Gedik 以及他的團隊,包括畢業生 Yihua Wang 以及 James McIver,MIT 博士後 David Hsieh,則設計出一種方法,一次就能對電子能量、動量與自旋進行詳盡的三維測繪。他們利用短暫、強烈的圓偏振雷射光脈衝辦到這件事,其傳播時間可精確地被量測出來。
Wang 表示,透過這種新技術,MIT 研究者能獲得「朝各種不同方向行進且具不同動量的電子」其自旋與運動有何關係的圖像,那利用其他方法只能獲得片段時間。在一篇出現在 11/11 Physical Review Letters 期刊的論文中(http://link.aps.org/doi/10.1103/PhysRevLett.107.207602),Gedik 以及他的團隊描述這種方法。
除了展示這種新奇方法並證明其效用外,Gedik 表示,”我們學到一些意料之外的事。” 他們發現,自旋方向並非精確地與電子運動方向垂直,當電子以較高的能量運動時,會產生非預期的傾斜 — 預期準直的一種偏差(a sort of warping of the expected alignment)。Gedik 表示,當這些材料被用於新技術時,理解這種歪曲將十分重要。
1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。
-----廣告,請繼續往下閱讀-----
我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。
麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。
而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。
不過,這裡有個關鍵細節。
在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。
從 DNA 藍圖到生物積木:融合蛋白的設計巧思
融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。
我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。
在我們日常生活裡,一個物體(例如地球)可以擁有兩種不同類型的角動量。第一種類型是由於物體的質心繞著某個固定(例如太陽)的外部點旋轉而引起的,這通常稱為軌道角動量。第二種類型是由於物體的內部運動引起的,這通常稱為自旋角動量。在量子物理學裡,粒子可以由於其在空間中的運動而擁有軌道角動量,也可以由於其內部運動而擁有自旋角動量。實際上,因為基本粒子都是無結構的點粒子,用我們日常物體的比喻並不完全準確1;因此在量子力學中,最好將自旋角動量視為是粒子所擁有的「內在性質」,並不是粒子真正在旋轉。實驗發現大部分的基本粒子都具有獨特的自旋角動量,就像擁有獨特的電荷和質量一樣:電子的自旋角動量為 ½ 2,光子的自旋角動量為 1。
Gedik 以及他的團隊,包括畢業生 Yihua Wang 以及 James McIver,MIT 博士後 David Hsieh,則設計出一種方法,一次就能對電子能量、動量與自旋進行詳盡的三維測繪。他們利用短暫、強烈的圓偏振雷射光脈衝辦到這件事,其傳播時間可精確地被量測出來。
Wang 表示,透過這種新技術,MIT 研究者能獲得「朝各種不同方向行進且具不同動量的電子」其自旋與運動有何關係的圖像,那利用其他方法只能獲得片段時間。在一篇出現在 11/11 Physical Review Letters 期刊的論文中(http://link.aps.org/doi/10.1103/PhysRevLett.107.207602),Gedik 以及他的團隊描述這種方法。
除了展示這種新奇方法並證明其效用外,Gedik 表示,”我們學到一些意料之外的事。” 他們發現,自旋方向並非精確地與電子運動方向垂直,當電子以較高的能量運動時,會產生非預期的傾斜 — 預期準直的一種偏差(a sort of warping of the expected alignment)。Gedik 表示,當這些材料被用於新技術時,理解這種歪曲將十分重要。