想不到,奈米科技、生醫、以及光電三大領域結合在一起竟然成了抗癌奇招!成功大學謝達斌醫師領導的奈米國家型學研計畫團隊完成了全球獨一無二的「人造標靶性光激發奈米剪技術(ATLANS)」,是首次利用奈米粒子整合基因切割動作,可以在分子的層次直接切割雙股DNA,能夠準確鎖定、追蹤、消滅有害基因。團隊成員之一的成大蘇五洲醫師則強調,「…奈米剪技術…將先以晚期患者的治療為主要標竿,未來是否能在早期就進入人體內改造錯誤的基因還需要更多努力。」
想不到,奈米科技、生醫、以及光電三大領域結合在一起竟然成了抗癌奇招!成功大學謝達斌醫師領導的奈米國家型學研計畫團隊完成了全球獨一無二的「人造標靶性光激發奈米剪技術(ATLANS)」,是首次利用奈米粒子整合基因切割動作,可以在分子的層次直接切割雙股DNA,能夠準確鎖定、追蹤、消滅有害基因。團隊成員之一的成大蘇五洲醫師則強調,「…奈米剪技術…將先以晚期患者的治療為主要標竿,未來是否能在早期就進入人體內改造錯誤的基因還需要更多努力。」
本文由 建研所 委託,泛科學企劃執行。
當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。
綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。
為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。
說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?
綠建築標章 | 智慧建築標章 | 綠建材標章 |
環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。
關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。
臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。
我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!
位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。
因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。
要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。
這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。
在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。
在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。
在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。
在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。
同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。
等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。
我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。
為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。
樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。
在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。
智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。
綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。
