0

0
1

文字

分享

0
0
1

音樂與噪音的差別——《好音樂的科學》

大雁出版基地_96
・2016/07/21 ・2665字 ・閱讀時間約 5 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

音高是什麼?

有了音高,我們就能區分「樂音」和「噪音」。接下來我會用更多篇幅加以說明,這裡我們先用一段簡短介紹起個頭。

在哼唱任一曲調時,你需要為每一個音選擇時值、響度和音高。一首曲子的響度(音量)和時值(音長)的細微變化,可傳遞許多情緒上的訊息——不過由於我們等會只需哼唱〈黑綿羊咩咩叫〉這首歌的前四個音,所以暫且不必太在意這個部分。若你現在試著以同樣的音量和音長哼唱這首歌的前四個音,剩下的,就只需選擇音高了。這首歌前兩個音的音高是一樣的,而第三個音的音高要提高,第四個音的音高則又跟第三個音相同。

每個音都是由空氣間規律、重複的振動所產生,你剛才所哼唱的每一個音,都是由聲帶間高頻率的規律振動所發出。當哼唱頭兩個音的時候,我們的聲帶每秒約振動一百次;而唱到第三個音時,由於我們必須把音高向上拉,因此聲帶每秒的振動次數也跟著增加。所以,無論一個音是由振動的弦、還是由你振動的聲帶所產生的——較高的音每秒需振動的次數也較多。而每一首曲調都是由一連串音高不同的音所組成的。

音高1
使用喉鏡觀察的聲帶(Vocal fold)示意圖。圖/wikipedia

為這些音命名

鋼琴或其他樂器上的音乃是以前七個英文字母來命名,即 A、B、C、D、E、F、G。在這些音之間還另外穿插有幾個音,即鋼琴上的黑色琴鍵,例如在 A 和 B 之間穿插了一個音,我們可叫它「升 A」,意即比 A 高一個音級;或「降B」,意即比 B 低一個音級。這套看來有點兩光的音符命名系統,已傳承了數個世紀,這部分我會在第九章詳加說明。目前各位只需知道音符是以英文字母命名,且有時前面還會跟著「升」或「降」等字眼。在左頁圖片中,因頁面限制,我無法將「升」或「降」等字加上去,只能以傳統符號「♭」來表示「降」;並以「#」來表示「升」。

-----廣告,請繼續往下閱讀-----
音高2
音階以及升降音示意圖。圖/youtube

全世界所有的鋼琴,都被調成一樣的音,亦即你在赫爾辛基按下鋼琴上的一個琴鍵,並將此鍵的音高記錄下來,然後與在紐約的某架鋼琴上的同一個琴鍵的音高相比較,就會發現兩個音是一模一樣的。同樣地,全世界由單簧管或是薩克斯風所發出的音,也都是一樣的。你也許覺得理所當然,但其實才在不久前,世界各國、甚至各城市間同一個音的音高原本都是不一樣的。而今日全球統一採行的音符,是後來經過謹慎挑選的產物。但問題是,當初是由誰來挑選的?又為什麼是這些音?

大家為何使用一樣的音?

假如你會演奏弦樂器像是小提琴或吉他的話,就能以扭緊鬆開琴弦的方式來調整音高。在一開始學琴的時候,就需學習如何利用這種收緊或放鬆弦的方式來為你的琴調音,也就是讓弦以正確的音高差距來發出每個音。舉例來說,任兩根相鄰的小提琴弦之間的音高差,就跟〈小星星〉這首兒歌裡的頭兩個音(第一組「一閃」),以及第三、四個音(第二組「一閃」),之間的差距是相同的。

那麼就拿為小提琴調音來舉例吧!第一步是將最粗的那根弦調成正確的 G 音,接著再利用該曲第一句中兩組「一閃」音高間的音差,將其餘的弦,以兩兩對照的方式互相調音。這第一個做為基準的 G 音,可使用音叉進行校準,或利用調好音的鋼琴來對照調音。但倘若你手邊既無音叉亦無鋼琴時,該怎麼辦呢?

