Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

《槍炮、病菌與鋼鐵》沒告訴你的事 另一種地理的剖析

活躍星系核_96
・2014/02/08 ・2085字 ・閱讀時間約 4 分鐘 ・SR值 572 ・九年級

-----廣告,請繼續往下閱讀-----

地理學_槍炮、病菌與鋼鐵文 / 萬宗綸(台大地理系學生 ,對社會、心理、語言都很有興趣)

美國加州大學洛杉磯分校地理學教授賈德戴蒙Jared Diamond以一本《槍炮、病菌與鋼鐵》聲名大噪,也讓他以此獲得了普立茲獎,更因其知識的厚度而被譽為一位博學者 (polymath) [1],他拿的學位是文學士以及生理學博士,如此跨領域可說是十足的地理學精神。

相信泛科學的讀者朋友們對《槍炮、病菌與鋼鐵》都不陌生,其探討的主要是人類社會不平等的「地理成因」,比如在解釋為何入侵非洲的是白人時,戴蒙有個層次的解釋:古文明發源在有充足資源的地區;非洲可馴化供農業生活的動植物種類較少,因此無法增加人口;歐洲與亞洲東西軸的發展,不像非洲需要跨越氣候帶,農作物傳播也就較快;歐洲將人口聚集後才流行的疾病帶到殖民地。另外,戴蒙也討論了為何歐洲分裂而中國長期統一,他認為主因在中國的海岸線較不破碎,進而使得國家權力過度集中,因此無利於競爭,最後使其喪失政治和技術上的優勢地位。《槍炮、病菌與鋼鐵》一書據戴蒙在書中所說,是一本「最近13,000年來所有人的簡短歷史」,戴蒙認為人類不平等的差異不在生物基因本身,而在環境的差異。這本書到底多重要?從國家地理學會根據它拍攝了紀錄片就可以知道了。但是,《槍炮、病菌與鋼鐵》的批判也不少,最近一本由群學翻譯出版,經濟地理學家大衛哈維 (David Harvey) 所寫的《寰宇主義與自由地理》[2]便花了近一個章節來批評它,這場經濟地理學對上生物地理學的戰役,且由筆者來為泛科學的讀者們導讀。

首先,大家可能對大衛哈維有點陌生,哈維現是紐約市立大學研究院人類學和地理學特聘教授,也是1980年代末期世界上被引用頻率最高的地理學者[3],地理學系的學生大都對這號人物不陌生,所以看哈維打戴蒙是很精彩的一件事。《寰宇主義與自由地理》一書中的第九章〈環境的性質〉第一行就以戴蒙為頭,開使哈維對《槍炮、病菌與鋼鐵》的質疑。

-----廣告,請繼續往下閱讀-----

Web

賈德戴蒙認為「當前經濟發展與全球財富分布的地理不平等,大都可以根據引起馴化的初始環境條件來解釋」,大衛哈維則指出這樣的說法也就意味著,「西方殖民與帝國主義實踐本身,與例如當代非洲發展的悽慘狀態,沒有什麼關係」,因為「相較於非洲環境遺產的沉重分量,無情地榨取非洲資源的掠奪式資本主義,就黯然失色了」。哈維駁斥,戴蒙完全不提非洲熱帶與亞熱帶土壤的「脆弱肥力」[4]在一個世代的殖民統治內就橫遭摧毀的歷史,也不提更早被奴隸販子破壞的西非原有之蓬勃分散稻作農業。

再來比較精彩的是,戴蒙對於為何「歐洲與中國都是東西橫向發展,卻命運不同」的自圓其說,也讓哈維不大滿意。戴蒙透過打量地圖,發現歐洲的海岸線比中國破碎很多,因此認為這是中國長期統一的解釋。哈維認為戴蒙是對將絕對空間粗略簡化再現的地圖,將其連結到現實歷史的因果力量,哈維說這是極為粗糙的空間決定論,中間的因果邏輯毫無證據,因為「仔細瞧瞧美國和中國的海岸線,就可以指出美國應該比中國更加中央集權才對」。再來,戴蒙也犯了一個通病,就是在論證中對世界有了「新自由主義教條」的預設,亦即認為過度的國家控制不好,所以海岸線不破碎促使中國長期統一的結果,就是中國最後被西方取代。哈維信手拈來幾個例子,官僚化的威權政府如台灣、日本、韓國、新加坡事實上主導了多年的經濟成長。哈維說,「戴蒙對於海岸線因果效應的堅持,全然不可信,更不用說有任何『科學』基礎。」