討論功能關閉中。
本文轉載自顯微觀點
「從高中生開始到大學生,甚至到研究所碩士、博士,其實你只要做一件事-叫做找到有興趣的問題」。
中研院應用科學研究中心副研究員張允崇近年致力於光電推廣教育工作,不僅作為國際光電工程學會 SPIE 的光學推廣委員會成員,還擔任中華民國光電學會教育委員會主任委員,並已連續舉辦兩屆光電學會光電教具創作競賽。
張允崇自台灣大學物理系畢業後前往北卡羅萊納州立大學攻讀電機博士。時值台灣開始發展半導體的年代,加上他對光學和雷射很有興趣,因此選擇光電半導體作為研究領域,其中又以藍光 LED 為其研究重點。
LED(發光二極體,light-emitting diode)是一種半導體光源。當電流通過這個半導體電子元件時,電子與電洞複合以光子的形式釋放能量,而發出單色光。光線的波長、顏色則和採用的半導體材料種類以及故意摻入的元素雜質有關。
一開始以磷化鎵砷(GaAsP)為材料的 LED 僅能發出紅光且效率低,因此僅作為指示燈使用。而後雖出現可發出綠光的 LED,但一直缺少藍光 LED,就無法以光的三原色-藍、綠、紅,來任意組成不同的顏色,尤其是可供照明的白光。
直到 1993 年,日本日亞化學(Nichia Corporation)的中村修二成功把鎂摻入,成功以氮化鎵和氮化銦鎵(InGaN)開發具有商業應用價值的藍光發光二極體。
有了藍光 LED 後,白光 LED 也隨即問世。因此 2014 年諾貝爾物理學獎也以「發明高亮度藍色發光二極體,帶來了節能明亮的白色光源」的理由,將獎項頒給中村修二,以及製成高品質 GaN 並首次以 pn 結構完成藍色 LED 的日本科學家赤崎勇與天野浩。
2001 年博士學位並於 2003 年返台至成大任教的張允崇說,當時藍光 LED 領域正好當紅,因此博士班期間以及回台任教之初,便以此為研究材料進行研究。
但很快地,藍光 LED 材料愈來愈便宜且效率也已提升很多,相關應用和研究到達瓶頸,要再突破已非易事。相關領域的學者不是已經放棄,就是必須做出變化。張允崇亦是如此。
台灣從 2003 年開始,投入新台幣約 250 億元執行「奈米國家型科技計畫」,推動奈米科技發展。因此,張允崇也將研究視角轉向開發各種不同奈米製程,其中一個便是奈米球鏡微影術(Nanospherical-Lens Lithography,NLL)。
奈米球鏡微影術是使用奈米球將入射的紫外光聚焦於下方光阻,藉以製作出大面積的金屬圓盤陣列,這樣不僅可以大面積生產,使用的設備也是產業界既有生產設備,成本相對低廉。
「到 2018 年,我們幾乎可以宣稱我們是全世界做奈米球做厲害的人」。但張允崇表示,儘管奈米球鏡顯微影術可以大面積、有效率地提升製程產量,但在學術發表上外界期望看到「新功能」,加上後來到中研院任職,資源較多,便不再限制於奈米球上,而是開發各種奈米製程和新功能。
「我可以講 30 分鐘的研究,沒有任何一個公式在投影片裡」,張允崇笑稱因為自己的數學不太好,所以研究的題目「數學不會太多」。
他以奈米金屬為例,儘管背後有很多數學推導,但在他們實驗室的研究開發中,便僅以「奈米顆粒對環境折射率非常靈敏」的直覺,進一步對其作為感測器進行研究。
但與其說是「受限於數學不好」,不如說張允崇更看重科學直覺和實作,這不僅表現在他的研究,也體現在他的教學和近年致力推廣的光電教具創作競賽中。
張允崇提到之所以投入光電教具創作競賽,起因於他參與國際光電工程學會(International Society for Optics and Photonics, SPIE)的年會時,擔任其中一個類似教具競賽的外展活動評審,氣氛不錯。
加上當時張允崇在台大物理系兼職,教授光電半導體課程。「考試學到的東西很有限」,比起考試他更希望學生能從做中學,因此便參考年會外展活動的概念,讓學生執行期末計畫。
「當時想法只是覺得課堂裡好的作品可以到國際參賽,就像區域競賽比得好,比全國再比國際」。張允崇後來遇到一些志同道合的老師,才將全國競賽籌備起來。
不過,競賽今年邁入第三屆之際,回顧這一路走來,張允崇認為,競賽帶來的收穫、好處和原本初衷略有不同。而最大的好處在於讓學生「提早認識實驗室」。
他表示,許多學生到大三、大四要做專題進實驗室時,早已聽從學長姐和外界的聲音「立志進台積電」。
