9

0
0

文字

分享

9
0
0

理工牛與理盲文

timd_huang
・2011/04/09 ・1936字 ・閱讀時間約 4 分鐘 ・SR值 491 ・五年級
相關標籤: 科學素養 (41)

-----廣告,請繼續往下閱讀-----

圖片取自The Filter部落格

「理工牛」這個名詞,現在知道的人可能不多了,但至少在我唸大學的時候,大部份人都懂,都知道它是用來嘲笑我們這些學理工科者,不只是呆頭鵝,更是大笨牛,不懂得生活、特別是男女情趣,整天只會背公式,只懂試管燒杯,看到月亮,不會風情萬種地想到嫦娥奔月,卻會說出阿姆斯壯那句名言:『這是一小步,卻是人類的一大步』,真是煞風景;或許吧,和那個時代風迷黃梅調「梁山伯與祝英台」電影,可能有些關係,人家女扮男裝的祝英台那麼熱情多方暗示,卻來個大笨牛的梁山伯不開翹,對牛談情是也。

「理盲」是近日開始流行的新詞,我更加把它延伸為「理盲文」,最後這個「文」字,指的是唸文科者普遍現象,也就是說,至少在台灣如此,唸文科者,連一些最粗淺自然科學的普通常識(Common Sense)都沒有,台灣社會的「理盲文」何其多,多到令人吃驚冒冷汗的田地。

上個月(2009/12/12)有個很有趣的大師們對話,文科的大師代表是鼎鼎大名、暢銷書著作等身的龍應台女士,武(理工)科的是中研院搞超溫導體的朱經武院士,一文一武,兩人對談,人文與科學腦力激盪,頗為有趣,其內容值得整個台灣社會深思。

這其中,我覺得最有意思的部份是:文科者和武科者,各別提出文武方面幾道題目考對方,文科者問武科者幾道基本文學的問題,武科者也提幾道基礎科學的問題考文科者,結果一面倒,武科回答滿分,文科者卻輸很大,考個大鴨蛋,令人毛骨悚然!代表當今文科的大師,竟然連國小初中的自然科學最普通常識都沒有,越想越令人顫抖。

-----廣告,請繼續往下閱讀-----

龍提人文題:(科學家考滿分)

曹雪芹寫了什麼? 朱經武:紅樓夢 ---答對了
曹雪芹是什麼時代的人? 朱經武:清朝 ---答對了
浮士德是誰寫的? 朱經武:德國大文豪歌德 ---答對了
道德經是誰寫的? 朱經武:老子 ---答對了

朱提科學題:(文學家考鴨蛋)

James Watson做了什麼? 龍應台:答不出來(發現DNA雙螺旋結構者之一)
人為何不能把自己抱起來? 龍應台:答不出來(因為沒有另一個支點)
什麼是牛頓第二定律? 龍應台:答不出來(加速度與淨力成正比與質量成反比)

-----廣告,請繼續往下閱讀-----

「理盲文」現象,我原本還以為只是周遭少數親朋好友特有的現象,不料看到龍朱對話,猛想到新聞報導立院胡鬧質詢,終於恍然大悟知道了,其實這個問題非常普遍,非常嚴重,已經到了讓台灣社會幾近於病入膏肓的地步了,社會大眾老百姓對於基礎、基本自然科學無知到如此,加上更爛的統治領導與民意代表,恐怖啊!上下交相看誰比較無知。

這種「理盲文」情況,或許表面上沒什麼,但卻是台灣社會癌症,也是最令人恐怖擔憂的根本大事,更糟糕的是,當今的政客名嘴意見領袖等等,不管藍綠,很少是「理盲文」的例外,讓這票「理盲文」來決定國家社會前途,讓他們在國會殿堂無理咆哮,把中研院副院長罵走了,難道是台灣之前途?或是台灣的宿命?台灣高層領導人群當中,試問有幾人是學理工科出身的?或多是學法玩法之徒玩弄國家?即或說這些政客當中有少數懂科學,但卻昧著良心,說些偽科學之詞,還不是為了騙選票?