從地理學的發展史來看,戴蒙最大的問題便在於太企圖以自然環境來解釋「最近13,000年來所有人的簡短歷史」,而落入「環境決定論」的圈套,即便他不認為自己是個環境決定論者,哈維批評這種「罐裝歷史」忽視了1500年以降全球財富地理的重大劇變。戴蒙的詮釋並非全然不對,但也許只能解釋最初社會發展的形態,卻很難用這種史觀套用到近代史的變遷,戴蒙這種被稱為「演化論」的史觀,最常被批評的就是將人類一切行為給用「競爭生存」合理化了。礙於篇幅,無法在這裡善加敘述《寰宇主義與自由地理》的觀點,但在此提供了《槍炮、病菌與鋼鐵》在地理學中的位置,以及地理學界另外一派長期以來對環境決定論的批判,也就是為何會出現「地理學者抨擊地理學者」。希望能讓讀者們能用更高的視角了解這些暢銷書所預設的「地理」。

註:

-----廣告,請繼續往下閱讀-----
  1. 參考 Human Stars (2014.02.08檢索)
  2. 請見《寰宇主義與自由地理》
  3. Andrew R. Bodman, “Weavers of influence: the structure of contemporary geographic research”, Transactions of the Institute of British Geographers N.S., v. 16 no. 1 (1991). On line version rev. 9 October, 1990.
  4. 熱帶地區事實上因為養分多在生物系統中循環,一但有落葉或生物殘骸,很快就被分解重新進入循環中,所以使得土壤並不肥沃。可參考Strahler, A. H., & Strahler, A. N. (2006). Introducing physical geography. J. Wiley. 或任何與自然地理學有關的網站或書籍。
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

3
1

文字

分享

0
3
1
為機器人換上「物理大腦」:一場終結AI數位囚禁的革命
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/03 ・5732字 ・閱讀時間約 11 分鐘

本文與 研華科技 合作,泛科學企劃執行

我們都看過那種影片,對吧?網路上從不缺乏讓人驚嘆的機器人表演:數十台人形機器人像軍隊一樣整齊劃一地耍雜技 ,或是波士頓動力的機器狗,用一種幾乎違反物理定律的姿態後空翻、玩跑酷 。每一次,社群媒體總會掀起一陣「未來已來」、「人類要被取代了」的驚呼 。

但當你關掉螢幕,看看四周,一個巨大的落差感就來了:說好的機器人呢?為什麼大街上沒有他們的身影,為什麼我家連一件衣服都還沒人幫我摺?

這份存在於數位螢幕與物理現實之間的巨大鴻溝,源於一個根本性的矛盾:當代AI在數位世界裡聰明絕頂,卻在物理世界中笨拙不堪。它可以寫詩、可以畫畫,但它沒辦法為你端一杯水。

-----廣告,請繼續往下閱讀-----

這個矛盾,在我們常見的兩種機器人展示中體現得淋漓盡致。第一種,是動作精準、甚至會跳舞的類型,這本質上是一場由工程師預先寫好劇本的「戲」,機器人對它所處的世界一無所知 。第二種,則是嘗試執行日常任務(如開冰箱、拿蘋果)的類型,但其動作緩慢不穩,彷彿正在復健的病人 。

這兩種極端的對比,恰恰點出了機器人技術的真正瓶頸:它們的「大腦」還不夠強大,無法即時處理與學習真實世界的突發狀況 。

這也引出了本文試圖探索的核心問題:新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦,真的能終結機器人的「復健時代」,開啟一個它們能真正理解、並與我們共同生活的全新紀元嗎?

新一代AI晶片NVIDIA® Jetson Thor™ ,這顆號稱能驅動「物理AI」的超級大腦 / 圖片來源:研華科技

為何我們看到的機器人,總像在演戲或復健?

那我們怎麼理解這個看似矛盾的現象?為什麼有些機器人靈活得像舞者,有些卻笨拙得像病人?答案,就藏在它們的「大腦」運作方式裡。

-----廣告,請繼續往下閱讀-----

那些動作極其精準、甚至會後空翻的機器人,秀的其實是卓越的硬體性能——關節、馬達、減速器的完美配合。但它的本質,是一場由工程師預先寫好劇本的舞台劇 。每一個角度、每一分力道,都是事先算好的,機器人本身並不知道自己為何要這麼做,它只是在「執行」指令,而不是在「理解」環境。

而另一種,那個開冰箱慢吞吞的機器人,雖然看起來笨,卻是在做一件革命性的事:它正在試圖由 AI 驅動,真正開始「理解」這個世界 。它在學習什麼是冰箱、什麼是蘋果、以及如何控制自己的力量才能順利拿起它。這個過程之所以緩慢,正是因為過去驅動它的「大腦」,也就是 AI 晶片的算力還不夠強,無法即時處理與學習現實世界中無窮的變數 。

這就像教一個小孩走路,你可以抱著他,幫他擺動雙腿,看起來走得又快又穩,但那不是他自己在走。真正的學習,是他自己搖搖晃晃、不斷跌倒、然後慢慢找到平衡的過程。過去的機器人,大多是前者;而我們真正期待的,是後者。

所以,問題的核心浮現了:我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好?

-----廣告,請繼續往下閱讀-----
我們需要為機器人裝上一個強大的大腦!但這個大腦,為什麼不能像ChatGPT一樣,放在遙遠的雲端伺服器上就好? / 圖片來源:shutterstock

機器人的大腦,為什麼不能放在雲端?