「現在多學生大三大四就直接聽學長姐說哪一個領域很好,可以去台積電啊。如果你研究所找了老師就是做這個領域,你就被他綁住了,博士班再讀(其他領域)好了,其實也跳不太開了。」張允崇說,不只選錯路不易回頭,進而出現「學用落差」外,學術熱忱也不易被點燃。
但藉由教具競賽,讓大一、大二的學生及早進實驗室「東摸摸、西摸摸」。「大一暑假找一個老師,不喜歡;大二可以換一個、大三再換一個,老師沒有再看到你也不會覺得怎麼樣」,張允崇表示,就算學生不用跟著老師的計畫題目,教具做不出來也沒關係,單純和老師討論教具專題也能略知實驗室的研究內容,進而評估是否對該領域有興趣。
張允崇說,考試答案都是已知的,學生也只是努力搞清楚老師「要考什麼」。但工作、研究卻不是如此,答案都是未知的,因此培養解決問題的能力,包含問對人找到解決方法,更為重要。
而要培養解決問題能力,最快方式就是進實驗室直接動手做。由於實驗室基礎能力需要的是各種能力的展現,不僅限於書本與公式;例如自動控制需要電腦程式能力、有些人手巧適合精工,甚至 3D 繪圖等。學生及早進入實驗室,就算「自認不適合讀書」,也能從中發現自己的專長和定位。
從半導體到奈米光學,再到生物感測,張允崇的研究領域很廣,「奈米領域所有問題都有興趣」。他笑稱,「優點是領域很廣,但缺點是『你問我做什麼題目,我講不出來』」。但只要找到有興趣的東西,就可以做好一件事,「因為你會願意花很多時間」。
討論功能關閉中。
我在 2002 年還在讀大四時,第一次看到兩位 UCLA 生理學家的論文〈不用多久女性就會跑得比男性快?〉,當時我覺得這個標題很荒謬。在那之前我花了五個賽季,進行 800 公尺中距離跑步訓練,成績已經超越世界女子紀錄。而且我還不是自己接力隊上跑最快的。
但那篇論文發表在《自然》(Nature)期刊上,這是世上極具聲望的科學期刊,所以一定有些道理。大眾就是這麼認為的。《美國新聞與世界報導》雜誌在 1996 年亞特蘭大奧運之前,對一千個美國人做了調查,結果其中有三分之二認為,「終有一天頂尖女運動員會勝過頂尖男運動員」。
《自然》期刊上那篇論文的作者,把男子組和女子組從 200 公尺短跑到馬拉松各項賽事歷年的世界紀錄畫成圖表,發現女子組紀錄進步得遠比男子組急速。他們用外推法從曲線的趨勢推斷未來,確定到 21 世紀前半葉,女性就會在各個賽跑項目擊敗男性。兩名作者寫道:「正因進步速度的差異實在非常大,而使(兩者)差距逐漸縮小。」
2004 年,趁著雅典奧運成為新聞焦點之際,《自然》又特別刊出一篇同類型的文章〈2156 年奧運會場上的重要衝刺?〉(Momentous Sprint at the 2156 Olympics?)──標題所指的,正是女子選手會在 100 公尺短跑比賽中,勝過男子選手的預計時間。
2005 年,三名運動科學家在《英國運動醫學期刊》發表了一篇論文,省去問號開門見山在標題宣稱:〈女性終將做到〉(Women Will Do It in the Long Run.)。
難道男性主導世界紀錄的情況,始終是歧視女性、把女性排除於競技場外的結果?
20 世紀上半葉,文化規範與偽科學嚴重限制了女性參與運動競技的機會。在 1928 年阿姆斯特丹奧運期間,有媒體(捏造)報導指稱,女性選手在 800 公尺賽跑後筋疲力竭地躺在地上,這讓一些醫生和體育記者十分反感,使得他們認為這個比賽項目會危害女性健康。《紐約時報》上有篇文章就寫:「這種距離太消耗女性的體力了。」〔1〕那幾屆奧運之後,在接下來的三十二年間,距離超過 200 公尺的所有女子項目,都突然遭禁,直到 2008 年奧運,男女運動員的徑賽項目才終於完全相同。但《自然》期刊上的那幾篇論文指出,隨著女性參賽人數增多,看起來她們的運動成績到最後可能會與男性並駕齊驅,甚至比男性更好。
我去拜訪約克大學的運動心理學家喬.貝克時,我們談論到運動表現的男女差異,尤其是投擲項目的差異。在科學實驗裡證實過的所有性別差異中,投擲項目一直名列前茅。用統計學術語來說的話,男女運動員的平均投擲速度相差了三個標準差,大約是男女身高差距的兩倍。這代表如果你從街上拉一千個男子,其中 997 人擲球的力氣會比普通女性大。
不過貝克提到,這種情形可能是反映女性缺乏訓練。他的太太是打棒球長大的,輕輕鬆鬆就能贏過他。他打趣說:「她會發出一束雷射光。」那麼這是生物學上的差異嗎?
