分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

藥到,病除!─淺談藥物輸送型態與新開發

2013/06/04 | | 標籤:

文 / 王躍達 (台北科技大學生物資訊系)

圖片摘自http://www.meb.uni-bonn.de/Cancernet/CDR0000258035.html

沒有人喜歡打針,這是無庸置疑的;為什麼討厭打針?因為會產生疼痛。

纖細而長的針刺穿皮膚的表皮、真皮與皮下組織到達血管進一步執行注射的過程中,針頭將經過真皮區域的神經,壓迫的力量會使神經受器獲得刺激,痛覺由此產生。姑且不論大腦對於這個痛覺的評價是如何-繼續分析下去將會持續離題,痛覺本身就是保護生命體的一環;因此,痛覺有可能會觸發反射神經,肌肉收縮而顫動。而在皮下的針頭則會受到外力的擠壓而偏移無法定位導致受傷面積增大,想當然爾,產生的自然是難看的傷痕……別忘了,還有更多,你所不會想要的疼痛。

既然會疼痛,那麼侵入式注射有甚麼好處?我知道你還有很多問題想問,然而,先擱下那令人恐懼的「感覺」,在繼續談論侵入式注射的功過以前,我們有必要先認識一下藥物傳輸的種類。

常見的巨觀藥物傳輸途徑可藉由進入的方式約化為服用侵入非侵入三項。

顧名思義,服用是將藥物吞入消化系統,藉由吸收的方式攝取藥物分子;侵入,則是透過器材將藥物直接輸入人體內部;非侵入則反,既不是透過服用,也非使用器材侵入來達成藥物的投遞。藉由這些手段配合恰當而合適的藥物,醫師可以將治療送抵患部,同時更為理想的,能控制藥物傳輸所需要的時間、過程與其負面影響。

是的,想想看毫無阻礙、直接地將絕大部分的藥物以不會受到腸胃道蛋白質、pH值破壞,以最純粹的方式直接輸入血液造成藥效,你就覺得橫豎挨上一針的確不意外了。單純的貼片也需要花時間擴散,但藥物等不了那麼久或者是沒必要等待的時刻,兩害相權取其輕,挨上那一針換得速效與藥物保護,注射,自然而然成了不二選,聽起來就沒那麼令人恐懼了。

然而藥學家們仍然認為,這些方式仍然未竟成功。

想像一下:藥物滲入身體之中,不論注射的針筒的體積或者點滴的體積是有限的。注射的瞬間,全部的注射物濃度全部集中於侵入點,直到血流沖散到全身為止;擴散原理下,要等到一段時間之後,整體內濃度才會重新達成水平。藥物最高的濃度永遠會在注射侵入的點處最高,若標靶點處距離注射位置越遠,則注射後產生藥效的時間則空窗越久;有限的體積對於侵入點來說濃度過高,而對整體而言體積有可能尚嫌不足。

即便是採取點滴式的注入,也只不過是把針筒的容積變大由毫升計算成了公升計算罷了。況且打針與點滴並不是病患能夠簡易親自操作的技術,必須受過一點訓練的。考量到藥物注射後最快抵達患部的距離,有時候必須搭配更多專用的體內植入物與配套手術,如可重複使用的皮下注射連接器來提升藥物注射的品質。不想使用這些高分子加工固體輔助器材?好吧,你可能少挨一刀,少損失那麼一點血量;但你得每次都被扎不同地方一針。重複同一點注射,或者注射口持續在該處停留會導致體內組織-免疫也好,新生組織也罷-嘗試堵塞、抗拒與排斥,注射的穿刺所需的力道要更大,而注射口可用的時間也會越短。

最後,注射對你就不怎麼管用了。為了讓注射這類大量、迅速的藥物輸送方式保持一定的效力,無論如何,你都必須保持你自己的生理結構一定程度上的「新鮮可用」。

聽起來像是待宰的雞鴨牛羊哀傷而不快,基於治療的原則,你又必須不得在必要之刻執行必要之惡。於是你問起了貼片這產物。

藥劑貼片的結構相當單純-覆蓋黏性聚合物的彈性聚體或織物成為基底,留下沾黏皮膚的部分後將攜帶藥物的材料覆蓋於一個區域後組合而成。毫無特色的結構所造就的正是簡單而純粹的物理特性;運用濃度差造成的滲透力,促使藥物穿越皮膚的障礙進入血液,透過循環系統到達理想的患部。聽到此想必你又有問題了:貼片完全迴避掉人體的抗拒性與排斥力,結構簡單而易於量產,這樣美好的東西,為什麼不多用呢?

