0

0
1

文字

分享

0
0
1

觀察、控制特異材料表面之電子自旋的方法

only-perception
・2012/01/02 ・1823字 ・閱讀時間約 3 分鐘 ・SR值 606 ・十年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

稱為「拓樸絕緣體(topological insulators)」的特異材料,被發現不到幾年,就已被 MIT 研究團隊發現了秘密之處。該團隊率先證明,在這種材料表面流動的電子的自旋資訊可利用光來獲得,他們甚至發現一種方法,透過改變光源的偏振,來控制這些電子的運動。

這些材料為基於自旋電子學的新型裝置開啟了可能性。其所用的是一種稱為自旋的電子特性,而不是像一般電子裝置那樣使用它們的電荷。那也允許對現有技術(例如磁性資料儲存)進行更快速的控制。

拓樸絕緣體是一些呈現出反常特性的材料。一塊三維的材料,表現就如同傳統的絕緣體(如石英或玻璃),那阻止電流的移動。然而,該材料的外表層卻像是一種非常優良的導體,可讓電流自由地流動。

要理解任何固態材料特性的關鍵在於分析材料內部的電子行為 — 尤其是測定這些電子可能會出現什麼樣的能量、動量與自旋的組合,MIT 物理學助理教授 Nuh Gedik說道。Gedik是最近二篇描述這些新發現的論文資深作者。這一組組合決定了一種材料的關鍵特性 — 例如,那是否為金屬,或著那是否透明。”那非常重要,不過要測量確非常具有挑戰性,” Gedik 表示。

傳統的測量方法是在一塊固態材料上照光:光會將固體的電子踢出,一旦它們被轟出來,就能夠測得其能量、動量與自旋。Gedik 表示,挑戰在於這種測量只能給你特定點的資料。為了要填滿這個地景中額外的點,傳統方式是稍微旋轉此材料,然後進行另一次讀取,然後再旋轉、再讀取 — 一種非常緩慢的過程。

Gedik 以及他的團隊,包括畢業生 Yihua Wang 以及 James McIver,MIT 博士後 David Hsieh,則設計出一種方法,一次就能對電子能量、動量與自旋進行詳盡的三維測繪。他們利用短暫、強烈的圓偏振雷射光脈衝辦到這件事,其傳播時間可精確地被量測出來。

Wang 表示,透過這種新技術,MIT 研究者能獲得「朝各種不同方向行進且具不同動量的電子」其自旋與運動有何關係的圖像,那利用其他方法只能獲得片段時間。在一篇出現在 11/11 Physical Review Letters 期刊的論文中(http://link.aps.org/doi/10.1103/PhysRevLett.107.207602),Gedik 以及他的團隊描述這種方法。

除了展示這種新奇方法並證明其效用外,Gedik 表示,”我們學到一些意料之外的事。” 他們發現,自旋方向並非精確地與電子運動方向垂直,當電子以較高的能量運動時,會產生非預期的傾斜 — 預期準直的一種偏差(a sort of warping of the expected alignment)。Gedik 表示,當這些材料被用於新技術時,理解這種歪曲將十分重要。

研究者表示,該團隊高速測量電子運動及自旋的方法並不僅限於研究拓樸絕緣體,在磁鐵以及超導體等材料的研究中也有所應用。

在電子流經這些材料表面的方式中,有一種不尋常的特性:此即,不像一般的金屬導體,這些材料裡的雜質對整體電導率的影響程度不高。在絕大多數的金屬中,雜質使導電率快速降低,因此阻礙電的流動。這種對於雜質的相對不敏感(imperviousness)將使得拓樸絕緣體成為某些電子應用裡的重要新材料,儘管這些材料太新了,絕大部分的重要應用都仍未預見。一種可能性是,它們可以在一般金屬會過熱(因為雜質的阻礙效應)且危及材料本身的情況下,用來輸送電流。