當你獨自演奏弦樂器時,可從最粗的那根琴弦上挑選一個原始音,然後根據這根弦來調其餘的弦。務必確認任兩根弦之間的音差,與兩組「一閃」間的音高差一致。在選擇原始音高時,只需確保該弦已繃得夠緊以便發出清楚的音,但又不會太緊以致琴弦斷裂。你一開始所挑選的音高並非 G 音(除非你擁有絕對音高,這部分我留待之後的章節說明),其實,這個音可能是介於鋼琴上兩個相鄰琴鍵間的音,像是「較 A 高一點」或「比 F 低一些」的音。

-----廣告,請繼續往下閱讀-----
音高3
藉由弦的鬆緊度調整音高。圖/flickr

只要你任兩根琴弦間的音高差,與兩組「一閃」間的音高差一致,所奏出的音便不會偏到哪去,接著其他的弦樂手就能跟著調成一樣的音了。不過,要是其中有吹奏長笛的樂手,便無法一起演奏了。這是因為長笛或任何管樂器上的音都是固定的,沒辦法讓你自行選用之前的那些原始音。例如,長笛手可吹奏「E」或「F」音,卻無法吹出「比 E 高一點」的音。

你和其他弦樂手可同時演奏一段「比 E 高一點─比 F 高一點─比 C 高一點」的旋律,且聽起來就跟長笛手吹奏「E——F——C」的旋律一樣悅耳。但當兩組人馬同時演奏時,恐怕就很難聽了。只有下列兩種方式可容許大家作伙一起演奏:

  1. 當有人看到長笛手的樂器多出了幾公釐時,小提琴手得先制止長笛手演奏,然後就必須在長度較短的新長笛上,就正確的指位把所有的洞鑽出來,或是
  2. 將所有的小提琴都調成跟長笛一樣的音,這樣做的話,其他樂器就可加入了,因為大家都統一以標準音來演奏。

這些標準音並沒有比其他的音更優美動聽,只是「比較正確」而已,因為有人必須決定長笛或其他管樂器的長度。過去比較麻煩的是,不同國家所製造的長笛長短不大一致,意即德國的長笛手除非用的是英國製的長笛,否則便無法跟英國的長笛手一起演奏。

在歷經許多何者才是最佳長度的爭論後,便決定由一群不太講究穿著的專家組成委員會,來統一制訂大家今後使用的標準音。在經過相當多的專業討論(聽起來比較像爭吵)後,這群人便於 1939 年在倫敦舉行的一場會議中,決定我們今日所使用的音有哪些。這也就是現在通行全世界,不論是長笛還是所有其他的西洋樂器如小提琴、單簧管、吉他、鋼琴和木琴等,所共同採用的一套標準音。

-----廣告,請繼續往下閱讀-----

如今,當你聽到有人說「我擁有絕對音感」時,即表示這些標準音的音高已深深烙印在他們的腦海裡,而此一特殊能力,將會是下一章的主題。


書封

 

 

你知道最早被記錄下來的完整樂曲竟然是古希臘的搖滾樂嗎?為什麼身為亞洲人的我們,比較容易擁有「絕對音感」?從科學的角度書寫音樂的故事。 《好音樂的科學:破解基礎樂理和美妙旋律的音階秘密》,大雁文化出版。

文章難易度
大雁出版基地_96
5 篇文章 ・ 8 位粉絲
一個支撐成熟編輯人獨當一面、有利中小品牌生存發展的書業基地。

0

0
0

文字

分享

0
0
0
Intel® Core™ Ultra AI 處理器:下一代晶片的革命性進展
鳥苷三磷酸 (PanSci Promo)_96
・2024/05/21 ・2364字 ・閱讀時間約 4 分鐘

本文由 Intel 委託,泛科學企劃執行。 

在當今快節奏的數位時代,對於處理器性能的需求已經不再僅僅停留在日常應用上。從遊戲到學術,從設計到內容創作,各行各業都需要更快速、更高效的運算能力,而人工智慧(AI)的蓬勃發展更是推動了這一需求的急劇增長。在這樣的背景下,Intel 推出了一款極具潛力的處理器—— Intel® Core™ Ultra,該處理器不僅滿足了對於高性能的追求,更為使用者提供了運行 AI 模型的全新體驗。

