Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

一拍個不見陽光的流浪星球

臺北天文館_96
・2012/08/05 ・2159字 ・閱讀時間約 4 分鐘 ・SR值 593 ・九年級

什麼是「一拍個」?就是「一兆個」乘以一千倍啦。

2012年3月Universe Today這個網站媒體第一次報導了銀河系裡有著「如天文數字」般數量龐大的流浪行星。這項最新研究獲得批露後,這些孤單的星球,「不見天日」地漫遊在星際空間中,且沒日沒夜地恆定唱著「浪人之歌」…此情此景在視覺上教人匪夷所思,而在星際間竟漂流著這麼多孤獨的星球,實在也太令人跌破眼鏡,所以國外許多天文愛好者大加關注,在天文界中相關的討論方興未艾。

因此,以下將繼續介紹3位在天文領域裡深受景仰的國際知名科學家所研究估計的關於流浪行星的計算結果。如果估計結果和數字皆正確無誤,意味著銀河系裡的行星數量,不只是比恆星「多」而已 – 是多很多 – 在我們的銀河系裡,平均每一顆恆星都擁有著高達10萬顆這種流浪型的行星,換言之,小自冥王星起算,大到超過木星以上,大大小小攏總加起來,這些漂流星球的總數量,約達「千兆」之譜!(官方說法,這個單位叫做「拍」,以口語且較易懂的說法就是: “1”後面跟著15個”0”, quadrillion)。這些流浪行星所組成的世界,數量竟如此龐大,它們到底都是從哪兒來的?

最近卡弗里基金會(Kavli)邀集其他幾位正在進行流浪行星相關研究的天文學者,齊聚一堂進行討論。這些知名學者包括卡弗里天文物理及宇宙學粒子研究所(KIPAC)所長, Roger D. Blandford, 他同時也是史丹福大學的教授,哈佛大學的Dimitar D. Sasselov教授(NASA克卜勒計畫的共同主持人之一), 以及KIPAC副研究員 Louis E. Strigari,此外,還有SLAC 美國國家加速實驗室成員也參與討論 ,所討論的內容是:這些流浪星球世界究竟可能會像什麼樣子?它們是怎麼形成的呢?

-----廣告,請繼續往下閱讀-----

其中一種流浪行星的可能來源是,它們本來就是從各自的「太陽系」中被「踢」出來的。

大多數恆星形成於星群中,許多恆星四周都有氣體和塵埃所組成的原行星盤,行星誕生於原行星盤中,流浪行星也是。至於他們是在什麼樣的情況下?如何被踢出來?這可以有好幾種方式。研究人員說,這些形成於極早時期的恆星系統,大多擁有很多顆質量很小,差不多為冥王星等級的行星,所以,在恆星之間,發生「彼此互換小質量行星」的這種動作,頻率很高,應該是個不難想見的場景。

至於「行星形成於恆星盤以外地區」的這種可能性,雖並未遭完全排除 – 若是在這種條件下形成的流浪行星,其質量大小將設有最低門檻,在理論計算中發現,形成這種流浪星球的最低質量,應不小於木星等級;所以研究人員大多認為,木星質量可作為一個參考標準,如果行星質量小於「木星標準」的門檻,它將沒有機會能自行獨立並存在於一個發展中的恆星系統以外。

這些小行星到底由什麼組成?

-----廣告,請繼續往下閱讀-----

Sasselov教授表示,行星在沒有一顆的恆星來為它供應熱能和能量的這個條件下,「我們假設這些星球上應該是相當寒冷,且不適於生命發展。」不過他也指出,情況未必永遠不樂觀。流浪行星的內部熱源應可充當生命初始乍現所需的能量…至少能量必需充足,保持它們得以生存得下去。

想像一下,譬如以地球來說,要是地球從今天開始進行一場「無太陽的流浪之旅」,可以想見的是,地球上的生命並不會因而畫上終結號。這並非推論,是有實例可證明的,地球上已找到為數相當龐大的微生物、兩種線蟲,它們完全靠來自地球內殼核心的熱而存活的。這是100%千真萬確的事實。

KIPAC所長暨史丹福大學教授Roger Blandford也提出他的看法認為:「小型的流浪行星可能有一張高壓、高密度的保溫毯,這張毯子就覆蓋在行星的表面上」,毯子可能組成物質包括氫分子大氣或結冰的表面層,這些都能保存相當多的熱能,經由這種方法便可保持具傳導性的液態水,藉液態水而得以創造或維持生命。

