Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

黑子去哪兒了?

臺北天文館_96
・2016/07/02 ・1085字 ・閱讀時間約 2 分鐘 ・SR值 515 ・六年級

太陽目前正處於第 24 活動周期中,這個周期的極大期落在 2014-2015 年,現在正處於黑子數量逐漸減少的下降階段。根據以往歷史記錄,每個太陽活動周期中,下降階段所耗的時間通常比上升階段久且緩;然而,太陽黑子數居然就從 6 月 3 日後開始降為 0,整個日面沒有任何黑子的蹤跡,如下圖美國航太總署(NASA)太陽動力觀測衛星( Solar Dynamics Observatory,SDO)6 月 4 日拍攝的太陽影像,持續到 6 月 5 日仍不見有黑子出現。

20160604_blanksun_strip

這意味著什麼?太陽活動周期像來回擺動的單擺,黑子數量有多有少,由少至多再回復少的狀態,一個周期平均約為11年。如今的無黑子狀態是趨向低黑子數的象徵,白話點說就是:太陽活動正進入極小期!

20160509_solar-cycle-sunspot-number

不過,這幾日的無黑子狀態還只是暫時的,在可見太陽表面以下之處還是存在許多磁節點,這些磁節點很快會會浮出太陽表面而形成新的黑子。現在的太陽活動周期並未結束,但會很快地衰退。太陽物理學家估計:黑子數抵達谷底的真正極小期很可能會落在 2019~2020 年;而從現在到極小期之間的這段時間,將三不五時地出現無黑子狀態。起初,無黑子狀態只會持續幾天,之後變成持續數週,再然後可能會好幾個月都見不到半顆黑子。

不過,不要以為太空天氣也會就此趨於寧靜。太陽極小期會帶來許多有趣的變化。例如:太陽發射出的極紫外輻射量會減少,地球高層大氣因而會降溫並潰縮。這種狀況有利於太空垃圾聚集在地球周圍。此外,太陽圈(heliosphere,太陽系勢力範圍)也會縮減,使得地球能更接近星際空間,如此一來,銀河宇宙線(galactic cosmic ray,來自銀河系本身的高能粒子)能更容易穿透至太陽系內側。事實上,地球已經處在宇宙線潮(cosmic ray surge)之中了,如下圖,以探空氣球測得的中緯度平流層的宇宙線強度比一年前增加了 12% 左右。

-----廣告,請繼續往下閱讀-----

20160215_cosmicrays

所以,準備對黑子說再見,然後,再對來自深太空的輻射說嗨吧!

(後續更新)

6 月 24 日的太陽,再度面臨無黑子狀態!

從 6 月 24 日至 7 月 2 日,太陽已經超過一周沒有黑子出現了。上一次這麼久沒見到黑子,是在 2010 年 12 月,當時太陽活動處在從極小期谷底剛要逐漸攀升的前夕。而這次這麼多天沒有黑子,顯然也是極小期即將來臨的訊號。

-----廣告,請繼續往下閱讀-----

根據 Spaceweather.com 網站的統計,自2009年迄今(2016 年 07 月 03 日)各年無黑子日數分別如下:

2016 年: 13 天 (7%) –6/4~7、6/24~7/3
2015 年: 0 天 (0%)

2014 年: 1 天 (<1%)
2013 年: 0 天 (0%)
2012 年: 0 天 (0%)
2011 年: 2 天 (<1%)
2010 年: 51 天 (14%)
2009 年: 260 天 (71%)


資料來源:What’s up in space-VANISHING SUNSPOTS, spaceweather.com, 2016.06.05, KLC

本文轉載自網路天文館

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
3

文字

分享

1
8
3
太陽第 25 週期是強或弱?NOAA、NASA 和 NCAR 持不同看法!
臺北天文館_96
・2021/06/07 ・2221字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在 2020 年底,美國 NOAA 和 NASA 的科學家宣布太陽活動極小期於 2019 年的 12 月結束,目前太陽活動穩定增長且中緯度出現磁極方向相反的黑子,代表第 25 太陽週期的到來。目前對驅動太陽活動的磁場於太陽內部的移動方式,乃至於磁極反轉的機制皆尚未完全了解,使得在建立太陽週期模型和預測太陽活動 上有許多挑戰。因此對第 25 週期太陽活動的強弱,看法也不相同。