先進製程:效能飛躍提升

現在的晶片已不是單純的 CPU 或是 GPU,而是混合在一起。為了延續摩爾定律,也就是讓相同面積的晶片每過 18 個月,效能就提升一倍的目標,整個半導體產業正朝兩個不同方向努力。

其中之一是追求更先進的技術,發展出更小奈米的製程節點,做出體積更小的電晶體。常見的方法包含:引進極紫外光 ( EUV ) 曝光機,來刻出更小的電晶體。又或是從材料結構下手,發展不同構造的電晶體,例如鰭式場效電晶體 ( FinFET )、環繞式閘極 ( GAAFET ) 電晶體及互補式場效電晶體 ( CFET ),讓電晶體可以更小、更快。這種持續挑戰物理極限的方式稱為深度摩爾定律——More Moore。

-----廣告,請繼續往下閱讀-----

另一種則是將含有數億個電晶體的密集晶片重新排列。就像人口密集的都會區都逐漸轉向「垂直城市」的發展模式。對晶片來說,雖然每個電晶體的大小還是一樣大,但是重新排列以後,不僅單位面積上可以堆疊更多的半導體電路,還能縮短這些區塊間資訊傳遞的時間,提升晶片的效能。這種透過晶片設計提高效能的方法,則稱為超越摩爾定律——More than Moore。

而 Intel® Core™ Ultra 處理器便是具備兩者優點的結晶。

圖/PanSci

Tile 架構:釋放多核心潛能

在超越摩爾定律方面,Intel® Core™ Ultra 處理器以其獨特的 Tile 架構而聞名,將 CPU、GPU、以及 AI 加速器(NPU)等不同單元分開,使得這些單元可以根據需求靈活啟用、停用,從而提高了能源效率。這一設計使得處理器可以更好地應對多任務處理,從日常應用到專業任務,都能夠以更高效的方式運行。

CPU Tile 採用了 Intel 最新的 4 奈米製程和 EUV 曝光技術,將鰭式電晶體 FinFET 中的像是魚鰭般阻擋漏電流的鰭片構造減少至三片,降低延遲與功耗,使效能提升了 20%,讓使用者可以更加流暢地執行各種應用程序,提高工作效率。

-----廣告,請繼續往下閱讀-----
鰭式電晶體 FinFET。圖/Intel

Foveros 3D 封裝技術:高效數據傳輸

2017 年,Intel 開發出了新的封裝技術 EMIB 嵌入式多晶片互聯橋,這種封裝技術在各個 Tile 的裸晶之間,搭建了一座「矽橋 ( Silicon Bridge ) 」,達成晶片的橫向連接。

圖/Intel

而 Foveros 3D 封裝技術是基於 EMIB 更進一步改良的封裝技術,它能將處理器、記憶體、IO 單元上下堆疊,垂直方向利用導線串聯,橫向則使用 EMIB 連接,提供高頻寬低延遲的數據傳輸。這種創新的封裝技術不僅使得處理器的整體尺寸更小,更提高了散熱效能,使得處理器可以長期高效運行。

運行 AI 模型的專用筆電——MSI Stealth 16 AI Studio

除了傳統的 CPU 和 GPU 之外,Intel® Core™ Ultra 處理器還整合了多種專用單元,專門用於在本機端高效運行 AI 模型。這使得使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時節省了連接雲端算力的成本。

MSI 最新推出的筆電 Stealth 16 AI Studio ,搭載了最新的 Intel Core™ Ultra 9 處理器,是一款極具魅力的產品。不僅適合遊戲娛樂,其外觀設計結合了落質感外型與卓越效能,使得使用者在使用時能感受到高品質的工藝。鎂鋁合金質感的沉穩機身設計,僅重 1.99kg,厚度僅有 19.95mm,輕薄便攜,適合需要每天通勤的上班族,與在咖啡廳尋找靈感的創作者。