藥物傳遞可不是武俠小說:重劍無鋒,大巧不工?沒有人會想用玄鐵劍削蘋果的;而玄鐵劍之所以無雙,除了楊過的功夫外,還得依賴他巨大的質量與動量才能造成超絕的破壞力呢。如果已無鋒的刀刃來做為比喻,那麼在一罐一公升的點滴面前,真正像是「水果刀」等級的,恐怕就是貼片了。有限的面積、有限的藥物溶解度和吸收力、有限的承載藥物分子量等等,全是制衡它成為殺手級應用的問題。況且要穿透皮膚的角質等直達血液,要讓藥物濃度達到有效的時間太過漫長,面對迫在眉睫的藥效終點戰來說,那已經是「未來」的「未來」了。

好吧。

聳了聳肩,然後必然帶有那麼點御都和主義的嘆氣。你覺得是時候該放棄了。越是分析越多缺點,都給你這專業的損完一圈,那藥物還有別的方式來拯救人類嗎?自暴自棄的,你做出了那樣的質詢。

答案是:當然有。如果就這樣放棄尚嫌太早,從激進一路下推到溫和,介入於貼片與注射之間這塊模糊的區域,正是科學家所瞄準的灰色地帶-既然注射是打入皮下組織的血管,貼片僅只在於表皮層的角質之上,有沒有能夠侵入一定深度真皮層卻不會觸動感覺神經而造成痛覺的解法?你得到他了,他的名字是「微創」技術。這次,再也不會有更多令人失望的發展,我們終於在痛苦之後,打開了另外的一條嶄新通往桃花源的可能性道路。

我們終於在漫長的分析與前言之後,跟著轉折進入了主題的領域:微創設備。

顧名思義,為低創傷程度-不會有痛覺的反應,不需要麻醉的前置,不留下任何顯而易見的永久痕跡-的器材設施。依循其基本設計構思,微針陣列高度多半限制於50~900μm之間,密度多落於100針/每平方公分(針頭頂點計算)為常見的設計。有了這樣的輪廓,為了建構實體的微針陣列,我們必須參照生物相容性與毒性測試來做針身材質的選擇;透過訪問FDA的資料庫,研究者們將可以獲得想要的答覆。不想要這麼抽象而不切實際的選擇方案嗎?那麼換個說法:只要你能吃下他而無副作用,可被分解不囤積不造成負擔的,都會成為FDA認可,而被實際應用於鑄造的材料。縮小點範圍;這些用以輸送藥物的微針成品的體積的大半部分以上的成分,其實就出沒於我們的生活之中。諸如減肥用的海藻糖,用來包裹藥物的糊精(澱粉分解成小分子前的中間物,分子量稍小),更甚至是單純的澱粉,以及一些特定的假牙黏著劑等,都是被選的材料─沒錯,它們無所不在,妙用無窮。

那麼,有鑄造針的配方了,模具呢?既然FDA認可,可以進入人體的材料可以簡約成「可以吃的」,那麼不須進入人體的範疇就自然放寬了點,變成了「可以盛裝一定溫度來用的」。陶瓷,如紫砂;金屬,如黃金、鋁、不鏽鋼;矽晶圓;還有一些其他的光可塑性環氧高分子(SU-8)與有機矽化合高分子(PDMS)。這些材料除了前述的特點外,往往也兼顧耐用與便宜,可長期保存等特性。而製作模具的過程,依照鑄造設定的步驟,可以由化學向性蝕刻、離子反應蝕刻、注塑、表面/體微機械加工、微成型與光─電鑄複製等方法產出陣列。

複雜而無趣的鑄造步驟與其改良足以長篇大論成為國際論文;而在眾人即將再次闔上雙眼睡著之前,我們換個話題─微針如何攜帶藥物?侵入皮膚但不深入的流程簡單易懂,要怎麼攜帶藥物使藥物進入人體?

微針,顧名思義即是微小的針形。不論有無機與有機,基本上均遵守「針」的外觀為主要核心。

微針,顧名思義即是微小的針形。不論有無機與有機,基本上均遵守「針」的外觀為主要核心。

藥物是靠著溶解或壓力差擠壓而離開針身,然後藉由皮膚表面的微孔道流入並滲透執行擴散的。藥物攜帶的形式眾多,塗佈法運用表面覆蓋另一層藥物的雙層結構,將針的機構與功能分層;微孔洞氣壓法則是讓藥物受氣壓關閉於針體內的管道內,應用壓力差受力而使之離開。這兩種多常見於金屬微針陣列,有部分研究也嘗試實作高分子類的產品。至於廣泛見於高分子為針的技術,則為以疊三明治般的讓可溶解高分子─藥物─高分子重疊的夾層式、以及直接將藥品混入針身材料一體成形等技術。運用這些設計與技術所產出的微針,其最大的特點在於比貼片擁有更好的藥物傳輸效率,並且比傳統注射強化了給藥的時間與維持藥物穩定。

不免俗地走到此,醜媳婦總得見個婆娘較量一番。理想中的微針陣列在藥物分子大小上的選擇比起注射小,但仍貼片大。而給藥時間的長短與釋放速度控制上,相對貼片差但比注射有效。中庸的目的就此達成,目前常見用於證明可透過此一方式運輸藥物為茶鹼、氨基酮戊酸、炭疽疫苗、β-半乳糖苷酶、鈣黃綠素、牛血清白蛋白、Desmospressin (DDAVP,去氨加壓素),促紅細胞生成素、Meso-tetra (N-methyl-4-pyridyl)porphine tetra tosylate、卵清蛋白、胰島素和質體DNA。