聽起來好像很合理,對吧?把所有複雜的運算都交給雲端最強大的伺服器,機器人本身只要負責接收指令就好了。但……真的嗎?

想像一下,如果你的大腦在雲端,你看到一個球朝你飛過來,視覺訊號要先上傳到雲端,雲端分析完,再把「快閃開」的指令傳回你的身體。這中間只要有零點幾秒的網路延遲,你大概就已經鼻青臉腫了。

現實世界的互動,需要的是「即時反應」。任何網路延遲,在物理世界中都可能造成無法彌補的失誤 。因此,運算必須在機器人本體上完成,這就是「邊緣 AI」(Edge AI)的核心概念 。而 NVIDIA  Jetson 平台,正是為了解決這種在裝置端進行高運算、又要兼顧低功耗的需求,而誕生的關鍵解決方案 。

NVIDIA Jetson 就像一個緊湊、節能卻效能強大的微型電腦,專為在各種裝置上運行 AI 任務設計 。回顧它的演進,早期的 Jetson 系統主要用於視覺辨識搭配AI推論,像是車牌辨識、工廠瑕疵檢測,或者在相機裡分辨貓狗,扮演著「眼睛」的角色,看得懂眼前的事物 。但隨著算力提升,NVIDIA Jetson 的角色也逐漸從單純的「眼睛」,演化為能夠控制手腳的「大腦」,開始驅動更複雜的自主機器,無論是地上跑的、天上飛的,都將NVIDIA Jetson 視為核心運算中樞 。

-----廣告,請繼續往下閱讀-----

但再強大的晶片,如果沒有能適應現場環境的「容器」,也無法真正落地。這正是研華(Advantech)的角色,我們將 NVIDIA Jetson 平台整合進各式工業級主機與邊緣運算設備,確保它能在高熱、灰塵、潮濕或震動的現場穩定運行,滿足從工廠到農場到礦場、從公車到貨車到貨輪等各種使用環境。換句話說,NVIDIA 提供「大腦」,而研華則是讓這顆大腦能在真實世界中呼吸的「生命支持系統」。

這個平台聽起來很工業、很遙遠,但它其實早就以一種你意想不到的方式,進入了我們的生活。

從Switch到雞蛋分揀員,NVIDIA Jetson如何悄悄改變世界?

如果我告訴你,第一代的任天堂Switch遊戲機與Jetson有相同血緣,你會不會很驚訝?它的核心處理器X1晶片,與Jetson TX1模組共享相同架構。這款遊戲機對高效能運算和低功耗的嚴苛要求,正好與 Jetson 的設計理念不謀而合 。

而在更專業的領域,研華透過 NVIDIA Jetson 更是解決了許多真實世界的難題 。例如

-----廣告,請繼續往下閱讀-----
  • 在北美,有客戶利用 AI 進行雞蛋品質檢測,研華的工業電腦搭載NVIDIA Jetson 模組與相機介面,能精準辨識並挑出髒污、雙黃蛋到血蛋 
  • 在日本,為避免鏟雪車在移動時發生意外,導入了環繞視覺系統,當 AI 偵測到周圍有人時便會立刻停止 ;
  • 在水資源珍貴的以色列,研華的邊緣運算平台搭載NVIDIA Jetson模組置入無人機內,24 小時在果園巡航,一旦發現成熟的果實就直接凌空採摘,實現了「無落果」的終極目標 。

這些應用,代表著 NVIDIA Jetson Orin™ 世代的成功,它讓「自動化」設備變得更聰明 。然而,隨著大型語言模型(LLM)的浪潮來襲,人們的期待也從「自動化」轉向了「自主化」 。我們希望機器人不僅能執行命令,更能理解、推理。

Orin世代的算力在執行人形機器人AI推論時的效能約為每秒5到10次的推論頻率,若要機器人更快速完成動作,需要更強大的算力。業界迫切需要一個更強大的大腦。這也引出了一個革命性的問題:AI到底該如何學會「動手」,而不只是「動口」?

革命性的一步:AI如何學會「動手」而不只是「動口」?

面對 Orin 世代的瓶頸,NVIDIA 給出的答案,不是溫和升級,而是一次徹底的世代跨越— NVIDIA Jetson Thor 。這款基於最新 Blackwell 架構的新模組,峰值性能是前代的 7.5 倍,記憶體也翻倍 。如此巨大的效能提升,目標只有一個:將過去只能在雲端資料中心運行的、以 Transformer 為基礎的大型 AI 模型,成功部署到終端的機器上 。

NVIDIA Jetson Thor 的誕生,將驅動機器人控制典範的根本轉變。這要從 AI 模型的演進說起:

-----廣告,請繼續往下閱讀-----
  1. 第一階段是 LLM(Large Language Model,大型語言模型):
    我們最熟悉的 ChatGPT 就屬此類,它接收文字、輸出文字,實現了流暢的人機對話 。
  2. 第二階段是 VLM(Vision-Language Model,視覺語言模型):
    AI 學會了看,可以上傳圖片,它能用文字描述所見之物,但輸出結果仍然是給人類看的自然語言 。
  3. 第三階段則是 VLA(Vision-Language-Action Model,視覺語言行動模型):
    這是革命性的一步。VLA 模型的輸出不再是文字,而是「行動指令(Action Token)」 。它能將視覺與語言的理解,直接轉化為控制機器人關節力矩、速度等物理行為的具體參數 。

這就是關鍵! 過去以NVIDIA Jetson Orin™作為大腦的機器人,僅能以有限的速度運行VLA模型。而由 VLA 模型驅動,讓 AI 能夠感知、理解並直接與物理世界互動的全新形態,正是「物理 AI」(Physical AI)的開端 。NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 。

NVIDIA Jetson Thor 的強大算力,就是為了滿足物理 AI 的嚴苛需求而生,要讓機器人擺脫「復健」,迎來真正自主、流暢的行動時代 / 圖片來源:研華科技

其中,物理 AI 強調的 vision to action,就需要研華設計對應的硬體來實現;譬如視覺可能來自於一般相機、深度相機、紅外線相機甚至光達,你的系統就要有對應的介面來整合視覺;你也會需要控制介面去控制馬達伸長手臂或控制夾具拿取物品;你也要有 WIFI、4G 或 5G 來傳輸資料或和別的 AI 溝通,這些都需要具體化到一個系統上,這個系統的集大成就是機器人。

好,我們有了史上最強的大腦。但一個再聰明的大腦,也需要一副強韌的身體。而這副身體,為什麼非得是「人形」?這不是一種很沒效率的執念嗎?

為什麼機器人非得是「人形」?這不是一種低效的執念嗎?

這是我一直在思考的問題。為什麼業界的主流目標,是充滿挑戰的「人形」機器人?為何不設計成效率更高的輪式,或是功能更多元的章魚型態?

-----廣告,請繼續往下閱讀-----

答案,簡單到令人無法反駁:因為我們所處的世界,是徹底為人形生物所打造的。

從樓梯的階高、門把的設計,到桌椅的高度,無一不是為了適應人類的雙足、雙手與身高而存在 。對 AI 而言,採用人形的軀體,意味著它能用與我們最相似的視角與方式去感知和學習這個世界,進而最快地理解並融入人類環境 。這背後的邏輯是,與其讓 AI 去適應千奇百怪的非人形設計,不如讓它直接採用這個已經被數千年人類文明「驗證」過的最優解 。

這也區分了「通用型 AI 人形機器人」與「專用型 AI 工業自動化設備」的本質不同 。後者像高度特化的工具,產線上的機械手臂能高效重複鎖螺絲,但它無法處理安裝柔軟水管這種預設外的任務 。而通用型人形機器人的目標,是成為一個「多面手」,它能在廣泛學習後,理解物理世界的運作規律 。理論上,今天它在產線上組裝伺服器,明天就能在廚房裡學會煮菜 。

人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態 / 圖片來源:shutterstock

但要讓一個「多面手」真正活起來,光有骨架還不夠。它必須同時擁有強大的大腦平台與遍布全身的感知神經,才能理解並回應外在環境。人形機器人的手、腳、眼睛、甚至背部,都需要大量感測器去理解環境就像神經末梢一樣,隨時傳回方位、力量與外界狀態。但這些訊號若沒有通過一個穩定的「大腦平台」,就無法匯聚成有意義的行動。

這正是研華的角色:我們不僅把 NVIDIA Jetson Thor 這顆核心晶片包載在工業級電腦中,讓它成為能真正思考與反應的「完整大腦」,同時也提供神經系統的骨幹,將感測器、I/O 介面與通訊模組可靠地連結起來,把訊號傳導進大腦。你或許看不見研華的存在,但它實際上遍布在機器人全身,像隱藏在皮膚之下的神經網絡,讓整個身體真正活過來。

但有了大腦、有了身體,接下來的挑戰是「教育」。你要怎麼教一個物理 AI?總不能讓它在現實世界裡一直摔跤,把一台幾百萬的機器人摔壞吧?

打造一個「精神時光屋」,AI的學習速度能有多快?