-----廣告,請繼續往下閱讀-----

除了外觀設計之外, Stealth 16 AI Studio 也擁有出色的散熱性能。搭載了 Cooler Boost 5 強效散熱技術,能夠有效排除廢熱,保持長時間穩定高效能表現。良好的散熱表現不僅能夠確保處理器的效能得到充分發揮,還能幫助使用者在長時間使用下的保持舒適性和穩定性。

Stealth 16 AI Studio 的 Intel Core™ Ultra 處理器,其性能更是一大亮點。除了傳統的 CPU 和 GPU 之外,Intel Core™ Ultra 處理器還整合了多種專用單元,專門針對在本機端高效運行 AI 模型的需求。內建專為加速AI應用而設計的 NPU,更提供強大的效能表現,有助於提升效率並保持長時間的續航力。讓使用者可以在不連接雲端的情況下,依然可以快速準確地運行各種複雜的 AI 算法,保護了數據隱私,同時也節省了連接雲端算力的成本。

軟體方面,Intel 與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化。與 Adobe 等軟體的合作使得使用者在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。獨家微星AI 智慧引擎能針對使用情境並自動調整硬體設定,以實現最佳效能表現。再加上獨家 AI Artist,更進一步提升使用者體驗,直接輕鬆生成豐富圖像,實現了更便捷的內容創作。

此外 Intel 也與眾多軟體開發商合作,針對 Intel 架構做了特別最佳化,讓 Intel® Core™ Ultra處理器將AI加速能力充分發揮。例如,與 Adobe 等軟體使得使用者可以在處理影像、圖像等多媒體內容時,能夠以更高效的方式運行 AI 算法,大幅提高創作效率。為各行專業人士提供了更加多元、便捷的工具,成為工作中的一大助力。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
199 篇文章 ・ 305 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

5
1

文字

分享

0
5
1
指甲刮黑板的聲音,為何讓人難以忍受?
雅文兒童聽語文教基金會_96
・2023/10/22 ・2522字 ・閱讀時間約 5 分鐘

  • 朱家瑩/雅文基金會聽語科學研究中心 研究員

想像一下當你聽到手指甲刮著黑板產生的摩擦聲,或者是拿著叉子摩擦著不鏽鋼碗的聲音,抑或是小孩的哭叫聲,有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵,甚至是情緒爆炸、只想要遠離現場呢?這些讓人不適的聲音,是有其特有的聲學特質?或是其他緣故呢?

想像一下指甲刮黑板的聲音。圖/Pexels

不是尖銳、高頻音就刺耳,而是流淌在你我血液的祖先智慧

一般認為,令人不適的聲音是因為刺耳的高頻聲,尤其像是手指甲刮黑板時所產生的摩擦聲,其中那種「ㄍㄧ ㄍㄧ ㄍㄧ」的聲音,似乎是造成不適感的主因。

然而,Halpern、Blake 和 Hillenbrand(1986)這三位研究者對於這個現象感到好奇,因此他們進行了一項實驗 [1],他們將那些令人不適聲音(如:刮金屬或石板的聲音)中的高頻音減弱。

結果顯示,即使減弱尖銳的高頻聲音,受試者仍然感到不適,因而主張尖銳的高頻音並不是造成不適感的主因。接續 Halpern 等人在企圖尋求答案時,意外發現刮黑板的聲音頻譜圖跟靈長類猴子的警告叫聲非常相似,因而大膽推測這個不適感並非高頻音造成的,而是源於人類祖先的記憶。

-----廣告,請繼續往下閱讀-----

人類對特定頻率區間的聲音感知最敏感,加上跨感官的連結,讓人聽到某些音就不適

可惜,到底是不是來自老祖先的智慧傳承,這點未獲得後續研究的支持。另一方面,Kumar 等人(2008)進一步以聲學分析探究是否是因特定頻率導致聆聽的不適感時,發現聲音中涵蓋 2500-5500 赫茲這個頻率區間的聲學頻率似乎特別容易引起聽者的不適感 [2]

有沒有哪一個聲音會讓你全身起雞皮疙瘩,想要用手摀住耳朵?圖/Pexels

他們推測這可能是因為這個頻率範圍的聲音感知上最為強烈,同時也具有最高的能量,因此使得聽覺系統特別對這些頻率的聲音敏感。

但是,我們平常聊天談話中也涵蓋了這個頻率範圍的聲音,除了頻率之外,是不是還有其他因素造成對某些聲音的不適感呢?