在第二篇論文(http://arxiv.org/pdf/1111.3694)中(出現在今日的 Nature Nanotechnology 期刊上), Gedik 與他的團隊證明,一種類似他們用來測繪電子態的方法,也能夠用來控制電子在這些材料表面上的流動。那有效是因為電子的自旋方向總是近乎垂直於它們的移動方向,不過也只有朝某一特定方向自旋的電子會受到給定的圓偏振雷射光束的影響。因此,光束能用來推開所有朝某一方向流動的電子,留下朝其他方向流動的有用電流。

“這有非常立即的裝置可能性,” Gedik 表示,因為那允許電流的流動完全受到雷射光束的控制,且沒有直接的電子交互作用。可能的應用會是一種新的電磁儲存(例如用於 PC 中的硬碟),現在的裝置使用電流將每一個儲存好的位元從 0 「翻轉」到 1 ,反之亦然。能以光控制這些位元將使反應時間更迅速,該團隊表示。

電子行為的駕馭也許會成為一種技術關鍵,那將導致自旋電子電路的創造,利用電子的自旋而非它們的電荷來乘載資訊。除此之外,這樣的裝置在新量子運算系統的創造上也會是重要的一部份。許多研究者認為,那種系統在某些高度複雜問題的解決上會明顯勝過一般電腦。

史丹佛大學的物理學教授 Zhi-Xun Shen(未涉入這項研究)表示,MIT 團隊利用他們新奇的實驗方法,證實了拓撲表面的理論化結構。除了證實這件事之外,他表示,他們的第二篇論文是雷射與表面電流之間 “迄今最直接的光耦合(optical coupling)實驗證據之一,” 也因而 “在光–自旋電子學中具有吸引人的潛力。”

資料來源:PHYSORG:Researchers find way to observe, control the way electrons spin on the surface of exotic new materials[December 5, 2011]

轉載自only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

2

10
1

文字

分享

2
10
1
量子電腦的全新可能性:自旋三重態非常規超導體
活躍星系核_96
・2021/03/03 ・3357字 ・閱讀時間約 6 分鐘 ・SR值 574 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文/林泓曄、黃俊維|國⽴臺灣⼤學物理學系電子學課程學生

在超導體的領域中,多年前就有人預測了一種「自旋三重態非常規超導體(Spin-Triplet Unconventional Superconductor)」的存在,其對於外加磁場的反應和典型的超導體有很大的不同,也因此使其在量子電腦領域有很大的發展潛能。但是,一直沒有人能夠找到自旋三重態非常規超導體存在的直接證據。

直到前年 (2019),美國 Johns Hopkins University 的團隊和台大團隊合作,使用特別且嚴謹的實驗方法,證明了新穎材料 β-Bi2Pd 是一種自旋三重態非常規超導體,並將其實驗結果發表上頂尖科學期刊 Science。此實驗結果使我們能夠確認非常規超導體的存在,為量子電腦的硬體發展帶來新的想法,更為探尋馬約拉納費米子 (Majorana Fermion) 道路帶來一線曙光。

量子電腦聽起來很炫,到底是什麼?

量子,這曾是人類無法想像的不尋常現象,如今正用它神奇的方式打破舊有的規則。量子電腦相關話題層出不窮,在這些報導背後,建構量子電腦的量子元件同樣為「量子優越性」時代的來臨推波助瀾。

傳統電腦的計算方法是以高電位(表示 1、True)以及低電位(表示 0、False)來進行二進位的運算,其單位稱作位元 (Bit)。而量子電腦是藉由類似想法,但是單一個位元可以是 0 和 1 的疊加態,位元之間又可以互相糾纏,故可使得量子電腦的運算量隨著位元數的增加而呈現指數成長,而我們稱此位元為量子位元 (Qubit)。

因此,甚至日前 Google 發表了篇文章,稱其實驗的量子電腦可在 3 分 20 秒完成超級電腦需要運算一萬年的問題!