星際間有這麼多行星維持著生命存在的可能性,如果它們果然如此穿梭來去銀河系當中,是否有可能,它們其實也幫助生物在銀河系中的恆星系統間彼此互通有無呢?其實,像這樣「播種論」的說法,並非近來所新創建的天文辭條;早在西元前400多年,就有古希臘哲學家Anaxagoras論述過這種可能性。假設流浪行星以每2,500萬年一次的頻率,能夠拜訪、經過內太陽系,這些流浪行星從地球上帶走一些生命和生物,並夾而帶之、傳播至銀河系其他地區的可能性,我們該認為它是高或低呢?Blandford表示:可樂觀以對。

-----廣告,請繼續往下閱讀-----

Blandford並指出:在銀河系以內的範圍,生命能以直接、隨機或甚至是惡意的方式傳佈,這是在20世紀便已有許多著名科學家加以研究論證過的;在21世紀的今天,現代天文學能夠繼續加以著墨發揮的部分,事實上更在於,進一步提供清楚的證據去證明許多星系之間如何互撞並散佈物質至星系際空間中。基本上,不單只是在星系內,即使是在「從A星系到B星系間」這種層次的生命持續播種的說法,學者也持肯定支持態度。

簡單講,流浪行星不僅只限於銀河系。如果有足夠的推動力,它可以被一個星系完全地推向另一個星系去。

誠如我們所知的,多數星系之間的碰撞都導致大量物質丟進星際太空中。而只要與恆星或黑洞相遇一次,就足以從中獲取一顆行星的彈出和離開一個星系所需的逃逸速度。

地球生命可能向外星球甚至外星系播種,這不僅是個歷史悠久的臆測,同時也是一個其來有自、有相當合理性的概念,以科學研究的能力來說,將它付諸研究實踐的可行性正在日益增加。(Lauren 譯)

-----廣告,請繼續往下閱讀-----

相關討論內容及參考資料請見:NOMADS OF THE GALAXY的其中一段落,以及Wickramasinghe NC et al (2012). Life-bearing primordial planets in the solar vicinity. Astrophysics and Space Science; DOI 10.1007/s10509-012-1092-8

資料來源:中研院天文網[2012.07.24]

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 46 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

0
0

文字

分享

0
0
0
環境共生的牆:冠軍磁磚如何幫建築降溫
鳥苷三磷酸 (PanSci Promo)_96
・2025/08/29 ・4556字 ・閱讀時間約 9 分鐘

本文與 冠軍磁磚 合作,泛科學企劃執行

夏天早已不是可以輕忽的季節巨獸,就連位於中高緯度的歐洲也深受其威脅。然而,在德國漢堡,有一棟建築不僅不用付電費,還能自行發電,同時維持室內恆溫。它的秘密武器,不是屋頂上的太陽能板,而是長在牆壁上的「太陽能葉片」(SolarLeaf)

這面牆不是冰冷的水泥,而是一片片富有生命力的綠色面板,正式名稱是「光合生物反應器」。它由四層玻璃製成,僅 2 公分寬的玻璃空腔內,充填著 24 公升的微藻培養液。為了讓藻類保持活力,系統會定時從底部打入回收自鄰近設施的二氧化碳。產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect):向上浮力會帶動周圍的液體一起向上運動,產生液體流動、持續攪動培養液,就像為藻類進行 SPA 按摩,確保每顆藻都能均勻曬到陽光。

產生的大量氣泡不僅提供光合作用所需的原料,還產生「氣舉效應」(airlift effect)/ 照片:© Colt International、Arup Deutschland、SSC GmbH

在這過程中,微藻吸收日光,提供了動態的遮陽效果,並透過光合作用將能量轉化為可儲存的生物質。與僅能吸熱的水泥牆不同,這片牆真正「存住」了太陽能,同時避免城市熱島效應。更重要的是,這些反應器還能蒐集住家與周邊建築燃燒或煮菜所排放的二氧化碳,將其迅速封存於藻類體內。

-----廣告,請繼續往下閱讀-----

聽起來像科幻小說?別急,這才只是今天要介紹的第一種前衛建築。接下來,還有用真菌「種」出來的隔熱磚、會隨太陽軌跡跳舞的窗花,以及在台灣就能落實的降溫磁磚設計。在這些千變萬化的創新方法中,總有一款會讓你眼睛一亮。它們不僅節能省錢,更代表一種與環境共生的全新可能。