Ro 等人(2013)發現當聽到聲音時,聲音進入大腦的聽覺皮質同時,會傳遞訊號到觸覺感官系統,啟動了觸覺感官,讓聽者聽到聲音時,「感覺」到自己的皮膚彷彿被指甲刮的刺痛感 [3]

-----廣告,請繼續往下閱讀-----

聽聲音會啟動身體觸覺感官系統並非只存在刮黑板這類聲音,有些人在聽到音樂聲,像是聽到低音貝斯的聲音時,也會感覺到自己的身體也在震動,甚至感受到皮膚的不適感 [4、5]

也許因為這個跨感官的訊號傳遞,讓身體的其他部位也出現不適的感受,才會讓聽者對於這些聲音感到不適。

當感知到令人不適的聲音,杏仁核會依據習得經驗,決定是否啟動保護機制!

Zald 與 Pardo(2002)發現當聽到讓人感到不適的聲音刺激時,大腦中的杏仁核(amygdala)會高度活化 [6],而杏仁核在大腦中負責掌控恐懼、焦慮、害怕等負面情緒,換句話說,當聲音訊息抵達杏仁核時,它會誘發情緒反應,進而導致我們做出不同行為反應 [7]

杏仁核的啟動是大腦的一種保護機制,透過過往的經驗連結學習會對讓人不適的聲音發出警報[8] ,當聽者遇到可能危及安全的聲音時,杏仁核就會發出警報。

-----廣告,請繼續往下閱讀-----

例如,當聽到車子緊急剎車的聲音時,這個聲音傳送到杏仁核,會進而引起我們想要逃離的反應,或者產生對駕駛者行為的憤怒反應。

由於杏仁核在聆聽這些聲音時會高度活化,Kumar 等人(2012)進一步試圖了解在聆聽令人不適的聲音時,杏仁核在大腦中扮演著怎樣的角色,以及聲音資訊如何被傳遞到杏仁核。

他們的研究結果顯示,聲音刺激會最先傳送到聽覺皮質(auditory cortex)進行聲學訊息處理和分析,解碼聲音所代表的意義,例如,聽到「ㄍㄧ」的剎車聲,解碼出來的是來自汽車或者腳踏車的剎車聲。聽覺皮質處理完畢後,將資訊傳遞到杏仁核,當杏仁核接收到來自聽覺皮質的訊號後,依據這些訊息及過去經驗發出警報 [8],誘發恐懼、焦慮或憤怒等負面情緒,並可能促使進一步的行為反應,像是尖叫、摀住耳朵,或逃離現場。

舉例來說,如果是汽車的剎車聲,基於過去的經驗,可能存在危險,因此可能會誘發恐懼情緒,並引發立馬逃離現場的行為舉動。

-----廣告,請繼續往下閱讀-----
有些人基於過去的經驗,聽到汽車的剎車聲,可能會誘發恐懼情緒。圖/Pexels

然而,如果解碼後的聲音是腳踏車的剎車聲,根據過去的經驗,可能不會有危及生命的危險,因此即便會觸發閃躲的動作行為,但負面情緒可能不如汽車剎車聲來的強烈,可能只會憤怒的罵騎車的人不長眼。

聽到某些聲音,讓人立馬想逃或想戰,也許這個過往的經驗是來自遠古時代祖先的傳承,但更可能是因為聽到這些聲音時,觸覺感官系統被啟動了,身體上「感覺」到不適,所以當不適的聲音再次出現時,杏仁核的活化反應就更增強,讓我們除了單純的接收到聲音之外,也產生了身體及情緒上的反應。