而其中量子位元的形式百百種,本篇將介紹的是將超導體做成超導環,對其通以磁場,使超導環同時產生順、逆時針的電流作為量子位元

IBM 量子電腦的內部構造。圖/Flickr

什麼是常規超導體?跟量子電腦有什麼關係?

常見的自旋單態常規超導體(Spin-Singlet Conventional Superconductor),擁有磁通量量子化的超導特性,若將其做成環狀,並施以連續變化的外加磁場,根據電流磁效應,超導環會產生順時針或逆時針的超導電流來抵消或增強環內的磁場強度,使環內磁通量仍被量子化。外加磁場為零時沒有超導電流,當由下往上的磁場逐漸增加時會產生超導電流抵銷磁場,使環心的磁通量為零,但外加磁場恰超過半量子磁通量時,超導電流會瞬間反向,使環心的磁通量補足達到一個量子數,接著隨著外加磁場繼續增加而減弱,最後在達到一個量子數時電流消失,如此循環反覆(示意圖如圖一)。

圖一:自旋單態常規超導體磁通量量子化示意圖。黃色箭頭代表環上超導電流方向,可以看到超導電流會剛好讓環內的磁場只能是某一特定值的整數倍。圖/作者提供

科學家便是利用外加半磁通量時電流反向的關鍵點,固定外加磁場使得超導環產生順、逆時針電流的量子疊加態作為量子位元。但此方法容易因為不同超導環要達到穩定疊加態所需要施加的磁場大小不一樣,所以幾乎不可能同時讓複數個超導環同時達到穩定疊加態,也就是說,位元數量無法增加,這是到目前為止用超導環做量子電腦遇到的一大瓶頸。

規則就是要拿來打破的,用理論預測非常規超導存在!

圖二:非常規半導體磁通量辦量子化示意圖。可以看見環內磁通量變成是某一特定值的半整數倍。值得注意的是,在外加磁通量為 0 的地方,環內的磁通量並不為 0。而是處於正或負 0.5 的轉變點。圖/作者提供

在此之前,其實科學家已經透過理論預測,應該會存在一種自旋三重態非常規超導 (Spin-Triplet Unconventional Superconductor),此材料沒有圖三中,在外加磁場不到 1/2 個通量時所產生的抵抗電流,甚至在外加磁場為 0 時,內部便有磁通量,表示會自行產生超導電流,而且是處於半量子磁通量的關鍵點(參考圖二)。

然而,到目前為止還沒有團隊真的有辦法確認一個超導體材料真的是一個自旋三重態的超導體。因此,本篇所介紹的學者團隊,希望利用特別的實驗方法來證明這種超導體的存在。

探索從未發現的材料

我們有幸訪問到此實驗團隊的一位教授:錢嘉陵教授。他表示,在這個探索中嘗試過時數種材料,才終於找到這個披著神秘面紗的主角——β-Bi2Pd。

團隊利用此材料做成了一個次微米尺度的環,厚度約 50 奈米,長寬各約 0.8 微米的方形環,環的寬度約 0.1 微米(參考圖三)。至於實驗對照組,則是形狀基本上一樣,不過厚度為 28 奈米的鈮 (Niobium, Nb)。

事實上,做成這個尺寸是有意義的。如果環做得太大,則其磁通量就會由於面積擴大而縮小,導致因磁通量量子化造成的震盪效應不明顯;但如果做的很小,則會因為超導體中的電子對需要保持一最短距離,材料太小則會使電子對無法穩定存在。做得太薄也不行,因為如果太薄會使超導臨界溫度過低,由於現今常用的降溫方法為使用液態氦,約為 4K,當超導臨界溫度低於 4K 時,則將會在降溫的技術方面出現困難;當然,太厚也不可以,因為這個效應僅體現在材料的表面,若材料過厚,則難以測量其表面的效應,僅能觀測到其實心部分的結果,並非本實驗目的。