就拿我和台灣媒體界打交道的經驗來說,過去來採訪過我的記者有很多,他們普遍對於自然科學的無知程度,令人啼笑皆非,比方說,有個記者寫出恐龍滅絕於六萬五千年前,天啊!我明明重複對他說了好多遍,恐龍滅絕於六千五百萬年前,這位老兄連基本的普通常識都沒有,還敢跑科技新聞!其它更好笑漏氣的,就不用多說了;探究其原因,可能在於台灣新聞人員(包括名嘴和電視節目主持人)的養成教育有嚴重的瑕疵,新聞系歸屬到文科方面,學生沒有理工生物醫等基礎訓練,怎能期望他們?怎能怪他們呢?據所知,美國大學新聞系沒有大學部,只有研究所,招收各種大學科系畢業生,讓他們能從已有的大學專業、配合研究所新聞報導的專業,至少,不會寫出用屁股想就知道是錯誤的報導來;再者,這可能也是台灣科普無法推廣開來的主要致命傷,我們的新聞科系,從學生到教授根本沒有科學基礎,只懂得譁眾取寵,用漂亮的文詞寫小說當新聞報導。

就以最近的美國牛和新流感疫苗來說吧!台灣立法院竟然可以偉大到一個地步,修法否定科學事實(從出生到八十歲,每天吃一百公克的牛肉,得狂牛症的機率是一百億分之一點五,台灣每年機車死亡人數一千多人);某立法委員竟然會要醫學界保證打疫苗不會死任何一個人(桃園那邊在家看電視都會有華航飛機衝下來壓死的),…,諸如如此無知問政,不是白痴「理盲文」是啥?台灣要不要來個公投決定月亮到底是真是假?

-----廣告,請繼續往下閱讀-----

針對「理盲文」治國,我們小老百姓很無奈,也改變不了,看來,只好「道不行,乘桴浮於海」,先溜為上計,好讓那些笨得愉快者去建立他們的「理盲文台灣國」好了!

本文原發表於作者個人部落格「催眠恐龍」[2010-01-07]

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 9
timd_huang
24 篇文章 ・ 0 位粉絲
跟我玩恐龍去!

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
本地工作者暢談科學時代的人文發展:哲學、專才培訓與大眾教育
臺灣邏輯、方法論、科學與科技哲學學會_96
・2023/02/01 ・5061字 ・閱讀時間約 10 分鐘

  • 撰文/詹遠至|臺灣邏輯、方法論、科學與科技哲學學會助理、臺灣大學哲學系碩士生
  • 校對/陳樂知|臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、臺灣邏輯、方法論、科學與科技哲學學會秘書長

我們所處的二十一世紀已是科學的時代,科學理論被視為宇宙的終極答案。在這個「科學至上」的時代,人文探求還如何可能?人文如何可以與科學攜手並進?以「人文」與「科學」之間的對話為主軸,臺灣邏輯、方法論、科學與科技哲學學會(LMPST Taiwan)於 2022 年 11 月 19 日在臺灣大學主辦了一場以《科學內外的人文可能》為題的論壇,邀請了國內哲學學者以及科學普及界的資深工作者擔任講者。

本活動主持人由鄭會穎教授(政治大學哲學系助理教授、政大現象學研究中心主任)擔任,受邀講者則包括陳竹亭教授(臺灣大學化學系名譽教授)、陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)、鄭國威先生(PanSci 泛科學知識長)與嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)。

本論壇屬於 LMPST Taiwan 長期舉辦的《種種意識論壇》系列。除 LMPST Taiwan 以外,這一系列的論壇由政治大學現象學研究中心、清華大學實作哲學中心、臺灣大學哲學系、臺灣跨校意識社群、PHEDO 台灣高中哲學教育推廣學會、沃草公民學院共同合辦;贊助單位則為順奕有限公司。

《科學內外的人文可能》邀請了國內哲學學者,以及科學普及界的資深工作者擔任講者。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

科學為人文帶來危機?先論科學主義與自然主義

主持人鄭會穎教授點出了本論壇的核心議題後,陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)發表了他的觀點。

-----廣告,請繼續往下閱讀-----

陳教授想要討論的是「就其理論本質而言,科學是否威脅人文」這個問題。陳教授首先談到一些人持有「科學主義(scientism)」的世界觀。科學主義認為,科學是唯一可以讓我們獲得知識的可靠方法。陳教授認為科學主義是一種自相矛盾的世界觀;原因在於科學主義本身並不是科學,並未被科學方法證明,它只是一個哲學理論。因此,科學主義身為一個哲學理論,它本身就是自己會排斥的對象。

回到核心問題,科學是否帶來了人文危機?陳教授的答案是否定的。他認為科學所帶來的其實不是科學主義,而是「自然主義(naturalism)」。自然主義認為,這個世界最根本、基礎的組成,就是自然科學理論認為存在的那些事物,例如粒子、力場、化學反應等。

陳教授認為科學所帶來的自然主義是現代世界觀的基礎;即使一些特定人士因為宗教背景等理由而不同意自然主義,其實也應該要同意例外情況相當有限。如果我們接受「自然主義」,而非「科學主義」,那麼科學本身根本就不會帶來人文危機。這是因為,自然主義只認為世界最根本的組成是科學所談論的事物,但是它並不認為我們只能透過科學方法來認識這些事物。