參考文獻

  1. Halpern, D. L., Blake, R., & Hillenbrand, J. (1986). Psychoacoustics of a chilling sound. Perception & Psychophysics39, 77-80.
  2. Kumar, S., Forster, H. M., Bailey, P., & Griffiths, T. D. (2008). Mapping unpleasantness of sounds to their auditory representation. The Journal of the Acoustical Society of America124(6), 3810-3817.
  3. Ro, T., Ellmore, T. M., & Beauchamp, M. S. (2013). A neural link between feeling and hearing. Cerebral cortex, 23(7), 1724-1730.
  4. Koenig, L., & Ro, T. (2022). Sound Frequency Predicts the Bodily Location of Auditory-Induced Tactile Sensations in Synesthetic and Ordinary Perception. bioRxiv.
  5. Lad, D., Wilkins, A., Johnstone, E., Vuong, Q.C. (2022). Feeling the music: The feel and sound of songs attenuate pain. British Journal of Pain, 16(5), 518-527. 
  6. Zald, D. H., & Pardo, J. V. (2002). The neural correlates of aversive auditory stimulation. Neuroimage16(3), 746-753.
  7. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience23(1), 155-184.
  8. Kumar, S., von Kriegstein, K., Friston, K., & Griffiths, T. D. (2012). Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds. Journal of Neuroscience, 32(41), 14184-14192.
雅文兒童聽語文教基金會_96
56 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

3
0

文字

分享

0
3
0
噗!不小心放屁了好尷尬!怎麼辦?——《有點噁的科學》
時報出版_96
・2023/09/24 ・1400字 ・閱讀時間約 2 分鐘

感官的知覺帶給我們許多體驗

我們對自己身體生理現象感到尷尬,這種感覺的來源就在於感官知覺的運作機制:一套我們大腦與外界之間的中介工具。

最明顯的感官是視覺、觸覺、聽覺、嗅覺和味覺,還有,你也可以感覺到疼痛、冷熱、時間(雖然不太準確)、加速、平穩、血液中的氧氣和二氧化碳濃度以及本體感覺(對於四肢、肌肉的運動和位置的感受)。你能不盯著腳步爬樓梯嗎?那就是本體感覺。

我們得感官帶給我們感覺。圖/pexels

這些感官訊息全都被送到大腦:一個沉默的、謎樣器官,質感和斯帕姆午餐肉一樣。你永遠看不到它,它也永遠看不到你周圍的世界,但它會分析所有這些輸入的訊息,並且創造你對自我、愛戀、快樂、痛苦、羞恥、信任、恐懼、懷疑等完整感覺。

尷尬的感覺是從何而來

在公共場合聽到自己放屁會覺得不好意思?

-----廣告,請繼續往下閱讀-----
在公共場合聽到自己放屁會覺得不好意思?圖/giphy

這種感覺是由大腦的前扣帶迴膝皮層產生的。我們尚不了解其中的機制,但大多數心理學家都認為,羞恥感可能是為了維持社會秩序演化而來的,呈現羞恥的經典反應如臉紅、摸臉、視線向下和強制微笑,這些反應讓我們向其他人傳達訊息,表示自己明白破壞了社會常規且感到自責,因為有這樣的溝通功能進而又加強那些反應。

研究指出,表現出尷尬的人比較容易被喜歡、原諒和信任。這一定是幫助我們這種社群生物進化的有用工具,但我擔心它也會讓我們當個乖乖牌,阻礙個人獨特性發展。

感官小學堂

每個人感知世界的方式都不盡相同。聯覺(synaesthesia)是一種不尋常的感官知覺,它使一些人能夠將音樂、字母或星期幾視為顏色。其他有聯覺的人可能會將某些景象與氣味連結起來或者使某些詞語和味道產生聯繫。有一項研究發現,約 4.4% 的人能體驗聯覺。

更令人著迷的是其他動物擁有的感官,那些我們只能夢想的感知方式。狗能藉著磁感應來感測地球磁場,而且排便時往往習慣將自己的身體沿南北向磁力線對齊,牛也一樣。有些蛇有紅外線視覺,一些蜜蜂、鳥類和魚類的視力超出我們的可見光譜,能夠仔仔細細看到紫外線波頻,這意味著牠們實際上正在體驗我們幾乎無法想像的顏色。像嗑了藥一樣迷幻。