不只種藻,還能「種磚」

要讓建築自我降溫,科學家的靈感往往向自然界取經。前面提到的 SolarLeaf 是極致案例,但如果不想大動工程,也可以從「建材本身」著手。最常見的方法是鋪設隔熱磚,而有些科學家則做出更環保的版本,不是培養微藻,而是「種真菌」。

作法是先將稻殼、稻草、鋸末或紙漿廢料滅菌,去除雜菌後再將這些基材混入菌種,灌入特定形狀的模具。接著在攝氏 20~25 度、濕度控制良好的條件下,菌絲體便會自行生長,像一種有生命的「超級膠水」,分泌酵素分解廢料當作養分。並將它細長的纖維網絡穿透、包裹、纏繞所有廢棄物顆粒,把所有廢棄物緊緊地固化成一塊緻密的隔熱板 。整個過程約需 5 至 21 天。

這種材料的熱傳導係數介於 0.03~0.07 W/m·K之間,性能已能與常見的保麗龍板或礦棉相媲美。原因在於菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡。當它「吃掉」農業廢料並填滿模具後,就會生成密實卻輕盈的纖維結構,材質類似「天然泡棉」,但更為堅固。

-----廣告,請繼續往下閱讀-----

想像一座由菌絲長出的「無限城」:熱能被困在層層彎曲的通道裡,難以迅速穿過。熱走得越慢,隔熱效果就越好。這種材料最大的優勢在於生命週期完整,它以廢棄物為食、生產過程低耗能,最後還能完全被生物分解,回歸大地。

菌絲體本身是由真菌生長出的細長纖維所構成,纖維之間會自動交織形成一個三維網絡/ 照片:©https://ecovative.com/

目前這項技術最成熟的應用來自美國 Ecovative Design 公司,他們利用大麻稈或玉米莖等農業廢棄物培養菌絲。2024 年,該公司啟動「鳳凰計劃」(The Phoenix),在加州奧克蘭打造一個含有三百間住宅的社區,外牆便採用這種菌絲材料。由於原料取得容易,只要有農業廢棄物與菌種,就能培養出建材,應用範圍從建築延伸到日常使用的包裝材料,潛力無窮。

生物混凝土:讓苔蘚在牆上自然降溫

藻類、真菌還不夠?那就再「種」苔蘚。

西班牙加泰隆尼亞理工大學的研究團隊開發出一種名為 「生物混凝土」 的創新材料,其設計宗旨在於支持苔蘚、地衣等微生物的生長。

這種材料是一個多層系統:第一層是結構層,也就是標準混凝土,負責承重;第二層是防水層,保護內部結構不受水分侵蝕;第三層則是最外面的生物層,經特殊處理的外層,其孔隙率和表面粗糙度經過調整,利於捕捉和保持雨水,為微生物的定殖提供一個理想的生活環境。 

-----廣告,請繼續往下閱讀-----

這個「活的」表面帶來多重效益:植被層本身形成了一層隔熱層,更關鍵的是,其保水能力使其可以透過蒸發冷卻(evaporative cooling)來主動降低牆體表面溫度,從而顯著減少建築的熱增益 。   

不過,從藻類到真菌,再到苔蘚,這樣住個房子還要考慮陽光、空氣、水,難道沒有更方便的方法嗎?

外牆乾掛系統:利用空氣與模組化磁磚實現隔熱

如果不想「種生物」,也可以透過工程手法和巧妙設計來降溫,那就是第四種方法「外牆乾掛系統」

它的原理,其實就是用了最便宜的隔熱材料:空氣。傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔。

-----廣告,請繼續往下閱讀-----
傳統牆壁中,磁磚是用水泥直接黏死,但乾掛系統透過金屬骨架,將外層飾面板「掛」在建築結構外,中間刻意留出一個連續的空氣腔 / 圖片來源:冠軍建材

為什麼有效?普通水泥的導熱係數約在 1.5–2.0 W/(m·K),而靜止空氣在標準條件下約 0.025 W/m·K,兩者相差了 70 倍。也就是說,傳統水泥建築在太陽照射下,熱量會直接傳入室內;而使用外牆乾掛系統的建築,就像多了一層隔熱盾,從一開始就將大部分熱量隔絕在外。這種方法的最大優勢,是不需研發複雜的新材料或製程,關鍵在於將瓷磚模組化,只要能安裝到外牆乾掛系統上,磁磚的樣式、顏色和種類也可以一樣多元。