「就其理論本質而言,科學是否威脅人文?」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

事實上,從科學世界觀的角度來說,人類也是自然的一員。人類作為一種自然生命體,出於其演化而來的結構,與生俱來就有各種世界互動、認識世界的方式,不限於科學方法。就此而言,人類會發展出的人文也是一種自然現象。因此,雖然人類後來發展出了「科學方法」這種較為優化的認識途徑,我們依然不能否定「人文方法」也是一種認識世界的可靠方法。

-----廣告,請繼續往下閱讀-----

接著,陳教授提及羅素(Bertrand Russell)對「熟知知識(knowledge by acquaintance)」以及「描述知識(knowledge by description)」的區分。熟知知識指的是我們透過直接的感受、互動與掌握所獲得的知識,描述知識則是理論性的知識。

陳教授認為熟知知識與描述知識不可被截然二分,兩者之間是程度上的差別。而人文學門的一些觀念就較為接近熟知知識,因為它們重視同理及感受。雖然如此,這一切都符合腦神經科學的描述,人文仍然是自然現象。另一方面,人文因此仍然是科學可以研究的對象,也需要科學的補充。人文學門自己也必須要了解,自己所研究的熟知知識其實也是自然現象,有其組成基礎與運作原理。

因此,科學可以幫助人文把熟知知識轉換為更精確的描述知識,並且為人文提供更精密的研究方法,以及協助其排除錯誤,比如排除人類先天認知系統的偏誤、漏洞等等。總結來說,科學與人文其實研究的是同一個自然界;科學非但不應帶來人文危機,還可以幫助人文研究走得更加長遠。

跨科際合作的需求,兼論「人類世」中的人文與科學走向

不同於陳樂知教授從哲學觀點出發,陳竹亭教授(臺灣大學化學系名譽教授)帶來的是他在教育方面的經驗。首先,陳教授介紹了他為台灣教育部主持的「科學人文跨科際人才培育計畫」,簡稱「SHS(Society-Humanities-Science)計畫」。

-----廣告,請繼續往下閱讀-----

由於現代社會中的問題包含人文以及科學的面向,因此 SHS 計畫的主軸在於推動「跨科際教育(trans-disciplinary education)」。以往的教育先是學科主義,然後衍生出「多領域(multi-disciplinary)」或是「跨領域(inter-disciplinary)」,也就是由各學科各自探究共同問題,或是由兩個學科進行合作。

跨科際教育則有所不同,它以「真實世界的共同問題」為核心,直接打破學科之間的界線。只要是對解決真實世界的問題有幫助的知識,參與的學科,甚至政府、產業、民間的 NPO 或利害關係人都擔責分工合作進行知識生產、解決問題。

SHS 計畫的主軸在於推動「跨科際教育」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

由於現代社會中的問題愈趨複雜、多元,且多樣,社會對科學界的要求也跟以往有所不同。科學家開始被要求具備社會意識及社會參與的能力,還有溝通與對話的能力;這些能力都是傳統的科學界非常缺乏的。有鑑於此,陳教授所主持的 SHS 計畫積極推動「問題導向的學習」、「系統思考」、以及「實用方法論上的創新」。他也提到,SHS 計畫的推動非常有賴於大學對本身社會角色的自覺與復興。

陳教授參與的另一個國科會計畫是「以社會需求為核心的跨領域研究計畫」。與 SHS 計畫相同,這個計畫也非常重視跨科際教育,並且認知到單靠科學知識無法解決真實世界的複雜問題。

-----廣告,請繼續往下閱讀-----

那麼,人文究竟該扮演什麼樣的角色呢?陳教授討論到他撰寫的新書《丈量人類世》中的「人類世(anthropocene)」這個概念。「人類世」指的是一個新的地質紀元。在工業革命之後,人類文明成為影響地球環境與生態變遷的關鍵角色。因此,部分學者認為地球已經進入「人類世」這個地質紀元。

在人類世中,全球有非常多的變遷趨勢,其中一個就是:科學發展帶動理性價值的昂揚,其他的人性價值卻被輕忽。陳教授說,我們培養出了許多「職業科學家」。可是,在科技急速發展的同時,人類的科技文明卻缺乏方向感:我們正面臨物質文明與精神文明之間極大的不均衡。總而言之,他認為「人類的智能尚未學會如何掌舵文明巨輪的方向」。

最後,針對人文與科學應該要如何在人類世中發展,陳教授提出了他本人的看法。首先,科學研究的同儕審核程序需要人文專業學者的投入,也就是科學家不能閉門造車。再來,婦女應該要積極加入科學與科技事業的陣容,因為科學發展不能只由男性思維主導。