太陽黑子週期

科學家把 1755 年訂為太陽活動的第 1 週期,並持續紀錄太陽黑子數目來分析太陽活動的變化。太陽活動如閃焰和日冕物質拋射等,會將能量和物質拋向太空。太陽活動造就了美麗的極光,卻也可能造成衛星軌道降低及儀器損害、電波通訊和電力傳輸的中斷。使得提供未來太空天氣粗略概況的太陽週期預報,顯得格外重要。

太陽黑子是磁場較強的區域,因磁場使內部能量不易傳播,溫度較低看起來較暗。太陽黑子數量和太陽活動相關(皆有約 11 年的週期),大多數閃焰和日冕物質拋射皆來自黑子群。太陽和地球一樣具有磁場,南北磁極約 11 年交換一次,新生黑子的磁場方向也隨著改變。於太陽活動極大期時,黑子數量較多且太陽的磁極開始改變,之後太陽活動下降,直到極小期到來,此時黑子數量較少且彼此間距離較遠,甚至有時完全沒有黑子。

NOAA NASA 的預測

NASA 和 NOAA 每十年都會聚集一群科學家,他們會考慮不同模型, 對下個太陽週期的起始、黑子最多數量和太陽活動極大期的時間進行預測。模型通常採用和太陽活動相關的指標,如會受太陽影響的地球磁場或太陽磁極的磁場等。

科學家發現,在極小值時期,太陽磁極的磁場強度與下個週期太陽活動的強弱有關。假如極小值時期的磁極磁場較弱,接下來太陽週期亦較弱,此理論成功預測第 24 週的太陽活動。在過去的幾個週期中,太陽磁極的磁場逐漸減弱,同時最大的黑子數量也跟著下降。

-----廣告,請繼續往下閱讀-----
第 24 太陽黑子週期極大期 (左,2014 年 4 月) 與極小期 (右,2019 年 12 月) 的極紫外線太陽影像。圖/NASA/SDO

由於第 24 週期的磁極磁場強度和之前差不多,推測第 25 週期的太陽活動將類似第 24 週期。將在 2025 年 7 月達到最大黑子相對數 115 ,這將是測試此模型的好機會。科學家也預期第 25 週期的太陽活動,將不會如前 4 個週期般持續下降。目前無證據顯示太陽活動有趨向於蒙德極小期( 1645 ~ 1715 年間僅觀測到 50 顆左右的黑子)的跡象。

NOAA 和 NASA 預測第 25 週期的太陽活動將如同第 24 週期,並預計在 2025 年達到太陽活動極大值,估計黑子相對數為 115 。圖上的縱座標顯示太陽黑子數量,而橫座標則是時間。圖/NOAA

NCAR 的預測

美國國家大氣研究中心(NCAR)的科學家持相反意見,預測第 25 個太陽週期將是從 1975 年開始紀錄以來的太陽活動較強的週期之一,太陽極大期時的黑子相對數約在 210 ~ 260 之間。如果預測得到證實,將支持團隊的理論模型,即環繞太陽的磁場帶有 22 年週期,具有不同磁場方向的磁場帶的交互作用,產生 11 年的太陽黑子週期。

科學家發現日冕亮點,即太陽大氣在極紫外光的短暫閃爍,會由高緯度移動到赤道,並在中緯度時和黑子出現吻合。推測亮點標誌著磁場帶的傳播,當南北半球具有相反磁極的磁場帶在赤道相遇時,它們會互相湮滅造成「終結」事件, 結束上個太陽週期並開始下個週期。當南北半球的磁場帶(具相反磁場)往赤道移動時,新的磁場帶將在高緯度出現,這將造成下周期太陽磁場的反轉。

有時磁場帶在中緯度移動變慢,會延長磁場帶交互作用的時間,這將使當前的週期變長並減少下週期的黑子數量。由於需要足夠多不平衡的磁場以形成黑子,交互作用時間短有利黑子生成。回顧長達 270 年的觀測紀錄, 科學家進一步發現終結事件間的時間間隔,會影響太陽週期的強弱,間隔越長下個太陽週期就越弱,反之亦然。例如太陽的第 4 週期的終結事件間隔長達 15 年,使得第 5 週期非常弱,這也是道爾頓極小期的開始。同樣第 23 個太陽週期終結事件間隔 13 年,因此第 24 週期較短也較弱。藉此研究人員認為第 25 週期將是有紀錄以來較強的週期。