這個問題非常關鍵。大型語言模型可以閱讀網際網路上浩瀚的文本資料,但物理世界中用於訓練的互動資料卻極其稀缺,而且在現實中反覆試錯的成本與風險實在太高 。

答案,就在虛擬世界之中。

NVIDIA Isaac Sim™等模擬平台,為這個問題提供了完美的解決方案 。它能創造出一個物理規則高度擬真的數位孿生(Digital Twin)世界,讓 AI 在其中進行訓練 。

這就像是為機器人打造了一個「精神時光屋」 。它可以在一天之內,經歷相當於現實世界千百日的學習與演練,從而在絕對安全的環境中,窮盡各種可能性,深刻領悟物理世界的定律 。透過這種「模擬-訓練-推論」的 3 Computers 閉環,Physical AI (物理AI) 的學習曲線得以指數級加速 。

我原本以為模擬只是為了節省成本,但後來發現,它的意義遠不止於此。它是在為 AI 建立一種關於物理世界的「直覺」。這種直覺,是在現實世界中難以透過有限次的試錯來建立的。

所以你看,這趟從 Switch 到人形機器人的旅程,一幅清晰的未來藍圖已經浮現了。實現物理 AI 的三大支柱已然齊備:一個劃時代的「AI 大腦」(NVIDIA Jetson Thor)、讓核心延展為「完整大腦與神經系統」的工業級骨幹(由研華 Advantech 提供),以及一個不可或缺的「教育環境」(NVIDIA Isaac Sim 模擬平台) 。

結語

我們拆解了那些酷炫機器人影片背後的真相,看見了從「自動化」走向「自主化」的巨大技術鴻溝,也見證了「物理 AI」時代的三大支柱——大腦、身軀、與教育——如何逐一到位 。

專家預測,未來 3 到 5 年內,人形機器人領域將迎來一場顯著的革命 。過去我們只能在科幻電影中想像的場景,如今正以前所未有的速度成為現實 。

這不再只是一個關於效率和生產力的問題。當一台機器,能夠觀察我們的世界,理解我們的語言,並開始以物理實體的方式與我們互動,這將從根本上改變我們與科技的關係。

所以,最後我想留給你的思想實驗是:當一個「物理 AI」真的走進你的生活,它不只是個工具,而是一個能學習、能適應、能與你共同存在於同一個空間的「非人智慧體」,你最先感受到的,會是興奮、是便利,還是……一絲不安?

這個問題,不再是「我們能否做到」,而是「當它發生時,我們準備好了嗎?」

研華已經整裝待發,現在,我們與您一起推動下一代物理 AI 與智慧設備的誕生。
https://bit.ly/4n78dR4

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

1
1

文字

分享

1
1
1
經濟重要還是環境重要?明朝末年發生了什麼事?氣候如何影響國家?——《價崩》導讀
衛城出版_96
・2024/05/07 ・4105字 ・閱讀時間約 8 分鐘

眼皮底下的事實:環境史研究者看《價崩》

洪廣冀(臺灣大學地理環境資源學系副教授)

著名的漢學家卜正民以如下段落為《價崩:氣候危機與大明王朝的終結》一書定調:

生活在這個時代,我們彷彿逃不出莫測變幻的手掌心。變化讓人這麼痛苦、氣餒,為了安慰自我,我們便告訴自己:當代的生活特徵就是接連不斷的變化,正是這種不穩定,讓世界變得比以往更複雜。

他告訴我們,作為一個「長壽之人」,「過去十年來,氣候變遷、物價通膨,以及政治豪奪的速度與規模」,他認為也是前所未見。只是,作為一個歷史學者,他還是想問,若我們放大時空的尺度,當代人在過去十年來經歷的變化,真的是前所未見嗎?他的答案是否定的。在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。

在一六四○年代早期的中國,也就是明朝末期的中國,是一個連「生存條件都被剝奪,平安度日的尊嚴都被否定的時代」,因為「大規模的氣候寒化、疫情與軍事入侵,奪走數以百萬計的人命」。
圖/unsplash

藏在眼皮下的事實是什麼?小冰期如何發生?

一六四○年代初期的中國發生什麼事?這便是卜正民試圖回答的問題。他反對傳統史學的兩大見解:一者是訴諸人禍,即訴諸當時宮廷內的派系鬥爭,統治階層道德淪喪,導致民不聊生;二者是訴諸十六至十七全球的白銀貿易,即當時從美洲與日本湧入中國的白銀,造成物價波動與社會不安。卜正民認為,訴諸人禍與貿易會讓我們看不見「藏在眼皮底下的事實」:小冰河時期(簡稱小冰期)。

-----廣告,請繼續往下閱讀-----

廣義地說,小冰期是從十四世紀至十九世紀初期的地球寒化現象,氣溫平均掉了攝氏兩度。乍看之下,攝氏兩度的溫差或許微小,但對作物而言,這樣的溫差已經足夠讓作物減少一次收成,或根本無法收成。再者,必須注意,兩度的溫差是「平均」,即可能是極熱與極寒的氣溫交錯變化造就此兩度溫差。這確實也是在小冰期中發生的事。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。影響所及,所謂「聖嬰-南方震盪現象」(El Niño-Southern Oscillation, ENSO,即傳統上所說的「聖嬰現象」加「反聖嬰現象」)變得格外激烈,乾旱、水災等極端氣候頻傳。不僅如此,地球科學家也指出,小冰河期也是火山活動格外頻繁的時期。火山噴出的煙塵,遮蔽了太陽輻射,更加速了地球的寒化。