在台灣,磁磚龍頭「冠軍建材」便推出了應用這原理的系統。該公司委託成功大學實驗室進行隔熱試驗,結果顯示:2 公分厚磚搭配特定乾掛工法,熱傳透率(U 值)可達 1.66 W/m²K,符合高性能綠建材 U 值需低於 1.8 的標準。這不僅能讓室內降溫約 4°C,空調用電還可減少 24–36%

屋頂同樣是最曬重災區。全球建築師常用屋頂綠化或太陽能板降低陽光的熱吸收,而冠軍建材提供更簡單的方法:將屋頂磁磚架高。他們的架高節能工法,採用義大利 ETERNOIVICA 架高器,將磁磚架高 15 公分。別小看這 15 公分,就能阻絕 90% 的熱傳導,並讓樓板降溫 15°C

這種降溫方式不影響美觀與安全性。冠軍建材推出了大理石、石紋等多種質感的磁磚,價格約為天然石材的 3 到 5 成。同時,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試,即便在地震、颱風頻繁的台灣,也能安心使用。產品具高抗折強度、低吸水率,可抵抗酸雨、風化等問題引起的剝落風險,並兼具耐火、防水、耐磨、防滑及易保養等優點。

-----廣告,請繼續往下閱讀-----
冠軍建材推出了大理石、石紋等多種質感的磁磚,其外牆乾掛節能工法也通過了17級風雨試驗、50 公斤多次撞擊測試。/ 圖片來源:冠軍建材

雖然不是生物建材,但冠軍製造的建材仍符合廢棄物減量(Reduce)、再利用(Reuse)及再循環(Recycle)的3R原則。他們在生產中使用廢陶瓷粒料、無機污泥及非有害廢集塵灰等回收料,並與大型建設公司合作回收工地廢磚。產品運至工地後,切割產生的邊角料亦會回收再利用。冠軍建材將永續理念融入生產,產品使用了50%的生產循環回收料、6.5%的廢陶瓷粒料與43.5%的天然原料,有效減少了廢棄物並降低碳排。

顛覆想像:三大建築降溫策略

到這裡,我們介紹的都是利用被動方式將熱量隔絕在外的方法。接下來,來看看幾種由工程師顛覆傳統想像、腦洞大開的「讓建築主動降溫的策略」。

1. 水源熱泵:讓水域成為建築的低耗電恆溫空調

第一個方法,是用更大尺度的環境系統來調節建築溫度—水源熱泵(Water‑Source Heat Pump, WSHP)。

-----廣告,請繼續往下閱讀-----

想像一台超大的冷氣機,冷媒在密閉管路裡吸收室內的熱量後蒸發,再進入壓縮機被壓縮後凝結,並釋放熱量。依照熱力學定律,熱總是從高溫流向低溫,如果想要讓熱量逆向流動,就需要消耗能量。也就是說,當室外空氣溫度越高,要再把熱量搬到空氣中,就需要耗費更多電力。

工程師們想到,比起氣溫會隨季節劇烈起伏,水體的溫度相對穩定,冬暖夏涼。像河川、湖泊,甚至城市污水系統,都能當作一個大型的「散熱水冷排」。如果熱量不是排進空氣中,而是排進溫度較低的水中,需要消耗的電力就可以下降。

研究顯示,空氣源熱泵的性能係數(COP)約為 2.33,每消耗 1 焦耳的電力,可搬運 2.33 焦耳的熱能;而使用水作為冷卻源的水源熱泵的平均 COP 可穩定在 3.9左右,比空氣源熱泵高出 67%。更棒的是,水源熱泵不只在夏天吹冷氣省電,只要反過來運作,讓熱泵把熱量從室外搬到室內,也能在冬天開暖氣時幫你省電。等於整個水域都是我家的低耗電恆溫空調。

2. 動態遮陽外牆:讓建築自己追著太陽動

-----廣告,請繼續往下閱讀-----

第二個方法,是讓建築的外牆自己能動起來。位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋,這些單元的設計靈感來自傳統伊斯蘭窗花「Mashrabiya」。

位於阿布達比的 Al Bahar Towers,它的整個外牆被超過1000個獨立的、傘狀的六角形遮陽單元所覆蓋 / 圖片來源:shutterstock

每個單元由 PTFE(聚四氟乙烯)面板構成,並由線性致動器驅動,整個系統由電腦集中控制,程式會追蹤太陽軌跡,在東、南、西向立面上,於最需要遮陽的時刻與位置提供蔭蔽。系統還配備感測器,在強風或陰天時自動收回遮陽單元以保護結構。

