以區分成很多三角,但一定是倒三角 ,絕對不能是正三角 !不然就是老的臉……。

近年也有人提出好看的臉是大小兩個心形:

-----廣告,請繼續往下閱讀-----

7

不管是哪種,照著這樣的輪廓去化妝,或者是作為保養、治療的目標方向就對了。所以接下來的目標,就是讓他趨近倒三角,或所謂大小雙心的結構!我們能做的,就是光影的明暗效果,或者是立體效果。亮的顏色就是顯大,暗的顏色就是顯小。越立體你看上去就是小,越平面你看上去就是大。 要讓他變寬,就讓他平面化發展 ;要讓他看起來窄,就讓他立體化發展 。

這有點像是一個三角做圖法,你可以在臉上取兩個不會動的點,例如兩邊的眉尾,然後選定一個第三點去動作。不管是化妝還是整形。

8

像是上面這張圖,左邊的女生下巴就短了一點點,不管是用拍照角度、化妝或是整形拉長了比例,就變更好看了。

所以最好看的臉就是又小又精緻又立體。 大家想想看喔,如果你臉白,就會顯大。所以要在螢幕上,又白、看起來又小,那就必定要有立體的五官。有沒有這種人呢?有一個歷史上很標準的正妹:

8+9
1956 年(左)和1978 年(右)的奧黛麗赫本。圖/wikihuffingtonpost

但這只是一個美的典型,別忘了美是有很多很多種的喔!而赫本當然也抵擋不了老化的力量,大家可以觀察其中的變化。

符合東方美學的臉部比例:三庭五眼和各種黃金比例

大家可能會想知道,符合東方美學的臉部比例是什麼樣子?其實也是有些客觀的分析標準,有興趣的朋友可以看隆鼻懶人包第一集,有更完整的角度介紹。但這邊就先讓大家看個最基本的三庭五眼圖。

11

記住,整型是非必要的,化妝、髮型、微整形、手術都是可能的選項,當然要花你比較多錢,或承擔比較多風險的,就一定要想清楚喔!

同場加映:視錯覺原理在化妝與整形的應用

講到化妝或整形,就不能不知道「視錯覺原理」。它可以分成由感覺器官引起的「生理錯視」,以及由心理原因導致的「認知錯視」。詳細的視錯覺成因跟機制可以講到很複雜,但這邊先簡單說,基本上視錯覺原理就是個愚蠢的「人類自行腦補的故事」。

好啦,也不能這麼片面把人類當作這麼愚蠢啦~人類的認知功能是有限的,必須在很短的時間做出判斷,然後把認知功能專注放在重要的事情上,所以對於很多事情我們會傾向直接腦補……所以你就會出現錯覺。視錯覺廣泛出現在我們生活中,這邊我們舉幾個可能用得上的例子吧~

案例一:A 和 B 兩個長方形,哪個比較長?

12

其實這是兩個一模一樣的長方形。人在看兩個相同的長方形時,會傾向於把 A,擺成豎起來的這個看得更修長。所以可以在化妝時或穿搭時,設計一些豎長的線條,都會顯得比較修長。這道理很簡單,叫胖子穿橫條紋就是個悲劇不是嗎……。

案例二

13

A 和 B 其實是同一個人。只要把其中一部分地方遮住,只露出剩下的部分,人們就會腦補被遮住的畫面。所以不管在穿衣服還是化妝還是設計髮型的的時候,想辦法露出自己最瘦的地方,或者遮住自己最胖的地方,或者顯露出五官最立體的部分,遮住比較平或角度不好看的部分,大家就會把你腦補成又瘦又五官立體的正妹惹(無誤)。

案例三:這兩個女孩哪個比較高?

14

答案是一樣高。但大家都覺得戴帽子的那個高。這就是「視覺動線」的作用,這是一個利用「顯眼的視覺焦點」,大家就會把視覺動線往上拉,或者是往下拉,這個戴帽子的女孩就是因為你的視覺動線上移所以看起來高。當然也可以往左拉,或往右拉(但這類運用較少)。例如有個寬臉妹子,又同時帶了很亮眼的耳環,你在看她的時候,視線跟著耳環左右移動,恩,那就悲劇惹。所以如果你的臉部比例不是標準的三庭五眼,都可以利用這招,不管是用帽子、髮型、首飾等小心機做出效果喔~

案例四:哪條線比較長?