最後,未來教育的趨勢必須往跨科際的方向邁進,也就是人文與科學必須並重。如此一來,陳教授強調:「人文的啟發價值和社會重大需求必須挺身而出,為人類文明的永續承擔文明指南針的角色,與科學共同尋求世紀困境的解方。」

-----廣告,請繼續往下閱讀-----

「科學實作哲學」帶來人文與科學的合作新可能

繼陳竹亭教授分享了跨科際教育發展的大方向後,嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)則分享了她在科學人文互動的個案經驗。嚴教授身為一個哲學學者,卻在因緣際會下,走上了不同於普通學者每天關在辦公室做研究的路。她為了提升生醫背景的學生對哲學的興趣,也為了把哲學帶到課堂之外,推動了青銀共學。

嚴教授推動青銀共學,提升學生對哲學的興趣,也將哲學帶到課堂之外。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

嚴教授把社區中的長輩們請到大學的哲學課堂上,與大學生一起進行小組報告。這些生醫背景的學生們未來大多會從醫;因此,對未來將要在醫療院所工作的他們來說,與長輩互動是很好的練習。

嚴教授也針對與學生們未來在醫療場域會遇到的一些價值性思考,與哲學作出連結,讓學生們學習哲學能夠學以致用,對醫療過程有所幫助。舉例來說,她會帶領學生討論如何面對死亡、以及照護倫理等哲學議題。她認為,在學生未來的臨床工作上,這些哲學議題將派得上用場。

除了青銀共學外,嚴教授還以非常不同於傳統學者的方式,進行她個人的哲學研究。傳統哲學學者往往是埋首於書堆中,發展自己的理論;她則是親自到醫療院所中進行田野調查,去訪問醫生、護理師等第一線的人員。藉由直接了解醫療工作者在實作上遇到的困難,她試圖讓哲學能夠真正被實用。

-----廣告,請繼續往下閱讀-----

嚴教授說,這樣的研究方法被稱為「科學實作哲學」。科學實作哲學作為一種研究方法,其實不單單適用於人文學門,也同樣適用於科學。非常理論性、艱深的基礎科學如果能夠走出象牙塔,了解社會的真實需求,便有機會與人文接軌。因此,不論是科學或人文學門,若研究者可以調整研究方法,從研究對象在實作上的細節出發,再轉而調整自己的理論,那麼科學與人文的互動、合作並非不可能。

科學素養對現代社會的重要性

最後進行分享的是科普媒體《PanSci 泛科學》的知識長鄭國威先生。鄭知識長首先釐清了「人文」的定義:他認為,「人文主義」認為人類可以靠自身的能力認識這個世界,而「人文學科」正是培養這種能力的學科。從這個定義來看,人文與科學根本就不是分開的;畢竟科學也是人類靠自身能力認識世界的方式之一。

鄭知識長提到,台灣的學生在國際學生能力評量計畫(PISA)中表現非常優異,世界排名名列前茅。然而,台灣的學生卻普遍缺乏自信,在失敗時容易產生自我質疑。

鄭知識長指出,台灣學生普遍缺乏自信,在失敗時容易產生自我質疑。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

在學習的過程中,我們大致可以把人分為兩種:具有「定型心態」與具有「成長心態」的人。前者只重視結果、學習態度較消極,且容易受挫折打擊;後者則重視過程、學習態度較積極,且勇於面對挑戰。鄭知識長指出,具有定型心態的台灣學生似乎占多數。

-----廣告,請繼續往下閱讀-----

鄭知識長在高中時也面臨相同的困境,他那時非常厭惡數學和理化,完全沒有學習他們的熱忱。他後來發現不止他是如此,有許多人也在學生階段就放棄了對科學的學習;這對台灣社會是個嚴重的現象。舉例來說,公投的題目許多都牽涉科學知識,放棄學習科學的公民要如何在這種公投中作出正確的判斷?這樣的考量促使他後來創辦 PanSci 泛科學。

鄭知識長認為,獲得成長心態最簡單的方式就是學會科學原則與方法,也就是用科學方法來面對日常生活中遇到的問題。而培養科學素養則需要承認自己對許多事的無知,且需要身處一個好的素養集體之中。最後,鄭知識長勉勵大家一起培養出「科學思辨力」,為本次的論壇畫下一個強而有力的句點。

-----廣告,請繼續往下閱讀-----
臺灣邏輯、方法論、科學與科技哲學學會_96
3 篇文章 ・ 12 位粉絲
臺灣邏輯、方法論、科學與科技哲學學會(The Taiwan Association for Logic, Methodology and Philosophy of Science and Technology, LMPST Taiwan)為國內非營利法人團體,主要幹部均為國內教授或研究員。本會以促進科學型的哲學研究為宗旨,工作包括國內專業學術工作、跨領域學科交流及哲學普及推廣。