地球科學家推測,寒冷的氣候讓兩極的冰山範圍擴張,讓海水變得更鹹,也就是變得更重,影響洋流的流動方式,從而牽引了大氣與洋流間的循環。
圖/unsplash

小冰期的起因為何?目前普遍接受的見解是太陽活動改變。此外,也有研究者指出,這與所謂歐洲人「發現」新大陸有關。受到所謂「哥倫布大交換」的衝擊,美洲原住民大量消失,森林擴張,吸收大量二氧化碳。眾所周知,二氧化碳是溫室氣體;二氧化碳濃度的減低,讓大氣保溫的能力下降,與前述太陽活動與火山噴發的效果耦合,讓寒化成為不可逆的過程。總之,我們現在已經知道,地球是個混沌系統,牽一髮不只動全身,甚至整個身體都會分崩離析。

回到《價崩》這本書。卜正民指出,明朝的存續時間(一三六八至一六四四年)即落在小冰期,並成為明朝覆亡的主因。他將小冰期之於明朝的影響分為六個泥沼期:一、永樂泥淖期(一四○三年至一四○六年)。二、景泰泥淖期(一四五○年至一四五六年)。三、嘉靖泥淖期(一五四四年至一五四五年)。四、萬曆一號泥淖期(一五八六年至一五八九年)。五、萬曆二號泥淖期(一六一五年至一六二○年)。六、崇禎泥淖期(一六三八年至一六四四年)。

-----廣告,請繼續往下閱讀-----

永樂泥淖期欠缺災荒記載,景泰泥淖期以饑荒收尾,嘉靖泥淖期氣候異常乾冷,萬曆一號泥淖期爆發饑荒、洪水、蝗災與大疫,「人民相食,枕籍死亡」;萬曆二號泥淖期的乾旱與水災頻繁,饑荒再度爆發,「朝廷賑濟的請願如潮水湧來」。崇禎泥淖期是明代乃至於「整個千年期間最慘痛的七年」,「米粟踊貴,餓殍載道」。一六四四年四月末,闖王李自成兵臨北京,致書要求崇禎帝歸順。崇禎不從,在命皇后、貴妃與女兒自盡後,他爬上皇居後的煤山,自縊身亡。李自成稱帝後,滿人入關,將中國納入大清國版圖。

不可忽視的幽靈?拔除合理征服者的解釋,明朝滅亡原因還有哪些?

如此的歷史解釋是否會流於環境決定論?卜正民的回答是:「如果環境決定論的幽靈就在門外徘徊,我也不會在分析時將其拒於門外。」那麼,是什麼讓寫出《縱樂的困惑》、《維梅爾的帽子》等名著的歷史學者相信環境的決定作用?答案就是糧價。

卜正民先生像。
圖/wikipedia

以他的話來說,「太陽能與人類需求的關係,是透過糧價調節的。從景泰年間到崇禎年間,糧價在五次環境泥淖其中激增,每一次都把價格多往上推一截,這樣的事實也說服我必須採用氣候史的大框架。」卜正民表示,「一旦經濟體仰賴太陽輻射為能源來源,那麼無論大自然是幽而不顯還是顯而易見,都必然是社會或國家生命力的決定因素。」

在結語「氣候與歷史」中,卜正民再次反駁那些把明朝覆滅推給「失德」的見解。他認為,這種論調是「合理化明清兩朝遞嬗的過程」,且「編出這種敘事並為之背書的,就是征服者」。他強調,「明朝的滅亡固然不能推給災荒糧價,但講述崇禎末年重大危機時不把氣候因素納入考慮,那簡直就像莎士比亞所言,宛如癡人說夢,充滿著喧譁與騷動,卻沒有任何意義。」

-----廣告,請繼續往下閱讀-----

然而,不至於將環境決定論「拒於門外」是一回事,認為社會變遷就此被環境「決定」,又是另一回事。卜正民並不認為,面對氣候因素帶來的種種挑戰,明朝各級官員只能雙手一攤,感嘆天要亡我,不做任何努力。就如其他生活在小冰期的人們一般,卜正民認為,明朝人建設基礎設施、育種、建立制度、開發新科技與控制生育力等;但問題是,一六三○年代晚期的種種災害,並未催出社會的適應力,反倒是摧毀其適應力。

拜此時勃發的火山活動與激烈的聖嬰-南方震盪現象「之賜」,不論是政府還是市場,都變不出糧食。卜正民認為,至少在前五個泥淖期,明朝人還是表現出相當的韌性,努力予以調適。然而,進入崇禎泥淖期後,春夏乾冷,田地龜裂,運河無水。當每公斤的米得需要兩千五百公升的水,而老天爺就是不願意降下一滴雨時,糧食供應體系就此崩潰,連帶把物價與政治體系拖下去陪葬。

是誰忽略了眼皮底下的事實?這段歷史帶給我們什麼警訊?

回到卜正民所稱的「眼皮底下的事實」。我們要問,是誰忽略了這項事實?誰是這對眼皮的擁有者?卜正民的答案有二。一則是以研究社會、政治與環境變遷的人文社會科學研究者。以小冰期的相關研究為例,他表示,當他開始研究明代中國糧價變異與氣候變化之關係時,驚訝地發現,「其他地方的環境史對糧價幾乎不提」。與之對照,精通糧價的歷史研究者,如不是太快地把糧價理解為「公平交易」的指標,便是視之為社會關係的一環,忽略了糧食必得是在特定的環境條件下孕育出來的。

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。
圖/unsplash

另一個忽略氣候或環境此事實者便是卜正民的同代人,也就是在閱讀這本書的你我。現代人對物價飛漲的關注程度遠比全球暖化、極端氣候與環境破壞來得高;畢竟,前者是切身之痛,後者則相當遙遠,是北極熊與紅毛猩猩的事。然而,卜正民的分析告訴我們,即便明代中國離現在相當遙遠,所謂的小冰期至少也是一百五十年以上的事,但物價恐怕還是可作為某種氣候指標。換言之,若人們以關心物價的熱誠來關心環境,面對當代的環境危機,說不定人們多少可找出個解方。

-----廣告,請繼續往下閱讀-----

此外,讓人心生警惕的是,卜正民告訴我們,小冰期多少是個漫長的地球系統變化。小冰期本身並未造成明朝衰亡,是相伴的極端氣候摧毀了明代社會的韌性與調適。他也認為,面對小冰期、火山噴發與聖嬰-南方震盪現象誘發的極端氣候,從後見之明來看,明朝人也做了他們可以做的,但也只多苟延殘喘了七年,且還是生存條件都被剝奪、生活尊嚴都被否定的七年。

那麼,當人類誘發的氣候變遷可能已加劇了聖嬰-南方震盪現象,讓去年(二○二三年)夏天成為有紀錄以來地球最熱的夏天,而極端氣候彷彿成為日常,人類還有多少時間可以調適?如果說明朝多少是被地球系統的正常運作摧毀,當今地球系統的異常,是人類自己造成的,數百年後的歷史學家,在回顧這段歷史時,恐怕無法如卜正民對待明朝人一樣地寬厚,只能說這是咎由自取。諸如此類的思考,都讓《價崩》有了跨越時代的現實意義。

畢竟,明朝人不是外星人,他們跟我們都生活在同一個地球上。

——本文摘自《價崩:氣候危機與大明王朝的終結》,2024 年 05 月,城出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
衛城出版_96
4 篇文章 ・ 4 位粉絲
"每個人心中都有一座城。每個人在心裡攜帶著文明的種子。 守衛讀者心中之城,與文明的生命力。"

0

0
0

文字

分享

0
0
0
批評反而促成發展?科學化中醫和宋朝佛儒交融類似?——《非驢非馬》
左岸文化_96
・2024/04/26 ・3068字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

「雜種醫」的挑戰

余巖在一九三二年出版《醫學革命論文選》第二版之時,新版序的開場白就敘述了朋友對他的氣憤埋怨。他們說:

近年外面半新半舊非驢非馬的醫說,橫行得了不得。這點狡獪都是你教訓他們的。你若不去向他們攻擊,他們永遠不會變遷。舊的索性舊,新的索性新,倒是界限分明,容易解決。⋯⋯你拚命攻擊舊醫,結果是教訓他們尋出一條生路。

余巖先生像。
圖/wikipedia

在一九二九年的衝突之後,許多批判中醫的人都注意到一個令他們毛骨悚然的現象:一夕之間,出現了一種「非驢非馬」的雜種醫。在很短的時間裡,雜種醫就在醫界大行其道,而之前這種混種現象只盛行於商業界的藥品市場而已。雖然抱持第一與第三立場的人對於中醫科學化的意見相反,但他們都把陸淵雷與譚次仲的方案抨擊為「非驢非馬」。

為何被譯為「雜種醫」?

在此,我想清楚說明為什麼把「非驢非馬醫」翻譯為「雜種醫」(mongrel medicine),而不是聽起來比較正面的「混種醫」(hybrid medicine)。第一,兩者間有一個重要的不同之處,就在於「雜種醫」是當年的歷史行動者所使用的概念。當年批判中醫的人士把「非驢非馬醫」等同於「雜種醫」,因爲他們想強調這種醫療是一個背叛了父母的雜種,是對兩個純種醫學傳統的雙重背叛。

這樣強烈的負面意涵便引出我的第二個論點:作為歷史行動者的概念而言,當年沒有任何中醫師會自我標榜為「非驢非馬」,「非驢非馬」是中醫批評者強加在他們身上的一種貶抑性的標籤。相較於「雜種」與「非驢非馬」所帶有的強烈的負面意涵,「混種性」(hybridity)這個後殖民概念的功能剛好相反,它強調「後殖民文化的混種性是一個優點,而不是弱點。」我想傳達的訊息卻正是混種的負面意涵:對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。

-----廣告,請繼續往下閱讀-----
對於那些企圖匯通中西醫的人而言,他們必須承受對手加諸己身的羞辱與限制,被對手定義為「雜種」。為了傳達「非驢非馬」一詞的貶抑與羞辱,我決定將其意譯為「雜種醫」。
圖/unsplash

備受罵名,仍要追求中醫科學化的原因為何?

面對來自雙方的攻擊,陸淵雷決定在那份備受爭議的中醫科學化提案當中,將接納雜種醫列為五項前提之一:「故整理國醫藥學術,引用科學原理時,不任受破壞國粹之名。」在此陸淵雷清楚表示不認同將中醫視為「國粹」而保存其本真性(authenticity)。

這是一項重要的證據,顯示至少對陸淵雷而言,國醫運動不當被等同為一種文化民族主義運動。他特別提及儒學與佛教在宋朝(九六○ — 一二七八)成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。就這個意義上而言,像陸淵雷這樣的人士不僅發動了中醫科學化方案,更心甘情願地承受論敵貼在他們身上的貶抑性標籤,因為他們追求的目標不是保存中醫既有的樣貌,而是要發展出國醫館所揭示的那種新生的混種醫。

陸淵雷提及儒學與佛教在宋朝成功融合的例子,而主張中醫科學化是性質接近的事業,是以一種大膽而富有創意的方式來融合中國與外國文化。
圖/ wikipedia

余巖的友人責怪余巖協助創造了這種雜種醫。他們是對的。雜種醫之所以會興起,就是為了回應余巖和其他中醫批評者所倡議的醫學革命。這並不是說在余巖對中醫提出抨擊之前,不曾有人試圖融合這兩種醫學型態──唐宗海就是一個明顯的先例。重點是,雜種醫之所以突然間變地那麼值得追求、那麼引人痛毀極詆、那麼危機四伏,這一切都源於人們堅持要以科學方法整理中醫──換句話說,就是中醫科學化。有史以來第一次,當中醫師想像中醫與西醫的關係之時,他們無可逃避地必須共同直面科學的概念。

雜種醫與中醫科學化的關係?

雜種醫與中醫科學化之間,有一種相互建構與壓制的辯證關係。這兩者的關係具有相互建構性,因為中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述──例如余巖對於中醫的三分法。就這個意義上而言,他們的改革體現現代性的特徵,因此截然不同於由唐宗海為代表的那種前現代式的匯通中西醫。

-----廣告,請繼續往下閱讀-----

另一方面,這兩者之間的關係也具有壓抑性,因為正是科學的概念使人難以想像中醫與生物醫學之間能夠經由跨種雜交而產生有意義的成果。單純想像把兩種醫學型態混合起來,或許不需要擔心會產生怪物。但若是想像將科學與異己的他者進行跨種雜交,感覺上幾乎是褻瀆神聖。由於大家都覺得這是一個無法想像的作法,無怪乎批評者將這種新式醫學描述為「非驢非馬」。

中醫師會想追求雜種醫這種古怪的東西,完全是因為國民黨國家提倡中醫科學化,並強迫抗爭雙方以其作為停戰條件。正是這個科學化的目標,迫使中醫師在改革中醫時認真看待科學的概念以及相關的現代性論述。
圖/pexels

就像那無法繁殖後代的騾,雜種醫雖然表面上看來充滿活力,卻絕對不可能長久存續,無法成為一個富有生命力的活著的傳統(living tradition)。正因為這種醫學廣受大眾歡迎,反對者覺得必須利用雜種醫這個貶抑性的概念,以提醒眾人逾越界線的危險,使人們產生強烈的負面情緒。總而言之,就是因為論爭雙方都接納中醫科學化方案,是以雜種醫才會變成一個廣受中醫師支持的、值得追求的、卻又沒有希望成功的方案;另一方面,也變成西醫師眼中巨大的威脅。

結論

西醫師為何強烈地偏好「中醫科學化」這句口號,而不是「以科學方法整理中醫」?關鍵就在防止雜種醫。由於這句口號包含了「科學化」這個在地發明的概念,因此也就把我們帶回了本章一開頭提出的那個問題:在一九三○年代初期的中西醫論爭中,中醫科學化方案做為一股關鍵歷史力量,究竟發揮了什麼樣的功能?最直白的答案就是,將科學轉化為一個動詞(科學化),其實是最有效的方式來展示世界上存在著一種同質性的實體叫做科學。

如果科學不能被理解為一種同質性的單一實體,那便難以想像將某個東西「科學化」究竟是什麼意思。更重要的是,當人們習以為常、不假思索地使用「科學化」這個動詞時,大家的行為便預設並且強化了一個想法:科學及其對反(中醫)是兩個可以清楚辨識的實體,就像具體的物品一樣真實。

-----廣告,請繼續往下閱讀-----

——本文摘自《非驢非馬:中醫、西醫與現代中國的相互形塑》,2024 年 02 月,左岸文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
左岸文化_96
39 篇文章 ・ 11 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。