-----廣告,請繼續往下閱讀-----

註解

  • 我們確實知道大腦中不斷有微小的電子訊號滋滋作響,這些訊號透過八百六十億個稱為神經元的神經細胞與一百兆個突觸(神經元之間的連結──每個神經元透過它們與多達一萬個其他神經元相連)、八千五百萬個非神經元神經膠質細胞來進行發送、儲存和分析。大腦每天消耗四百卡路里的熱量(占總能量消耗的20%),有趣的是,無論是全神貫注寫一本科普書籍,還是靜靜凝視燭火發呆空想,這個耗能數值都保持不變。

——本文摘自《有點噁的科學:尷尬又失控的生理現象》,2023 年 8 月,時報出版,未經同意請勿轉載。

時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

0
1

文字

分享

0
0
1
音樂與噪音的差別——《好音樂的科學》
大雁出版基地_96
・2016/07/21 ・2665字 ・閱讀時間約 5 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

音高是什麼?

有了音高,我們就能區分「樂音」和「噪音」。接下來我會用更多篇幅加以說明,這裡我們先用一段簡短介紹起個頭。

在哼唱任一曲調時,你需要為每一個音選擇時值、響度和音高。一首曲子的響度(音量)和時值(音長)的細微變化,可傳遞許多情緒上的訊息——不過由於我們等會只需哼唱〈黑綿羊咩咩叫〉這首歌的前四個音,所以暫且不必太在意這個部分。若你現在試著以同樣的音量和音長哼唱這首歌的前四個音,剩下的,就只需選擇音高了。這首歌前兩個音的音高是一樣的,而第三個音的音高要提高,第四個音的音高則又跟第三個音相同。

每個音都是由空氣間規律、重複的振動所產生,你剛才所哼唱的每一個音,都是由聲帶間高頻率的規律振動所發出。當哼唱頭兩個音的時候,我們的聲帶每秒約振動一百次;而唱到第三個音時,由於我們必須把音高向上拉,因此聲帶每秒的振動次數也跟著增加。所以,無論一個音是由振動的弦、還是由你振動的聲帶所產生的——較高的音每秒需振動的次數也較多。而每一首曲調都是由一連串音高不同的音所組成的。

音高1
使用喉鏡觀察的聲帶(Vocal fold)示意圖。圖/wikipedia

-----廣告,請繼續往下閱讀-----

為這些音命名

鋼琴或其他樂器上的音乃是以前七個英文字母來命名,即 A、B、C、D、E、F、G。在這些音之間還另外穿插有幾個音,即鋼琴上的黑色琴鍵,例如在 A 和 B 之間穿插了一個音,我們可叫它「升 A」,意即比 A 高一個音級;或「降B」,意即比 B 低一個音級。這套看來有點兩光的音符命名系統,已傳承了數個世紀,這部分我會在第九章詳加說明。目前各位只需知道音符是以英文字母命名,且有時前面還會跟著「升」或「降」等字眼。在左頁圖片中,因頁面限制,我無法將「升」或「降」等字加上去,只能以傳統符號「♭」來表示「降」;並以「#」來表示「升」。

音高2
音階以及升降音示意圖。圖/youtube

全世界所有的鋼琴,都被調成一樣的音,亦即你在赫爾辛基按下鋼琴上的一個琴鍵,並將此鍵的音高記錄下來,然後與在紐約的某架鋼琴上的同一個琴鍵的音高相比較,就會發現兩個音是一模一樣的。同樣地,全世界由單簧管或是薩克斯風所發出的音,也都是一樣的。你也許覺得理所當然,但其實才在不久前,世界各國、甚至各城市間同一個音的音高原本都是不一樣的。而今日全球統一採行的音符,是後來經過謹慎挑選的產物。但問題是,當初是由誰來挑選的?又為什麼是這些音?

大家為何使用一樣的音?