圖三:實驗團隊所製作之材料環示意圖。實驗時會對此裝置施加一垂直於此平面的磁場。圖/作者提供

證實 β-Bi2Pd 為自旋三重態非常規超導體

有了一個超導環之後,就可以對它施加磁場,當我們改變外加磁場的量值,它就會產生利特爾—帕克斯效應 (Little-Parks Effect)。

利特爾—帕克斯效應是什麼呢?讓我們回顧一下上述的超導環電流變化現象,如果電流會這樣變化,那麼超導環的電阻便會出現相應的震盪現象,這就是利特爾—帕克斯效應。實驗團隊從數據結果發現,和利特爾—帕克斯效應 (Little-Parks Effect) 的預期結果相同,實驗組 (β-Bi2Pd) 和對照組(鈮)的電阻—磁場圖基本上都呈現週期震盪圖形,而且兩者的震盪週期也都差不多,大約是 30 厄斯特(磁場單位)。

但真正的重頭戲,是這兩者的震盪相位不同!實驗組和對照組的相位差了 180 度(震盪圖形平移了半個週期),β-Bi2Pd 的電阻極大值會發生在磁場為 0 的情況,而鈮在該情況下的則為電阻極小值。而這就反映了半量子和量子磁通量的差異,也就證明了 β-Bi2Pd 的確是一個自旋三重態非常規超導體 (Spin-Triplet Unconventional Superconductor)。 (請參考圖四)

圖四:鈮(左);(右)。可以看見兩者之間的相位差異。(注意:僅為示意圖,非原始數據)。圖/作者提供

β-Bi2Pd 的價值

如前面所述,此材料不需外加磁場便能處於半量子磁通量的關鍵點,解決了原本幾乎不可能同時使複數個超導環處於穩定疊加態的問題,為量子計算再邁出一大步!

不僅僅是其在外加磁場為零時便具有超導電流的特性,更值得鼓舞的是,這樣的材料很有可能會是一種非常難得存在的 p 波超導體(p-wave Superconductor)。

p 波超導體 (p-wave Superconductor) 是一種自旋三重態非常規超導體 (Spin-Triplet Unconventional Superconductor),其中被預言會存在難以尋找的馬約拉納費米子 (Majorana Fermion),其具有反粒子即為自己本身的奇特性質,將有機會解決量子電腦易受外界擾動而影響的重大瓶頸,為量子電腦的突破更寫下嶄新的一頁!

致謝

本⽂源⾃於國⽴臺灣⼤學物理學系電⼦學之課程報告,感謝朱⼠維老師、程暐瀅助教,以及論文原作者錢嘉陵老師、朱明文老師的用心指導與大力協助。

參考資料

  1. 本篇主要引用:Yufan Li, Xiaoying Xu, M.-H. Lee, M.-W. Chu, C. L. Chien, Observation of half-quantum flux in the unconventional superconductor β-Bi2Pd. Science 11 Oct 2019: Vol. 366, Issue 6462, pp. 238-241 DOI: 10.1126/science.aau6539
  2. Unconventional superconductor. Wikipedia, , the free encyclopedia.
  3. Conventional superconductor. Wikipedia, , the free encyclopedia.
  4. Little–Parks effect. Wikipedia, , the free encyclopedia.
  5. Majorana fermion. Wikipedia, , the free encyclopedia.
  6. 科學大抖宅 (2017),自己是自己的反粒子?找到『馬約拉納費米子』存在的確切證據。泛科學
  7. 朱明文 (2019),量子電腦新材料:具有非典型超導體 p 波對稱性的多晶織構薄膜。物理雙月刊
所有討論 2
活躍星系核_96
752 篇文章 ・ 97 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

23
3

文字

分享

1
23
3
用錯使用方法,漂白劑也會出人命?請注意,盡量不要「混搭」清潔劑!
阿咏_96
・2020/12/18 ・3364字 ・閱讀時間約 7 分鐘 ・SR值 512 ・六年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

今年八月時,有新聞指出,一位英國女子西摩(Leah Seymour)在打掃浴室時,將馬桶清潔劑與漂白劑混合一起使用,幾分鐘後出現強烈氣味,導致她氣喘發作,失去意識,送醫後宣告不治身亡。

什麼!漂白劑不是我們生活中常用來消毒的好朋友嗎?到底發生了什麼事?漂白劑真的這麼危險嗎?以後是不是就別用了?