該是讓這漫長的故事迎接終點了嗎?不,還沒結束。即使是沒有稿費,也還沒到末路。

在這轉折之前,我是將所有種類的微針通通當作一個類別進行闡述─而明眼與高學歷閱覽百卷的你想必已經知道會在此唐突的出現這段話的用意為何。如果還有什麼細節我還沒說著的話,那大概是微針的本身的分類與各自的優缺。

是的,在論文種類的界定上,微針陣列本身仍有各自的分類。使用無機物與有機物構成的陣列彼此獨具一格,也各有其長短之處。無機微針陣列下,儘管製作在鑄造面上相對簡單明快,足以大量生產,但物理抗性再強也有極限。使用貼片後肌肉的收縮仍有微針破碎斷裂的風險,那些比較寬鬆的材料選擇是否長期下來會造成不良的副作用,一直留有爭議。

此外,由於是兩種截然不同的材料彼此接合,只依賴弱作用力有限而攜帶藥物的藥物種類變得狹隘、質量也有所降低至約於1毫克甚至更差;同時,塗布藥物的黏度必須極高,不利於一些特定藥物的配置;藥物於陣列表面無法在常溫與環境空氣中持續保存等等問題,使陣列一度走到瓶頸。另一個殺手級的問題則出現在使用的難度之上─只有醫療人員能負擔繁雜的前處理,並且擁有足夠的藥理與病理知識可以避免微針孔多半在兩小時內會堵塞,用以維持連續不間斷給藥的效果。

為了突破瓶頸而產生的有機微針就是為了改善上述的缺點而誕生的產物。但這樣的改變卻反而造成了其他方向的問題─依賴水溶的高分子只能與水溶性藥物相容,而微針的形狀保持能力隨環境濕度影響而不穩定,繁雜的鑄造過程不能保證品質的絕對性等等,層出不窮、意想不到、花樣百出的問題,時至今日仍舊困惑著科學家們,成為最終理想鄉的大敵。

你問我們會不會放棄?答案顯而易見的:不。

所謂逆境,就是要給人突破才被稱為逆境。科學就是因為不曾放棄的趨近於完美、沉溺於對於完美的追求、終極邊疆的渴望而茁壯的。一路粗淺的介紹與討論就到此畫下句點。

新的藥物運輸系統在這開發環境下已逐日趨近完整;儘管前方仍有眾多未明的實驗陷阱與技術障礙,但身為學術者的一員,我們將繼續勇往直前,直到終點不肯罷休。人類與疾病的抗戰是沒有終點的─眼前的結束只不過又是下一場戰鬥的開端,科學家們將永不停歇的前進,燃燒著生命與魂魄,高舉著幸福美滿的夢想大旗!

看得出這張OCT有機高分子微針有什麼缺點與隱憂嗎?

看得出這張OCT有機高分子微針有什麼缺點與隱憂嗎?

文獻參照:

  • 我正在撰寫的某篇國科會計畫論文,我自己,尚未發表
  • Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres, Cherng-Jyh Ke, Yi-Jou Lin, Yi-Chen Hua, Wei-Lun Chiang, Ko-Jie Chen, Wen-Cheng Yang, Hao-Li Liu, Chien-Chung Fu, Hsing-Wen Sung, 2012
  • A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens, Kazuhiko Matsuo, Yayoi Yokota, You Zhai, Ying-Shu Quan, Fumio Kamiyama, Yohei Mukai, Naoki Okada, Shinsaku Nakagawa, 2011,UNCORRECTED PROOF
  • Nano-Layered Microneedles for Transcutaneous Delivery of Polymer Nanoparticles and Plasmid DNA, Peter C. DeMuth , Xingfang Su , Raymond E. Samuel , Paula T. Hammond , and Darrell J. Irvine, 2012
  • Carboxymethylcellulose–Chitosan-Coated Microneedles with Modulated Hydration Properties, Alexander Marin, Alexander K. Andrianov, 2010
  • Hollow Out-of-Plane Polymer Microneedles Made by Solvent Casting for Transdermal Drug Delivery, Iman Mansoor, Urs O. Häfeli, and Boris Stoeber, 2012
  • 其他論文不及備載。

「空虛寂寞覺得冷會傳染嗎?」「為什麼人看到可愛的東西就想捏?」「為什麼蚊子喜歡叮穿深色衣服的人?」

科學從不只是冷冰冰的文字,而是存在世界各個角落熱騰騰的知識!不論是天馬行空的想像或日常生活的疑問,都可能從科學的角度來解釋。

本月的泛科選書 《不腦殘科學2》是泛科學作者編輯團隊嘔心瀝血的超級鉅獻!不只能滿足大人與小孩的好奇心,更將拓展你的視野,帶領大家發現一個嶄新的世界!

泛科限時優惠79折(含運),現在就帶一本回家

關於作者

活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia