0

0
1

文字

分享

0
0
1

聽聲音(九):你知道平均律其實不平均嗎?

Muzik Online
・2015/02/12 ・1967字 ・閱讀時間約 4 分鐘 ・SR值 470 ・五年級

-----廣告,請繼續往下閱讀-----

作者 官大為(Wiwi)

提醒:此篇文章是討論「音律」問題的第五篇文章,請您一定要先看完前面的四篇文章再看這篇喔!不然您可能會不懂我在寫什麼。
聽聲音(五):分割聲音的光譜
聽聲音(六):畢達哥拉斯的 Do Re Mi
聽聲音(七):狼來了
聽聲音(八):Do-Sol和Do-Mi的戰爭

在上篇文章,我們提到了畢氏音律中的「Do↔Sol」組合很好聽,但「Do↔Mi」沒那麼好聽。而在大約 16 世紀時,因為音樂漸漸開始需要使用像是「Do↔Mi」這樣的三度音組合,人們就發明出了一種偏好三度音組合的音律系統,我們稱為「中庸全音律」(meantone temperament)。

中庸全音律雖然可以讓「Do↔Mi」的組合變得很好聽,但卻會犧牲「Do↔Sol」的悅耳程度,加上它同樣沒有解決已經存在超過一千年的「狼音」問題,使得作曲家們寫曲時,還是要左閃右躲地避開某些會很難聽的組合。

-----廣告,請繼續往下閱讀-----

就沒有辦法讓全部的音都很好聽嗎?

如果你是從前幾篇文章一路看過來的,你應該想問這個問題很久了:「到底是還要多久阿?就沒有辦法一次就讓全部的音的組合都很好聽嗎?」

答案可能會出乎你的意料:「還真的是沒有辦法。」

因為如果你要讓某兩個音的頻率組合形成簡單整數比,勢必就會動到另一個組合,不管你如何調整,你永遠都沒有辦法讓全部的組合都形成完美的簡單整數比。

-----廣告,請繼續往下閱讀-----

「平均律」或「好脾氣」〈註1〉

在中庸全音律以及之前的想法,都是優先照顧一種特定的音程組合,讓那個組合很協和,然後放任其他的組合讓它們很難聽。於是 18 世紀的音樂學家們決定要改變思維,既然沒有辦法讓全部的音程組合都聽起來很協和,那麼我們就來改成讓「所有的組合都只有一點點不協和」吧!如果所有的組合都只有一點點不協和而已,搞不好聽的人根本就不會注意到?

於是所謂的「平均律」(well temperament)就誕生了。「平均律」指的不是特定的一種音律,而是泛指各種「不論彈各種組合、各種調,都不會嚴重不協和」的音律系統。

這些「平均律」,基本上都是用「人為主觀決定」的方式產生的。各個音樂學家用他們覺得好聽的方法,把某個音調高一點點、某個音降低一點點、某些組合協和一點點、某些組合不協和一點點⋯⋯互相橋來橋去,直到所有的組合聽起來「好像」都不會太難聽為止。

-----廣告,請繼續往下閱讀-----

其中幾個有名的平均律系統包含:

  • Kirnberger temperament,由巴赫的學生 Johann Kirnberger 制定的。
  • Werckmeister temperament,由管風琴家 Andreas Werckmeister 制定的。
  • Young temperament,由科學家 Thomas Young 制定的。

開根號

雖然以上說的「平均律」,的確可以讓作曲家使用任何一個調的任何一個和弦,都不至於太難聽,但有個一定要特別說明的地方是,這些所謂的「平均律」,根本就不是平均的。〈註2〉

在這些「平均律」中,每一個音跟下一個音的頻率比例並不是完全相等的,還是會有一些組合好聽一點點、有一些難聽一點點。可是音樂學家們為什麼不讓它們平均分配就好了呢?幹嘛要故意讓有些組合好聽、有些難聽?

-----廣告,請繼續往下閱讀-----

他們其實不是故意的,是因為他們不會開根號。要把一個八度分成平均分佈的 12 個音,你必須找到一個數字當作鄰近音的頻率比例,那個數字乘自己 12 次之後,要剛好等於 2。

那個數字就是「2 的 12 次方根」。

當然您只要拿出 iPhone 的計算機一按就可以得到答案了,算算看 2 的 12 次方根是多少?不過對於 17 世紀的人們來說,算出 2 的 12 次方根簡直是比登天還難阿!不過有個厲害的人,他還真的登天了。

算盤神

-----廣告,請繼續往下閱讀-----

中國明朝,有個名叫朱載堉(1536-1610)的宅男,他除了是天文學家、物理學家、數學家、音樂家、舞學家、作家、樂器製造師之外,他還是個「算盤神」。他竟然用「81 位數的算盤」,算出了 2 的 12 次方根到小數點後 25 位,也就是真正的「平均律常數」:1.059463094359295264561825。

只要你找一個標準音,把它的頻率乘上這個數字,你就可以得到高半音的頻率,重複這個步驟 12 次,第 13 的音的頻率就會剛好是第 1 個音的兩倍。這就是我們現代使用的、完全平均分配八度成 12 等份的音律系統。

但因為「平均律」這個詞已經被用掉了,所以我們現在把這個真正平均的音律系統稱為「等律」(equal temperament)。等律雖然早在明朝的時候就被朱載堉算出來,但等到它能夠在實際的鍵盤樂器上實作出來,已經是快要 20 世紀的時候的事了。

聽聽看

-----廣告,請繼續往下閱讀-----

我現在要彈一首巴赫的三聲部創意曲給您聽,用所有我們在系列文章中提過的音律。試試看您能不能聽出其中細微(或不那麼細微)的差別,也謝謝您收看這五篇充滿數字的文章囉!

畢氏音律(pythagorean tuning):

中庸全音律(meantone temperament):

Kirnberger temperament:

-----廣告,請繼續往下閱讀-----

Werckmeister temperament:

Young temperament:

等律(equal temperament):

(Wiwi)

註1:平均律(well temperament)的另外一個稱呼是「good temperament」,「temperament」這個字也有「性格、脾氣」的意思,所以才有所謂「好脾氣」之戲稱。
註2:所以到底是誰把它翻譯成平均律的阿?我也不知道。

轉載自MUZiK ONLiNE 名家隨筆

文章難易度
Muzik Online
25 篇文章 ・ 9 位粉絲
MUZIK ONLINE是世界上第一個以古典音樂為核心素材,結合科技與社群功能的線上收聽平台。它把古典音樂化為易於接近的數位內容,史無前例地,讓專業人士、入門者、或不排斥音樂的朋友們之間,建立起對話的共通頻道。

0

3
0

文字

分享

0
3
0
迴盪在耳際的聲音——迴響與聆聽知多少!
雅文兒童聽語文教基金會_96
・2023/06/28 ・2048字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/樊家欣|雅文基金會聽語科學研究中心 助理研究員 

P. LEAGUE 最大咖球星林書豪加盟鋼鐵人隊,帶領鋼鐵人打出新氣象,並獲選為籃球單月最有價值球員「三連霸」,堪稱史上第一人!你,也愛打籃球嗎?當你在體育館時,是否有察覺到周圍的聲音跟平常不太一樣呢? 

迴響,能讓聲音隔空變魔術!

體育館一般有挑高的設計以及較大的室內容積,當其中有聲音產生,傳遞到周圍較硬的介質表面「反射」回來,而產生延遲和失真的現象,稱為「迴響(Reverberation)」。由於空間容積與迴響時間成正比,空間越大,迴響時間隨之延長。沒有進行吸音處理的體育館,運球聲、腳步聲、群眾吆喝聲等人造聲音將迴盪在空間中,聲音必須經過更長的時間才會完全消失,使人在體育館倍感喧騰。

 聲音傳遞出去遇到牆面,反射回來形成迴響。圖/shutterstock

善用設計,打造餘音繞樑的迴響聲學空間 

迴響在不同的空間,會因周圍反射的材質,展現不同的聲景樣貌,例如:音樂廳就是利用各種不同的「形狀」「材質」來平衡聲音,再將之導向聽眾。

早期音樂廳的「形狀」只有鞋盒式,台北國家音樂廳就是歐洲數百年經典傳統鞋盒式音樂廳,平面觀眾席的聲響很好,但是後面的眺望台座位,由於天花板空間被擋住,與前面造成相異聲場,聲音就顯得不夠飽滿;而高雄衛武營音樂廳,其內部設計柏林愛樂廳一樣,採用的是葡萄園式音響設計,所有觀眾皆處在同一個屋簷下,觀眾席如同葡萄園般由舞台四周錯落展開,享受相同的音場,因此聲響均等優美。

-----廣告,請繼續往下閱讀-----

從細部來看,「材質」平坦而堅硬的表面能反彈聲音、柔軟的表面可吸收聲音,粗糙的表面則會將入射的聲波散射。在牆壁和天花板上裝設經特別設計的嵌板,就能使聲音在抵達你的耳朵之前,先被調整並優化[3]。藉由空間整體的設計,能讓迴響成為小精靈,締造優美的聲學空間。

打造餘音繞樑的音樂廳。圖/shutterstock

迴響時間過長,對聆聽語音是個壞消息⋯⋯

美國國家標準協會(American National Standards Institutes, ANSI)於 2002 年建議迴響時間(Reverberation Time)少於 600 毫秒(= 0.6 秒)有最佳的語音理解和學習。在安靜的情境中,如果反射回來的語音較早抵達聽者的耳朵,則原聲和迴響會在聽覺系統裡整合,可能提升語音辨識度(Speech Recognition);而較晚抵達的迴響,則不會與原聲有加成的作用,反而會遮蔽或模糊原本的聲音,而使語音辨識表現下降。除了語音辨識度之外,也可能因聲音的失真,而使聆聽變得費力。

聆聽費力度(Listening Effort)為一更敏感的指標,在一些迴響時間過長的情境中,即使語音辨識度沒有下降,但聆聽者可能因著迴響,而使聆聽造成負擔,或進一步使記憶或理解力下降[5],相關文章可以參考連結。因此,迴響時間過長,會提高語音辨識的難度和增加聆聽費力度。

善用科技,讓聽損者輕鬆聽清楚

一般人在有迴響的地方聽講可能會覺得比較不清楚或費力,而對於有聽力損失的人來說,會更容易受到迴響的不利影響[4] [6]。因此,許多配戴助聽器或人工電子耳的聽損者,在聽講或聲音環境較為複雜的地方會搭配使用輔助聆聽裝置(Assistive Listening Device),如T線圈(Telecoil,又稱 T-coil)、藍芽及數位遠端麥克風等。此類裝置可將聲音訊號轉換,以無線的方式傳輸至助聽器/人工電子耳,來克服環境中迴響的干擾或距離因素,幫助聽損者聽得更清楚也更輕鬆[1] [2],相關文章也可參考連結

-----廣告,請繼續往下閱讀-----

綜言之,迴響在不同的聲學空間會產生不同的效應:在設計不良的空間會產生聽覺上的干擾,而在好的聲學空間則能使聆聽成為一種享受;另外,藉著輔助聆聽裝置也能幫助我們克服迴響等外部因素而有好的聆聽

參考文獻

  1. 吳彥玢(2019)。助聽器使用者使用數位遠端無線麥克風系統與動態調頻系統之比較〔未出版之碩士論文〕。國立台北護理健康大學語言治療與聽力研究所。
  2. 林郡儀、張秀雯(2016)。校園聽覺環境及聽覺輔具之應用發展。輔具之友,39,29-34。
  3. 凌美雪(2018年08月14日)。鞋盒式或葡萄園式、柏林愛樂黃金之音怎麼聽?自由時報。ltn.com.tw
  4. Brennan, M. A., McCreery, R. W., Massey, J. (2021). Influence of Audibility and Distortion on Recognition of Reverberant Speech for Children and Adults with Hearing Aid Amplification. Journal of the American Academy of Audiology, 33, 170-180. Doi: 10.1055/a-1678-3381.
  5. Picou, E. M., Gordon, J., Ricketts, T. A. (2016). The Effects of Noise and Reverberation on Listening Effort in Adults With Normal Hearing. Ear and Hearing,37(1), 1-13. Doi: 10.1097/AUD.0000000000000222.
  6. Xu, L., Luo, J., Xie, D., Chao, X., Wang, R., Zahorik, P., Luo, X. (2022). Reverberation Degrades Pitch Perception but Not Mandarin Tone and Vowel Recognition of Cochlear Implant Users. Ear and Hearing, 43(4), 1139-1150. Doi: 10.1097/AUD.0000000000001173.
雅文兒童聽語文教基金會_96
55 篇文章 ・ 222 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

2
0

文字

分享

0
2
0
沒有樂器,也可以有音樂!人類與音樂的悠久故事——《傾聽地球的聲音》
商周出版_96
・2022/12/14 ・3239字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

人類的音樂比任何樂器都古老

早在我們雕刻象牙或骨頭之前許久,肯定已經使用聲音戲耍出旋律、和聲與節奏。現代人類所有族群都會唱歌、演奏樂器和舞蹈。

這種普遍性意味著我們的祖先早在發明樂器以前,已經是音樂的愛好者。如今所有已知的人類文化之中,音樂都出現在類似情境裡,比如愛情、搖籃曲、治療和舞蹈。這麼說來,人類的社會行為通常少不了音樂。

如今所有已知的人類文化之中,音樂都出現在類似情境裡,例如搖籃曲。圖/pixabay

化石證據同樣顯示,五十萬年前的人類已經擁有能發出現代口語和歌聲的舌骨。因此,在我們製造樂器之前幾十萬年,人類的喉嚨就已經能夠說或唱出語句或歌詞。

口語和音樂何者先出現,目前還無從確定。其他物種也具有感知語言和音樂所需的神經組織,顯示我們的語言和音樂能力只是原有能力的精緻化。

-----廣告,請繼續往下閱讀-----

左右腦的劃分

人類以左腦處理口說語言(其他哺乳類或許也是在同樣的部位處理同類的聲音),其他聲音則是傳送到負責處理音樂的右腦。或許左右腦共同處理,左腦利用聲音在不同時間呈現的細微差異理解語義和語法,右腦則用音頻的差異來捕捉旋律和音色等細節。

但這個劃分並非絕對,顯示語言和音樂之間沒有明確的分隔線。語言的抑揚頓挫和音韻會啟動右腦,歌曲的語義內容卻是點亮左腦,那麼,歌曲和詩文讓我們左右腦的運作相互交織。

所有的人類文化都有這種現象,都將文字融入歌曲裡,而口說語言的意義有一部分來自語言本身的音樂性。在嬰兒時期,我們根據母親聲音的速度和音頻辨識她。成年以後,我們用音頻、拍子、力度、音質和音調傳情表意。

在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去:澳洲的歌行(song line);中東與歐洲的禱文吟誦、聖歌和詩篇;桑族(San)入神舞的「呼喊敘事」;以及全世界不同族群各異其趣的詠唱方式。

-----廣告,請繼續往下閱讀-----
在文化的層面,我們結合音樂和語言,將最珍貴的知識傳遞下去。圖/pixabay

這麼說來,器樂(instrumental music)性質特殊,跟歌曲和口語有所區分。它是一種完全脫離語言的音樂。最早的製笛師也許研究出如何創造超越語言特性的音樂。在這方面,他們或許跟其他動物找到了共通性。

動物們也有音樂和語言

昆蟲、鳥類、蛙類和其他物種的聲音也許有自己的文法和句式,卻肯定不屬於人類語言的範疇。如果器樂確實讓我們感受到超越語言或先於語言的聲音,那麼這是一種矛盾的體驗。

人類對工具的使用為時不久又獨一無二,透過這樣的活動,我們超越語言,體驗到聲音的含義與細節。我們的動物親族或許仍然這樣體驗聲音,演化成為人類之前的祖先肯定也是。器樂或許帶領我們的感官回到工具和語言出現之前的體驗。

打擊樂的出現可能也早於口語或歌曲。由於鼓的材質多半是生活中常見的皮革或木頭,不耐久存、容易腐朽,考古學上的證據因此相當稀少。已知最早的鼓只有六千年歷史,出現在中國,但人類打鼓的歷史應該久遠得多。

-----廣告,請繼續往下閱讀-----

在非洲,野生黑猩猩、倭黑猩猩和大黑猩猩都使用鼓聲做為社交信號。這些猩猩表親使用雙手、雙腳和石頭敲擊身體、地面或樹木的板根。

這意味著我們的祖先可能會擊鼓,或許用來傳達身分或領域訊息,在此同時凝聚成團結合作、節奏一致的群體。相較於其他類人猿,人類鼓聲的節拍更有規律,也更精準。有趣的是,對許多黑猩猩族群而言,用石塊敲擊樹木可說是一種儀式。

黑猩猩會選擇特定樹木,在選定的每個地點疊出石堆。牠們不但把石頭存放起來,還會將它們拋或扔向樹木,發出砰或喀嗒聲。牠們敲擊樹木時,通常一面發出洪亮的「噓喘」,一面用手腳擊打樹幹。那麼,黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。

黑猩猩和人類都會將敲擊聲、嗓音、社會展演和儀式結合在一起。圖/pixabay

這個現象告訴我們,人類音樂的這些元素,歷史比我們的物種更悠久。

-----廣告,請繼續往下閱讀-----

最古老的緣起仍成謎

人類音樂最古老的根源究竟從什麼時間點開始,目前還是個謎,器樂與其他藝術形態之間的關係卻比較清楚。世上已知最古老的樂器,就埋葬在已知最古老的具象雕像旁,二者都來自洞穴裡人類遺跡的最底層。

它們底下的沉積層已經看不到人類的痕跡,而後,在更深處是尼安德塔人的工具。在地球上的這個位置,器樂和具象藝術同時出現,就在解剖學意義上的現代人最早抵達歐洲冰雪大地的時刻。

樂器與具象雕刻品有個共通概念,那就是物質經過三度空間的修改,可以變成活動的物件,刺激我們的感官、心靈和情感,如今我們稱之為「藝術的體驗」。笛子與雕像的並置告訴我們,在奧瑞納文化時期,人類的創意不只展現在單一活動或功能上。工匠的技藝、音樂的創新與具象派藝術彼此連結。

最早期的人類藝術也為藝術形式之間的相關性提供佐證。已知最早的繪畫是抽象的,而非具象。這些繪畫來自七萬三千年前,掩埋在南非布隆伯斯洞窟(Blombos Cave)的沉積層裡。在那個洞穴裡,有人用赭石筆在易碎的岩石上畫出交叉陰影圖案。這個圖案所在的沉積層還有其他創意作品存在,比如貝殼珠子、骨錐、矛頭和赭石鐫刻的作品。

-----廣告,請繼續往下閱讀-----
布隆伯斯洞窟的貝殼珠。圖/wikipedia

只是,現階段的紀錄顯示,德國南部洞穴立體藝術品製作工藝發展的速度,可能與使用顏料的具象藝術不一樣。笛子和小雕像似乎沒有經過刻意著色,它們所在的洞穴也沒有壁畫裝飾。在這個地區,要等到更後期的馬格達連文化(Magdalenian,大約這些笛子出現後再經過兩萬年),才有明顯以赭色顏料塗畫的岩石裝飾。

馬格達林洞穴壁畫。圖/wikipedia

歐洲另一個奧瑞納文化遺址、西班牙北部的埃爾卡斯蒂洞窟(El Castillo),發展軌跡卻是不同。洞穴裡的圓盤壁畫時間超過四萬年,在同一面牆壁上有個三萬七千年前的手掌圖案。不過,據我們目前所知,這個時期在這個地區並沒有立體藝術創作。

同樣的,蘇拉威西洞穴的具象壁畫也跟任何已知雕刻作品無關。這些差異透露的,是考古紀錄有欠完整,而不是人類藝術的發展歷程。目前看來,立體藝術作品(雕像與笛子)最早發展的時間和地點似乎與繪畫不同。

見證音樂的悠久歷史

這段悠久的歷史重塑我們對更近期藝術的體驗。望著舊石器時代的笛子和小雕像,我想到大英博物館、紐約大都會藝術博物館和羅浮宮的人潮。有時我們會排隊幾小時,只為了看一眼人類藝術與文化的重要時刻。但在德國鄉間這座小博物館裡,我們見識到藝術更深遠的根源。

-----廣告,請繼續往下閱讀-----

我張開雙臂。假設我雙手之間的距離是已知人類音樂與具象藝術存在的時間,冰河期的笛子和雕刻品的位置會在我左手指尖,跟蘇拉威西的洞穴壁畫一起。各大博物館裡的主要藝術品的位置則在我右手伸直的指尖,是過去一千年來的產物。

這絕不代表過去幾百年來的藝術創作不重要,相反的,紀錄遠古人類精湛藝術的遺址和博物館既與更近期的作品相得益彰,也為人類的藝術創作尋根溯源。藝術在與每個地區的動物和環境的關係中誕生,又藉著舊石器時代人類的高超技藝與想像力向上提升。

—本文摘自《傾聽地球之聲》,2022 年 11 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

3
0

文字

分享

0
3
0
舞池太冷該怎麼炒熱氣氛?DJ 請下點聽不到的低頻 BASS!
Peggy Sha
・2022/12/07 ・1640字 ・閱讀時間約 3 分鐘

「Despacito~Quiero respirar tu cuello despacito~」聽到這段旋律,你是不是也開始不由自主地跟著搖擺了呢?跟著音樂一起流動實在是再自然不過的事了,不過,假設你完全聽不到這些動感「音樂」,它還能發揮同樣的效果嗎?

科學家也想知道這個問題的答案,於是乎,他們把實驗室搬到舞池啦!

人會跟著聽不到的低頻音樂動次動嗎? 圖/GIPHY

超酷的實驗,就要在超酷的表演廳進行!

沒錯!最近發表在《當代生物學》(Current Biology)期刊上的研究就是這麼嗨!這份研究的第一作者是來自麥克馬斯特大學(McMaster University)的神經科學家 Daniel Cameron,他本身就是個音樂愛好者,除了會打鼓外,研究的主要方向也離不開音樂,總是在探索音樂和人類間的互動關係。

想要從事如此動感的實驗,一般的研究室可沒辦法進行,研究者們選擇的地點是麥克馬斯特大學裡面的「LIVELab」,這個地方算是個研究型表演劇院,裡面既能進行各式演出,也能同時進行各種測試和研究。

LIVELab 介紹影片。影/YouTube

劇場裡不僅有 3D 動作捕捉系統,還有可以模擬各種音樂環境的超強大 Meyer 音響系統,最重要的是,它還配備了本次研究的主角──能產生極低頻率的喇叭!普遍來說,我們耳朵能聽到的聲音頻率介在 20 Hz~20,000 Hz 之間,更高或更低都聽不見,那麼,問題來了:聽不見的聲音,還會對我們產生影響嗎?

-----廣告,請繼續往下閱讀-----

偷偷來點低頻音,大家真的會感受得到嗎?

為了尋找答案,研究者邀請加拿大的電子音樂雙人組合「 Orphx」到 LIVELab 辦了場表演,並招募了一群實驗參與者來參加。想聽這場演出,需要比平常多一點點的準備。

首先,觀眾需要戴上運動感應頭帶,用以偵測舞蹈動作;再來,觀眾在參加前和參加後都需要填寫調查表,好衡量他們對於演出的喜愛程度、相關生理感受,並確認他們沒有聽到那些偷偷塞進去的低頻聲音。

加拿大的電子音樂組合 Orphx 在 2008 年的現場表演照片。圖/Wikipedia

在整整 45 分鐘的演出中,研究人員會悄悄在幕後控制撥放低頻聲音的喇叭 ,這些喇叭會撥放 8~37 Hz 間的聲音,每兩分鐘開關一次,結果發現,當喇叭開著、放出低音的時候,觀眾的運動量竟然增加了近 12%!

為什麼我們聽不到低音卻還是想跳舞?聲音能被「感受」嗎?

不過,為什麼這些超低聲音會讓人們更愛跳舞呢?研究者們現在還不知道確切的生理運作機制,但他們有些推測。研究者認為,低頻聲音雖然無法被聽見,也不會讓大腦中處理聲音的部分變得活躍,但是,卻能被神經系統的其他部分接收到。

-----廣告,請繼續往下閱讀-----

Cameron 表示,我們腦中的前庭系統,也就是專門負責平衡感和空間感的感覺系統對於低頻刺激非常敏感。另一方面,觸覺也扮演了很重要的角色,我們身上的機械性受器(mechanoreceptor)同樣對於低頻的刺激很敏感,會隨著震動而移動,這也就是為什麼,當你站在很大聲的音響前方時,會感覺全身彷彿都在跟著震動。

圖/Pexels

或許,就是這些系統,讓我們能夠用不同的方式來「感受」到音樂、接收我們聽不見的低頻聲音。

如果想要完整了解背後的機制,勢必還要多辦幾場這樣的「科學音樂表演」,但在那之前,如果大家想要讓舞池嗨一些的話,低頻音催下去就對啦!

參考資料

  1. Want to fire up the dance floor? Play low-frequency bass
  2. Cameron, D. J., Dotov, D., Flaten, E., Bosnyak, D., Hove, M. J., & Trainor, L. J. (2022). Undetectable very-low frequency sound increases dancing at a live concert. Current Biology32(21), R1222-R1223.
  3. Low-Frequency Bass Encourages Dancing
  4. Inaudible, low-frequency bass makes people boogie more on the dancefloor
Peggy Sha
69 篇文章 ・ 390 位粉絲
曾經是泛科的 S 編,來自可愛的教育系,是一位正努力成為科青的女子,永遠都想要知道更多新的事情,好奇心怎樣都不嫌多。