15

最後一定要介紹一下上港有名聲,下港有出名的「萊依爾錯視」。三根線明明一樣長,但在箭頭的作用下,B 顯得最短,A 顯得最長。

這個可以解釋非常多事情!!!在穿搭上這就是V領衫可以顯得臉小的原理。在臉型上,這就是 V 臉為什麼看起來臉小的原理。活用這個錯視,你可以搞出一大堆變化!一統自拍界指日可待啊哈哈哈哈哈!

今天這篇文章是希望讓大家知道,化妝跟整型都是可以很科學、很醫學的。有更多的知識,就可以用更低的成本,達到更好的效果。不會因為不懂成分,結果買了一堆可怕的產品毀掉自己的臉,如果要整形也不會因為搞不清楚狀況,接受了一個根本不適合你的手術。

另外也希望大家正確認知「老化」這件事情,但不是要大家害怕老化,然後趕快去亂買抗老產品。知道什麼是老化、理解老化的機制,接下來我們會慢慢找機會補上其他相關機制,告訴大家哪些對預防老化是「實證有效的」,哪些是「持續爭議中的」,哪些是「根本沒效不要再被騙的」。錢跟時間是你最需要掌控的。把這兩樣東西運用好,人生就會有餘裕。但要把錢跟時間運用好,其實是需要很多正確的知識啊!!!

所以拜託千萬不要隨便放棄治療,或者是手滑亂買東西啊……。腦袋空空,錢包就會空空,這是不變的真理啦!!!科學其實沒這麼難,希望大家卸下心防,讓我們幫助你輕鬆學習,然後實際應用在日常生活中~

看完這篇文如果覺得有幫助,趕緊用底下按鍵分享給所有好朋友吧!不傳的沒朋友啊啊!(不夠要好的就不用傳了,認真。因為化妝或整形就是一種競爭,如果大家都超正,就顯不出你的正了…科科)

助人省錢,功德無量,阿彌陀佛~~~

編按:愛美是每個人的天性,不過對你而言光是看滿架的化妝品、保養品,各種醫美產品就令你眼花撩亂,更別說還有玻尿酸、膠原蛋白、類固醇這些有聽沒有懂的名詞來搗亂嗎?如果你想要聰明的美,不想要被各種不實廣告唬得團團轉,那麼泛科學這位合作夥伴 MedPartner 美的好朋友,就是你我的好朋友。

本文轉載自MedPartner 美的好朋友

-----廣告,請繼續往下閱讀-----
文章難易度
MedPartner_96
49 篇文章 ・ 18 位粉絲
一位醫師用一年時間和100萬,夢想用正確醫美和保養知識扭轉亂象的過程。 Med,是Medicine,醫學的縮解。Med 唸起來也是「美的」。我們希望用醫學專業,分享更多美的知識。Partner則是我們對彼此關係的想像。我們認為醫師和求診者不只是醫病關係,更應該是夥伴關係。 如果您也認同我們的理想,歡迎和我們一起傳播更多正確的醫美知識。 我們的內容製作,完全由MedPartner專業醫療團隊負責,拒絕任何業配。

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

3

6
0

文字

分享

3
6
0
Deepfake 辨偽技術如何在魔高一尺時,能道高一丈呢?——成大統計所許志仲專訪
A編編
・2022/01/26 ・3499字 ・閱讀時間約 7 分鐘

2021年末,小玉的「Deepfake 換臉事件」讓大眾正視 Deepfake 技術的濫用問題。  Deepfake 發展至今不只有造假技術在進步,辨偽也是:目前任職於成大統計所的許志仲老師,從 2018 年開始便在這個主題中專研,並於 2020 年發表相關研究結果,該篇文章起今已有超過 50 次的引用次數。「以這篇論文發表的期刊影響指數(Impact Factor,簡稱IF值)來說,這個引用數相對來說是高的,這代表 Deepfake 辨偽的議題開始變得重要,但研究的人可能沒那麼多。」

許志仲坦言,自己 2018 年研究 Deepfake 辨偽時,Deepfake 影片品質並沒有特別好。沒想到短短兩三年的時間,Deepfake 的效果就已經好到可能會造成問題了。