男性和女性的 DNA 差異極小,僅限於在女性身上為X或男性為Y的那單一染色體。姊弟或兄妹從完全相同的來源取得基因,透過重組母親和父親的 DNA,確保兄弟姊妹絕對不會相近到變成複製人。
性別分化過程大部分要歸結到 Y 染色體上的「SRY 基因」,它的全名是「Y 染色體性別決定區基因」。若要說有「運動能力基因」,那就非 SRY 基因莫屬了。人類生物學的安排,就是讓同樣的雙親能夠同時生育出男性的兒子和女性的女兒,即使傳遞的是相同的基因。SRY 基因是一把 DNA 萬能鑰匙,會選擇性地啟動發育成男性的基因。
我們在生命初期都是女性──每個人類胚胎在形成的前六週都是女性。由於哺乳動物的胎兒會接觸到來自母親的大量雌激素,因此預設性別為女性是比較合算的。在男性身上,SRY 基因到第六週時會暗示睪丸及萊氏細胞(Leydig cell)該準備形成了;萊氏細胞是睪丸內負責合成睪固酮的細胞。睪固酮在一個月之內會不斷湧出,啟動特定基因,關閉其他基因,兩性投擲差距不用多久就會出現。
男孩還在子宮時,就開始發育出比較長的前臂,這使得他們日後投擲時會做出更有力的揮臂動作。儘管男孩和女孩在投擲技能方面的差異,不如成年男性和女性之間那麼顯著,但這種差異在兩歲幼童身上已經很明顯了。
為了確定孩童之間的投擲差距有多少與文化有關,北德州大學和西澳大學的科學家組成團隊,共同測試美國孩童與澳洲原住民孩童的投擲技能。澳洲原住民沒有發展出農業,仍過著狩獵採集生活,他們教導女孩丟擲戰鬥及狩獵用武器,就像教導男孩一樣。這項研究確實發現,美國男孩和女孩在投擲技能上的差異,比澳洲原住民男孩和女孩之間的差異顯著許多。不過儘管女孩因為較早發育長得較高較壯,男孩仍比女孩擲得更遠。
普遍來說,男孩不僅比女孩更善於投擲,視覺追蹤攔截飛行物的能力往往也出色許多;87% 的男孩在目標鎖定能力的測試上,表現得比一般女孩好。另外,導致差異的部分原因,至少看起來是因為在子宮的時期接觸到了睪固酮。由於先天性腎上腺增生症,而在子宮裡接觸到高濃度睪固酮的女孩,上述項目的表現會像男孩一樣,而不像女孩;患有這種遺傳疾病的胎兒,腎上腺會過度分泌男性荷爾蒙。
受過良好投擲訓練的女性,能輕易勝過未受訓練的男性,但受過良好訓練的男性,表現會大幅超越受過良好訓練的女性。男子奧運標槍選手擲出的距離,比女子奧運選手遠大約三成,儘管女子組使用的標槍比較輕。此外,女性投出的最快棒球球速的金氏世界紀錄是 65 mph(相當於時速 105 公里),表現不錯的高中男生的球速經常比這還要快,有些男子職業球員可以投出超過 100 mph(相當於時速 160 公里)的球速。
在跑步方面,從 100 公尺到 1 萬公尺,經驗法則是把菁英級表現差距定在 11%。從短跑到超級馬拉松,不管任何距離的賽跑,男子組的前十名都比女子組的前十名快大約 11%。〔2〕在職業等級,那就是個鴻溝。女子組的 100 公尺世界紀錄,跟 2012 年奧運男子組的參賽資格還差了四分之一秒;而在一萬公尺長跑,女子組的世界紀錄成績,與達到奧運參賽資格最低標準的男選手相比落後了一圈。
投擲項目與純爆發力型運動項目的差距更大。在跳遠方面,女子選手落後男子 19%。差距最小的是長距離游泳競賽;在 800 公尺自由式比賽中,排名前面的女子選手,與排名前面的男子選手差距不到 6%。
預言女性運動員將超越男性的那幾篇論文暗示,從 1950 年代到 1980 年代,女性表現的進展遵循一條會持續下去的穩定軌跡,但在現實中是有一段短暫爆發,隨後趨於平穩──這是女子運動員,而非男子運動員進入的平穩期。儘管到 1980 年代,女性在 100 公尺到 1 英里各項賽跑的最快速度,都開始趨於穩定,但男子運動員仍繼續緩慢進步,雖然只進步一點點。
數字很明確。菁英女子選手並未趕上菁英男子選手,也沒有保持住狀況,男性運動員則在非常慢地進步。生物學上的差距在擴大。但為什麼原本就有差距存在?
——本文摘自 大衛・艾普斯坦(David Epstein),《運動基因:頂尖運動表現背後的科學》,2020 年 12 月,行路出版,未經同意請勿轉載。
討論功能關閉中。