修但幾勒!

在恐慌蔓延之前,我們必須先來了解漂白劑究竟是何方神聖,又是如何作用的。

別只會唱愛情轉移,你知道電子轉移嗎?

我們日常使用的漂白劑,通常是透過氧化還原反應將顏色去除或變淡,除了漂白的功能之外,也可以用來消毒殺菌。

漂白水是我們消毒環境、清洗衣物的好幫手。圖/Pixabay

氧化還原反應指的是過程中發生電子轉移的化學反應,例如以下這個鎂和氧化銅的反應式: 

Mg+CuO → MgO+Cu

我們可以把 鎂 Mg 想像成是一位財大氣粗的火爆小子,而 銅 Cu 是個性溫和的好好先生,有天他們倆相遇了,鎂對銅表示想買下他的情人 氧 O,急躁的鎂不管銅的意見,就把錢(也就是電子)付給他,同時也把氧搶走了,於是鎂就把氧佔為己有,而銅得到了錢財,變回孤身一人。

在氧化還原反應裡,不同角色有各自的稱呼和招式,把電子付給別人的火爆小子稱為「還原劑」,招式為「還原」,讓別人變回孤身一人;得到電子的好好先生為「氧化劑」,招式為「氧化」。

大家不妨猜猜看,圖中的 H 和 F 之間,誰是火爆小子,誰又是好好先生呢?圖/Wikipedia

然而,好好先生與火爆小子的身份並非永遠不變,也就是說「沒有最火爆,只有更火爆」,未來當鎂遇到比他更財大氣粗的人時,手上的氧也會被「買」走,而銅遇到比他更溫和的人時,也可能會買別人的氧。

而這種急躁又霸道的性格,稱之為「活性」,也就是說活性越大的元素,性質越活潑,越急著把錢(電子)塞到別人手裡、買走氧,不過,他們把氧買走後,就會「浪子回頭」,個性變得比較收斂,性質更為安定。

拿~麼厲害!漂白劑原來是轉移高手

接著回到故事主線,漂白劑的種類可以依據在漂白過程發生的氧化還原反應中擔任的角色來區分:若在反應裡擔任氧化劑者,稱為「氧化型漂白劑」;若擔任還原劑者,稱為「還原型漂白劑」。

平時我們較常接觸到的是氧化型漂白劑,而氧化型漂白劑通常可以再分為兩類:氯系漂白劑氧系漂白劑

你用的是氯系,還是氧系漂白劑呢?圖/Wikipedia

這邊即將登場的是:氯系漂白劑

氯系漂白劑含有次氯酸鈉(NaClO),溶在水中會解離成次氯酸離子(ClO)和鈉離子(Na+),當次氯酸離子(ClO)與水反應後,會轉變為弱酸性的次氯酸(HClO),但鈉離子(Na+)與水反應後,會變成強鹼性的氫氧化納(NaOH),因此使水溶液變成弱鹼性。

次氯酸(HClO)就是典型的好好先生,很容易得到其他物質的電子,也就說能夠氧化許多的物質,透過氧化就可以破壞細菌的細胞機能,最後導致細菌死亡。而漂白的功能也是因為氧化了含有顏色的化合物而造成褪色。

不過,漂白水的原液只含微量 HClO 分子,加水稀釋後 HClO 的比例會提高,此時才具有比較好的消毒殺菌效果。

什麼?跟清潔劑一起用ㄟ出代誌?!

然而,如果以不正確的方式使用氯系漂白劑,可能會對我們的健康造成危害!