雙面刃的 Deepfake

Deepfake 技術起初是希望能藉由電腦產生各種不同的逼真圖片或影片,來因應特效製作或老照片修復之類的工作,而要產生逼真圖片或影片,有許多不同的方法都能達成這個目的,目前 Deepfake 最常使用的方法為 2014 年提出的「生成對抗網路(Generative Adversarial Network, 簡稱 GAN)」,透過生成網路與判別網路的對抗,產生逼真的圖片或影片,因此說到 DeepFake,通常都會說起 GAN。

「我們會說 Deepfake 就是 GAN,是因為就目前生成技術還是以 GAN 最好,當然也有新的方法正在發展,所以未來未必還是以 GAN 作為主體,可能用別的方法偽造,也能做得很漂亮。」

-----廣告,請繼續往下閱讀-----

許志仲也表示,Deepfake 的發展目標是正面的,技術本身是中立的,但使用者怎麼使用這項技術,就成了重要問題。而在不能確保使用者心態的情況下,辨偽技術成了這項技術的最後一道防線。而 Deepfake 辨識的主要問題,可以分為偏向研究的「偽造特徵不固定」,以及偏向實務面的「辨偽系統的使用情境差異」兩個面向。

Deepfake 辨識的研究困難:偽造特徵不固定

現在已經有可以辨識貓狗、車牌等物體的影像辨識系統,這些辨識系統也相當成熟可靠,直覺來說,要做出一套辨識 Deepfake 的辨識系統,應該也不會太困難吧?

但實際上卻並非如此,過往辨識系統的做法是抓取容易辨別的特徵,例如貓與狗兩者在形態上就有明顯的差異,只要給電腦夠多的訓練資料,就能有一組精確區分貓與狗的判別式,且能用到各種需要分辨貓與狗的情況下。

貓跟狗的形態差異很大,所以電腦能輕易辨別這兩種物種。圖/envato elements

先不談分辨人臉真假,就人臉辨識本身來說,就是個值得研究的問題,每個人的臉都長得差不多,差異在於五官的相對位置、形狀或大小有微小的差異,這使人臉辨識本身就難有通則可以去分辨。而不同方法生成相似的 Deepfake 圖片,並不一定具有相同的偽造特徵,從人臉特徵到偽造特徵都不固定,使得 Deepfake 辨識具有一定的困難度。

-----廣告,請繼續往下閱讀-----

此外,即便用同一種方法製作同樣的 Deepfake 圖片,也會因為當初給的資料不同,使得偽造特徵出現差異,這讓「一組判別式就能判斷是否為 Deepfake」成為近乎不可能實現的夢。

也許,偽造特徵根本不在人臉上!?

面對 Deepfake 辨識的棘手問題,許志仲說:「要辨識的特徵太多元。我們覺得倒不如去尋找有什麼線索是 GAN 一致會產生的,這線索也許是我們眼睛看不到的,但是電腦可以透過學習的方式去挖掘,所以我就用了這種學習機制去抓出,會不會大部分的這種生成系統,都可能有共同的瑕疵。」

一張 Deepfake 照片並不只有人臉與五官,也包含了背景。而許志仲的論文指出,Deepfake 的偽造特徵,經常出現在背景,或是背景與人臉的交界處:

「臉通常都合成的很漂亮,但是背景跟臉的交界處會不自然。通常在髮絲的地方,髮絲的地方會糊掉這是一種,或是眉毛或者是額頭中的髮線也會有明顯差異。另外就是背景,會明顯看不出背景是什麼東西。大家都忽略看這裡(背景)很正常,而實驗結果也確實看到這些部分具有相對好的辨識度。」

-----廣告,請繼續往下閱讀-----
使用 GAN 生成的 Deepfake 人臉。圖/This Person Does Not Exist

然而,即便該篇論文是近期發布的,許志仲也不敢肯定這套辨識方式是否能套用在目前的狀況下,他表示目前每半年,GAN 生成的 Deepfake 影像的逼真度,就會有顯著的突破,且沒有消退的趨勢。

Deepfake 辨識的實務困難:辨偽系統的使用情境差異

在實務上,許志仲認為目前還有更為棘手的問題需要解決,那就是辨偽系統的使用情境差異。以一段 Deepfake 影片上傳 Youtube 平台為例,上傳的時候 YouTube 就會先對影片進行壓縮,這時原有的 Deepfake 偽造特徵很可能會因為壓縮而被破壞,許志仲解釋:「有些人會故意加上一些雜訊、加一些後處理,比方說整個畫面做類似美肌之類的處理,這些都會破壞掉偽造的線索,我們發現這些狀況十分常見,而且很難克服。這也是為什麼現在幾乎沒有軟體或網站,提供 Deepfake 辨識服務。」