-----廣告,請繼續往下閱讀-----
上圖:最近第 23 和第 24 週期的太陽黑子數目隨時間的變化(縱軸為黑子數目,橫軸為時間),圖上顯示了黑子的總數 (黑色) 以及北半球 (紅色) 和南半球 (藍色) 的貢獻。虛線表示終止事件發生的時間,隨後太陽活動迅速增加。
下圖:過去 22 年磁場帶的活動隨緯度 (縱軸) 和時間 (橫軸) 演變的概念圖。可見到虛線為終止事件,兩終止事件的時間間隔,提供下個週期太陽活動極大值黑子數量的預測。
圖/McIntosh et al. (2020)

劇烈的太陽活動將會損害衛星連帶影響通訊傳播和 GPS 服務, 而其對地球磁場的影響可能使電力傳播和無線電通訊中斷,過多的輻射也將對太空人有害。因此了解太陽活動很重要,預測太陽週期將可幫助我們掌握和評估其潛在影響。

參考資料

  1. What Will Solar Cycle 25 Look Like?
  2. Solar Cycle 25 Is Here. NASA, NOAA Scientists Explain What That Means
  3. New sunspot cycle could be among strongest on record
  4. Overlapping Magnetic Activity Cycles and the Sunspot Number: Forecasting Sunspot Cycle 25 Amplitude

-----廣告,請繼續往下閱讀-----
所有討論 1
臺北天文館_96
482 篇文章 ・ 44 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

1

1
1

文字

分享

1
1
1
又是暖化又是冰期?科學家你搞得我好亂啊!
阿樹_96
・2015/07/23 ・2640字 ・閱讀時間約 5 分鐘 ・SR值 551 ・八年級

最近一則新聞提到「科學家警告:太陽15年後『休眠』 地球進入小冰河期!」是不是也就代表著,我們該擔心的是地球變冷,而不是全球暖化?

當然…不是這樣的,要是科學家真的有這麼說,不用鄉民,其他科學家會先把他拖出來鞭,這只是科學現象的理解與科學用語詮釋的問題。接下來我們先從新聞文章與科學研究了解此議題。

首先是多數人會看到的新聞版本:

001
截圖自ETtoday

-----廣告,請繼續往下閱讀-----

好,這是一篇再摘錄過的報導,因為看文章的尾巴就知道文章的結論是蠻薄弱的(所謂「跟蒙德極小期相同的效應」也是語焉不詳的一句話),而下方所謂的「原文」也非研究人員或單位發布的新聞稿,而是摘自大多媒體最喜歡翻譯外電之一的「每日郵報」

這種「轉手再轉手」 新聞消息,往往就像我們玩喝水傳話一般,誤差是會隨之放大,就算是具科學背景的人士乍看這篇報導,也很難揣測原意是什麼,而實際上的研究成果應為下面這則英國皇家學會的稿件:

002
資料來源:The Royal Astronomical Society

科學家到底怎麼說

某位對岸的網友李汀先生在新浪網的投稿中,也提到了這個研究與每日郵報報導中的落差,不過在此我們從一些太陽活動的背景先談起:

-----廣告,請繼續往下閱讀-----
  1. 太陽的「活動」是有周期性的,而所謂的活動包括了產生太陽風日冕太陽黑子等現象,簡單來說就是太陽會定時的向外突然放出高能的粒子、宇宙射線這些東西,平均來說周期是11年左右(如下圖紅線的太陽黑子個數年變化、橘線的太陽黑子個數日變化),但並不是那麼剛好的11年,有時會多1年、有時會少個1年。