假如你會演奏弦樂器像是小提琴或吉他的話,就能以扭緊鬆開琴弦的方式來調整音高。在一開始學琴的時候,就需學習如何利用這種收緊或放鬆弦的方式來為你的琴調音,也就是讓弦以正確的音高差距來發出每個音。舉例來說,任兩根相鄰的小提琴弦之間的音高差,就跟〈小星星〉這首兒歌裡的頭兩個音(第一組「一閃」),以及第三、四個音(第二組「一閃」),之間的差距是相同的。

-----廣告,請繼續往下閱讀-----

那麼就拿為小提琴調音來舉例吧!第一步是將最粗的那根弦調成正確的 G 音,接著再利用該曲第一句中兩組「一閃」音高間的音差,將其餘的弦,以兩兩對照的方式互相調音。這第一個做為基準的 G 音,可使用音叉進行校準,或利用調好音的鋼琴來對照調音。但倘若你手邊既無音叉亦無鋼琴時,該怎麼辦呢?

當你獨自演奏弦樂器時,可從最粗的那根琴弦上挑選一個原始音,然後根據這根弦來調其餘的弦。務必確認任兩根弦之間的音差,與兩組「一閃」間的音高差一致。在選擇原始音高時,只需確保該弦已繃得夠緊以便發出清楚的音,但又不會太緊以致琴弦斷裂。你一開始所挑選的音高並非 G 音(除非你擁有絕對音高,這部分我留待之後的章節說明),其實,這個音可能是介於鋼琴上兩個相鄰琴鍵間的音,像是「較 A 高一點」或「比 F 低一些」的音。

音高3
藉由弦的鬆緊度調整音高。圖/flickr

只要你任兩根琴弦間的音高差,與兩組「一閃」間的音高差一致,所奏出的音便不會偏到哪去,接著其他的弦樂手就能跟著調成一樣的音了。不過,要是其中有吹奏長笛的樂手,便無法一起演奏了。這是因為長笛或任何管樂器上的音都是固定的,沒辦法讓你自行選用之前的那些原始音。例如,長笛手可吹奏「E」或「F」音,卻無法吹出「比 E 高一點」的音。

-----廣告,請繼續往下閱讀-----

你和其他弦樂手可同時演奏一段「比 E 高一點─比 F 高一點─比 C 高一點」的旋律,且聽起來就跟長笛手吹奏「E——F——C」的旋律一樣悅耳。但當兩組人馬同時演奏時,恐怕就很難聽了。只有下列兩種方式可容許大家作伙一起演奏:

  1. 當有人看到長笛手的樂器多出了幾公釐時,小提琴手得先制止長笛手演奏,然後就必須在長度較短的新長笛上,就正確的指位把所有的洞鑽出來,或是
  2. 將所有的小提琴都調成跟長笛一樣的音,這樣做的話,其他樂器就可加入了,因為大家都統一以標準音來演奏。

這些標準音並沒有比其他的音更優美動聽,只是「比較正確」而已,因為有人必須決定長笛或其他管樂器的長度。過去比較麻煩的是,不同國家所製造的長笛長短不大一致,意即德國的長笛手除非用的是英國製的長笛,否則便無法跟英國的長笛手一起演奏。

在歷經許多何者才是最佳長度的爭論後,便決定由一群不太講究穿著的專家組成委員會,來統一制訂大家今後使用的標準音。在經過相當多的專業討論(聽起來比較像爭吵)後,這群人便於 1939 年在倫敦舉行的一場會議中,決定我們今日所使用的音有哪些。這也就是現在通行全世界,不論是長笛還是所有其他的西洋樂器如小提琴、單簧管、吉他、鋼琴和木琴等,所共同採用的一套標準音。

如今,當你聽到有人說「我擁有絕對音感」時,即表示這些標準音的音高已深深烙印在他們的腦海裡,而此一特殊能力,將會是下一章的主題。

-----廣告,請繼續往下閱讀-----

書封

 

 

你知道最早被記錄下來的完整樂曲竟然是古希臘的搖滾樂嗎?為什麼身為亞洲人的我們,比較容易擁有「絕對音感」?從科學的角度書寫音樂的故事。 《好音樂的科學:破解基礎樂理和美妙旋律的音階秘密》,大雁文化出版。

文章難易度
大雁出版基地_96
5 篇文章 ・ 8 位粉絲
一個支撐成熟編輯人獨當一面、有利中小品牌生存發展的書業基地。