DeepFake 的歐巴馬與演員的解析度就不同。

在實驗室裡,我們可以拿到 GAN 生成的原始影像去做分析,但在網路世界裡,每一個影像都可能像上述的情況一樣,做了各種後處理才放到網路上,就算現在有研究指出某種辨認方式是有效的,也未必真的能應對網路上的複雜情況。

許志仲表示,目前看到有希望突破壓縮這個問題的辨認方式,是去抓人臉在一段影片中的五官變化是否足夠自然,這個線索可以克服壓縮的一點點問題,因爲是藉由五官相對位置的變化來偵測,這就跟壓縮沒太大關係。但正如前面提到的,人臉辨識是困難的,人臉的五官定位本身就無法做到精準,真要使用這套方法辨識 Deepfake,還需要更多研究來確認可行性。

-----廣告,請繼續往下閱讀-----

也有研究者認為 GAN 理論雖然看似完美無瑕,但在產出 Deepfake 過程中仍可能會出現某些關鍵操作,只要藉由偵測畫面中是否有經歷這些操作,就能間接推測這個畫面是否為 Deepfake,不過這個做法的缺點也很明顯,那就是這些關鍵操作,也很可能只是正常的影片後製造成的,並造成不是 Deepfake 的影像也被歸類到 Deepfake 中。

情境逐個突破,讓研究能落地使用

說到這裡,許志仲語重心長地說:「我們研究做了這麼多偵測 Deepfake 的方法,但都不一定能在真實世界使用,這讓我非常意外,而上述的這些情境,也只是冰山一角。」

其實大家都在研究差不多的特徵,像是五官的落差,說話的時候嘴巴的動態變化會比較小或模糊之類的,但這些特徵面在真實的使用情境中,還能有多少辨識度,就真的是未知數。考量到真實情境的複雜度,目前許志仲認為逐個突破不同的情境下它們適合的辨偽方式,才是比較實實際的。

「我們必須先確認好問題是正確的,才能找到正確的答案。」許志仲說,要在實驗室裡做出一套數據漂亮的辨識系統並不困難,但要做出實際能用的辨識系統卻非常不簡單。

-----廣告,請繼續往下閱讀-----

許志仲也嘗試將自己的研究成果運用在實際情境中,但面對製作公司精心製作的 Deepfake 影片,許志仲換了好幾套模型,也只有一套能判別出來,也呼應了「使用情境差異」才是辨識 Deepfake 無法落地的最大問題。

辨識系統在實驗室中可以使用、但在現實生活中卻不一定。圖/envato elements

各界都在防範 Deepfake 影響生活

GAN 要能生成以假亂真的 Deepfake 圖像,必須建構在有訓練完善的生成模型上,而一個訓練完善的生成模型,並不是隨便餵幾筆資料給 GAN 就會跑出來的,必須要有足夠算力的電腦,配合大量的資料才能完成。除了像 Google 或 Facebook 這種規模的公司有能力製作外,也只有部分研究單位,能做出這種以假亂真的生成模型。

許志仲說:「由於 Deepfake 對社會的影響很大,現在他們都只公開自己的程式碼,但不會公開自己的模型,主要就是怕模型被拿去幹壞事。」許志仲也坦承,對於辨偽技術的研究來說,目前的狀況是非常不利的,這代表研究者必須自己用程式碼生出不那麼精良的模型,來製作 Deepfake 圖片測試。

面對未來 Deepfake 是否會無法辨別,許志仲表示就影像上來說,這件事情是做得到的,總會有方法做出不被任何辨識系統偵測,堪稱完美的 Deepfake 影像。但身為防禦方的我們,並不是只能靠圖片辨識真偽,上傳的使用者、社群平台的 meta-data,這些能標示來源的訊息,都可能是我們辨識這部影片是否為 Deepfake 的線索。

-----廣告,請繼續往下閱讀-----
影片的上傳者、發布的社群平台等等,都可能是我們辨識這部影片是否為 DeepFake 的線索。圖/envato elements

面對持續進化,仍看不見消退的 Deepfake 技術,許志仲也希望未來能有更多人一同加入 Deepfake 辨偽的研究行列,針對 Deepfake 辨偽系統的使用情境,我們還有非常多的問題等著被解答。

-----廣告,請繼續往下閱讀-----
所有討論 3