使用漂白水的時候,有些人會加上「比較好聞」的清潔劑,或是跟其他強效清潔劑混合,希望可以藉此達到更好的清潔效果。

請小心!如果將漂白水和其他清潔劑混合,很有可能產生危害人體的物質。

許多香精油、清潔劑中,都可能含有檸檬烯。圖/Pixabay

加拿大多倫多大學 2019 年的研究發現,當我們在室內環境使用氯漂白劑溶液時,容易釋放出氣態的次氯酸(HOCl)和氯氣(Cl2),由於兩者都是強氧化劑,因此它們會和清潔劑中的揮發性有機化合物——檸檬烯(limonene)產生反應。

檸檬烯是最豐富的揮發性有機化合物之一,許多我們的日常用品有它的存在,例如個人護理產品、清潔用品、空氣清新劑等。

檸檬烯本身是無毒的,在不同的室內條件下,檸檬烯可以與臭氧或其他氧化劑反應,生成顆粒,例如它和氫氧自由基可以快速進行反應。

他們觀察到,在室內日光燈或陽光的照射下,檸檬烯會與次氯酸、氯氣發生反應,並在室內產生大量的粒子,接著他們用氣膠儀質譜法(Aerosol mass spectrometry)分析這些粒子後,發現這些例子大部分都是含氯的顆粒,吸入身體後可能對肺功能或氣管造成負面的影響 4

光照之下,在透明的空氣中可能發生了許多你完全察覺不到的化學反應!圖/Pixabay

然而,我們也不能完全把責任都推給檸檬烯。

事實上,當氯漂白劑溶液釋放出次氯酸(HOCl)和氯氣(Cl2)後,在光的照射下註1,很容易被分解為氫氧自由基及氯原子,它們倆也是強氧化劑,可以與許多室內揮發性有機化合物反應,產生氯化物,甚至有助於形成二級有機氣溶膠(SOA),可能會危害人體的呼吸系統健康 5

雖然這些顆粒的成分、對健康的影響程度還需要進一步研究,但我們仍然可以知道,這些光解作用、氧化反應形成的產物,對人體健康具有一定的風險。

使用漂白劑前,三件最重要的小事

次氯酸鈉在我們的生活中扮演著重要的角色,游泳池、廁所乃至於免疫系統,都可以發現它的存在。

然而如同歌詞裡說「水能載舟,亦能煮粥」,次氯酸鈉帶來便利的同時,也伴隨著其他風險,為了避免更多因誤用而造成的悲劇,我們必須了解如何安全的使用漂白劑,以下為大家整理了和次氯酸鈉平安共處的 3 大守則!

  1. 禁止飲用與避免觸摸

次氯酸鈉之所以能「消毒殺菌」,是因為具有一定的生物毒性,如果誤飲可能會造成中毒,在使用次氯酸鈉進行清潔時,最好戴上口罩及手套,避免直接接觸喔!

請盡量戴上手套、口罩,避免與清潔劑零距離的接觸。圖/Unsplash
  1. 避開陽光及高溫

如同剛剛的研究提到,次氯酸鈉遇到光或熱會被分解成有毒的氯氣,因此平常不使用時要保存在陰涼處,也不要搭配熱水使用。

  1. 避免與清潔劑混合

除了上面提到的檸檬烯以外,其實清潔劑裡還含有其他物質,會跟次氯酸鈉反應生成氯氣或其他對人體有不良影響的化學物質。

即使上述這些注意事項看起來都是常識,卻非常容易被大家忽略!請大家務必謹慎、聰明地使用,才能讓我們在享受潔淨空間的同時,避免意外的發生!

註解

  1. 這項研究的實驗是在只有朝北窗戶的房間內進行的,他們推測窗戶接收陽光較多的房間會有更迅速的光解反應。

參考資料

  1. Wang, C., Collins, D. B., & Abbatt, J. P. (2019). Indoor illumination of terpenes and bleach emissions leads to particle formation and growth. Environmental Science & Technology, 53(20), 11792-11800.
  2. Yahoo新聞:「漂白水+清潔劑」刷浴室 她聞刺鼻味倒地……4天後亡
  3. 香港政府一站通:漂白水的使用
  4. Das, R., & Blanc, P. D. (1993). Chlorine gas exposure and the lung: a review. Toxicology and industrial health, 9(3), 439-455.
  5. Gaschen, A., Lang, D., Kalberer, M., Savi, M., Geiser, T., Gazdhar, A., … & Geiser, M. (2010). Cellular responses after exposure of lung cell cultures to secondary organic aerosol particles. Environmental science & technology, 44(4), 1424-1430.
所有討論 1

1

2
1

文字

分享

1
2
1
「負離子」真的有拿~麼厲害?——《化學有多重要,為什麼我從來不知道?》
商周出版_96
・2020/10/15 ・2721字 ・閱讀時間約 5 分鐘 ・SR值 492 ・五年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 作者/陳瑋駿

「負離子」在商品化的過程中算是被徹底濫用了,負離子的走紅,完全可說是拜商業行銷所賜。

什麼是負離子呢?

跟「陰離子」差別又在哪?雖然本質上來說,負離子與陰離子原本應指一樣的事物,只是翻譯上的問題,但若以商品化的初衷,負離子往往被視為「帶有電子的空氣」。

雖然這並不是一個科學正確的名詞,不過為了接下來討論方便,我們先遷就大多數人的慣性稱呼,叫它負離子吧。但別忘了,這裡所說的負離子,是「帶有電子的空氣」

為何讓空氣攜帶電子就可以賣錢?

這跟一個小遊戲有關。你有玩過氣球摩擦頭髮的遊戲嗎?因為氣球本身材質的緣故,與頭髮摩擦時,可從頭髮中得到少量電子,形成所謂的「靜電」。你會發現,氣球在摩擦頭髮後稍微拿開,不要離頭皮太遠,你可以看到髮絲會微微豎起,彷彿被吸附在氣球上。

事實上,氣球能吸附的不僅是頭髮而已,還可以吸起小碎紙片,還有灰塵微粒。同樣回過頭來看,「帶有電子的空氣」就像「帶有電子的氣球」一樣,可以吸附空氣中的小灰塵,進而達到空氣清淨、除塵的效果。不過,無論是空氣或氣球上的電子都無法久留,不消幾分鐘就會跳出去而回到原本不帶電的狀態。

玩氣球摩擦頭髮的遊戲時,將氣球拿開後,可以看到髮絲微微豎起。圖/商周出版

經過解釋之後,你是否覺得負離子並不是什麼特別先進的技術?不過,空氣不像氣球那樣可以抓來摩擦頭髮,那麼要如何吹出充滿負離子的空氣呢?

很簡單,只要在吹風口加裝一個所謂的「負離子產生器」就可以了(這玩意兒超便宜,不信去 Google 看看)!它會透過通電,讓電子們在一個金屬尖端上集合,當空氣通過金屬尖端時,會順手抓了點電子帶走。於是帶著電子的空氣就此啟程,接著就像前述的氣球例子一樣,把空氣中微小的髒汙粒子給吸住啦!

雖然商人口中的負離子不是一個「科學正確」的名詞,但既然有所謂的負離子,相對來講有「正離子」嗎?如果有的話,它們又有什麼用呢?

你有到過瀑布旅行嗎?是不是許多人都會形容,在瀑布旁呼吸時空氣特別清新?沒錯!瀑布周圍的空氣往往比較乾淨。

這不完全是因為森林裡汙染少的緣故,而是瀑布下墜的水珠在與空氣摩擦時,少量的電子會從水珠短暫轉移到空氣中,此時不只是空氣,其實就連小水珠也具有吸附灰塵微粒的功能,而小水珠正是「正離子」。

所以透過正、負離子的幫忙,空氣特別乾淨清爽(同樣的,大雨過後的空氣是不是也很清新?)!