003
近400年來的太陽黑子數目統計

  1. 造成太陽運動周期變化的主要原因是磁場變化,這樣講或許有點抽象,就像是對流的概念,裡面的東西向外湧出,而外面的東西又跑到內部,而像黑子就是一些不均勻的活動…再講就太深了,先就此打住!
  1. 接著回到這個研究,過去科學家已經知道了磁場、對流的影響。而今天科學家Valentina Zharkova這項研究的出發點,就在於他們認為造成太陽運動會有變動的一大主因可能就是太陽內部流體的對流可以「分成兩層」,所以他們便以此為前提來建立模型模擬,並對比到真實的觀測紀錄。
  1. 要理解Zharkova的模型,我們可以想像把「兩層」的對流想像成兩個11年上下的穩定波動,有各自的週期,但它們會有疊加、相消的作用。當兩層的波動疊加時,活動就特別大,當相消時,就會特別小,而Zharkova研究團隊的模型與真實的觀測資料對比,有高達97%的準確率。
  1. 以此前提我們似乎就可以拿來預測一下未來的活動…結果不得了!原來2030年太陽的活動將會減少為現在的60%,至於上次降那麼多是什麼時候呢?就是所謂的「蒙德極小期」(上圖的Maunder Minimum的區間,約在西元1645~1715年間),而那段時間也正好是「小冰期」的時間點附近(一般指的小冰期是西元1550年至1770年間,也有人認為那是明朝衰亡清朝興起的原因之一)。

23與24太陽週期活動的太陽黑子
23與24太陽週期活動的太陽黑子,圖片來自NOAA

科學家對於科學上用詞總是講求精準,誇大對科學家來說是個忌諱,綜合上面五點來看,只有第5點才勉強和地球將要變冷有一點點的擦邊球,但實際上科學家有以此「警告」人們嗎?沒有…為什麼不這麼說?因為那不是科學家有把握的事!即使太陽活動減少至現在的60%,我們還是不知道會降溫多少…甚至連會不會降溫都不知道呢!

所以現在到底是在暖化還是冰期要來?

實際上影響氣候的因子非常多,而且還非常難驗證。舉個例子來說,塞爾維亞科學家米蘭科維奇在本世紀初就提出米蘭科維奇循環,指出地球的氣候模式受到地球離心率轉軸傾角和軌道的進動的影響,但實際上我們現在知道的理論則是到1976年才確立的(見文獻[1])。除此之外,像太陽黑子、板塊運動、火山活動皆會對氣候有不同尺度的影響。你說要斬釘截鐵的說:未來幾年天氣將會怎麼樣怎麼樣的,我相信那一定不是研究大氣或古今氣候的學者會做的事,頂多說會「我們要注意朝向XXXX發展」之類的說法。

-----廣告,請繼續往下閱讀-----

再來,從時間尺度來談,蒙德極小期和冰期的相關性還有待討論,而這個太陽活動研究所提出的精準模型預測也還是需要科學家再論證…畢竟蒙德極小期持續了數十年之久,和11年的規律尺度還是有些落差,而在過去的紀錄中,即使能看見「溫度」和「太陽黑子」的相關性,我們也可以發現差距甚至不到1度(見下圖)。像IPCC的主流科學家也認為太陽的活動影響可能不若其它的因素顯著(包括暖化也是),而一般也認為太陽活動對氣候的影響甚小(見[2])。

所以總體來說,IPCC的主流科學家們認為暖化是一件事,而科學家Valentina Zharkova做的研究是另一件事,這兩件事也可能同時發生,而以目前的證據與研究來說,暖化的效應和尺度似乎大一點,但真實的情況是…我們目前拿的出來的科學證據說不定還不夠用,所以現在把這些研究拿來說些駭人聽聞的事,似乎都言之過早。

那氣候變遷怎麼辦?人類要怎麼因應?至少我們人類別讓自己的影響太過頭(臭氧破洞就是個例子),起碼眼下節能減碳的目標(至少別燒那麼兇),也還算是條穩健的路。至於那些枝微末節或是高深莫測的學問,我們還是努力相信科學家幫我們找答案吧!對了,別忘了看這類的科學研究還是要保持著「科學精神」,避免斷章取義、以偏蓋全哦!

004
Comparison of sunspot numbers, Central England Temperatures and a basket of Northern hemisphere Temperature reconstructions compiled by IPCC ByMichaelLockwood

-----廣告,請繼續往下閱讀-----

參考文獻

延伸閱讀

-----廣告,請繼續往下閱讀-----
所有討論 1
阿樹_96
73 篇文章 ・ 24 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。