瀑布下墜的水珠在和空氣摩擦時,少量電子會從水珠轉移至空氣中。圖/商周出版

如果還不相信「正離子」的存在,再拿著氣球摩擦頭髮看看吧!當氣球離開頭髮之後,試試看,找一些小紙片靠近頭髮,頭髮是不是一樣可以把紙片吸起來呢?這是因為電子從頭髮跑到氣球的緣故,此時的頭髮短暫失去了一些電子而帶正電,證明了正離子也有一樣吸附塵埃的作用。

日本伴手禮第一負離子吹風機怎麼來的?

負離子的應用還不止於「吸附」,若應用得宜,負離子的另外一個特性—「互斥」也能成為生財工具。例如近年極受歡迎的負離子吹風機,幾乎是所有旅日觀光客搶購家電名單的第一名。許多人使用後發現,一般吹風機是使用大量熱風吹乾頭髮,但吹乾效果卻遠不如負離子吹風機那麼好,這到底是怎麼回事呢?

首先,來談談為什麼吹風機要搭載負離子產生器?

要知道,負離子與負離子之間並不是互相吸引,而是互相排斥。在負離子被吹送到頭髮之後,電子跳到頭髮上面,頭髮之間便「相看兩厭」不容易糾纏在一起,進而維持髮絲之間的秩序,頭髮便相對容易快乾。

許多人認為負離子吹風機吹乾效果比一般吹風機好,但真的是負離子的功勞嗎?圖/giphy

但這樣子講對負離子來說的確是有些過譽,因為要快速吹乾頭髮還得考慮風量、溫度等因素,不同機種的參數也不盡相同,或許負離子還不是最關鍵,只是讓價格水漲船高的推手之一。

如果要證明負離子縮短了多少時間,最科學的方法,便是將吹風機的負離子產生器移除掉,用一模一樣的手法、在一模一樣的環境下吹頭髮。不過對業者來說,這也許是一個相當冒險的實驗,要是吹乾時間相去不遠,「負離子」可能就此跌落神壇,所以市面上似乎還看不到同款吹風機做出搭載與不搭載負離子的版本,也許就是這個原因吧?

今晚,我想來點負離子粉……

不過,要產生負離子的手段還不只有透過摩擦或通電來達成,只要觀察琳瑯滿目市售的負離子商品,相信不難看到負離子水壺、負離子床墊、負離子涼被⋯⋯負離子如此百搭,彷彿食衣住行都可以 feat. 負離子。

但這些日用品可沒有藏著一隻「皮卡丘」,偷偷幫你放電來聚集電子,其中的奧祕,便是在這些商品的製造過程中,摻入所謂的「負離子粉」

負離子粉其實也不是什麼神祕的黑科技,而是摻入了一些具有放射性的成分在裡面,在之後的章節我們會談到輻射線,現在你只要知道,這股能量足以讓空氣裡的電子短暫的脫逃,產生正、負離子。

但這類的負離子產品就不得不小心看待,因為這類輻射線能量較高的產品,如果是設計為長時間穿戴,就必須當心是否輻射劑量過高,如劑量越高,長久下來對人體造成傷害的風險也就越高。

所以,有「負離子」就有保庇嗎?

說到這裡,我想你一定能明白,不管我們用哪種手段製造出所謂的「負離子」,本質上就只是帶有電子的空氣。然而,如果你追求的是療效,目前在醫學上還沒有明確且一致的證據支持負離子對人體有益處。

因此想要購入負離子的商品來求個心安的同時,最重要的還是留意產品是否符合安全規範,否則讓來路不明的商品傷了身,還賠了荷包裡的辛苦錢,這個嘔氣的心理傷害也許比生理上的傷害還來得顯著吧!

——本文摘自泛科學2020年10月選書《化學有多重要,為什麼我從來不知道?》,2020 年 8月,商周出版