這套動態系統可減少超過 50% 的太陽熱增益,顯著降低空調負荷,使整體空調設備規模減少 20%,資本成本降低 15%,冷氣負載下降 15%,每年更能減少超過1750公噸的二氧化碳排放。

3. 電致變色智慧玻璃:光與熱量隨心控制

最後,概念相同但更簡潔的方法,那就是「電致變色智慧玻璃」(EC Glass)。這種內部,有一層由氧化鎢製成的電致變色層 。只需施加 3–5 伏特微弱電壓,玻璃中的鋰離子就會開始移動,改變材料的光學特性,讓玻璃從透明變成深色,進而阻擋陽光與熱量 。

它最大的優點,就是只有在「切換顏色」的那一瞬間才耗電,一旦固定在透明或深色狀態,耗電量就是零 。研究顯示,在炎熱氣候下,這種玻璃可以節省10%-58%的空調耗能 。

結語

從會呼吸的藻類牆、運用大地熱能的水源熱泵,到巧妙駕馭空氣流動的通風帷幕,以及能追蹤太陽軌跡的智慧窗花,我們可以看到,未來建築的趨勢已不再只是「遮風避雨」,而是一個個高度整合、能與環境互動的複雜系統。

展望未來,建築不太可能依賴單一技術主宰,而更可能透過多種技術的智慧整合,創造出更高效、可持續且環境友善的建築方案。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
冰與水之歌:零度以下不結冰,魔鬼藏在密度裡!
linjunJR_96
・2020/11/05 ・1932字 ・閱讀時間約 4 分鐘 ・SR值 537 ・八年級

-----廣告,請繼續往下閱讀-----

在座各位地球人肯定對「水」一點不陌生。不論是液態水還是固態冰,在生活中都隨處可見。但如果你以為我們已經完全了解水和冰的構成與變化,那你可就錯了,因為它可是超乎想像的複雜。

冰也會七十二變?常見的物質竟然有這麼多型態!

學校裡教過的三相圖將水區分成固、液、氣三種相(Phase)。不過除了這種簡單的分類,固態的冰在不同的壓力與溫度條件下其實還有許多不同面貌。

小時候學過水的三相固體、液體、氣體,除此之外,其實固態冰還有其他型態。圖/Pexels

一般條件下,自然結凍的水只會呈現六角結晶或立方結晶,兩種晶體結構合稱為「冰一」(Ice I)。你可能有些好奇:既然有一,那或許會有二(咦)

沒錯!目前已知的冰共有二十幾種型態,比 iPhone 的型號還多!只是除了冰一之外,其他的型態都極為少見。

-----廣告,請繼續往下閱讀-----

所謂少見是有多少見呢?

一直到 2017 年時,科學家才首次在實驗室中合成出冰七(Ice VII),這種稀有的結晶形態通常只有在彗星或系外行星上才見得到,因為它需要超大的壓力(例如:兩個含冰量豐富的小行星體對撞),才有可能形成。

實驗室中高壓環境下合成的冰七 。圖/實驗團隊(A. E. Gleason)提供

相隔一年後,另一組研究團隊利用 X 光繞射技術,在世界各地的鑽石中發現冰七的蹤影

為什麼鑽石中會有冰七?推測原因是由於當初在地底時,有少量水分被困在高溫高壓的鑽石礦脈中,而後這些水分隨著鑽石一同被挖掘到地表,雖然溫度下降到普通室溫,但堅固的鑽石內卻仍然維持著高壓。如此獨一無二的條件,讓冰七得以自然生成。

-----廣告,請繼續往下閱讀-----

零度以下也不結冰?神秘的過冷水!

光是固態冰就有這麼多花樣了,水結冰的過程同樣也是科學家有興趣的主題。在 Science 期刊上最新的研究發現,過冷水其實是由兩種結構不同的形態混搭而成。

一般的情況下,零度以下的水需要一些雜質或擾動來「啟動」結晶的過程,才能凝固成冰。在缺乏這些條件時,水可以在零度以下仍維持液態,也就是所謂的「過冷」。

關於過冷水的理論模型可說是眾說紛紜,因為這種狀態十分不穩定,輕微的干擾就會讓過冷水全部結晶,讓實驗學家十分頭痛。另外,也很難單從實驗中觀察並判斷過冷水不結晶到底是不是因為還未達到熱平衡。

過冷水的狀態不穩定,稍微干擾就會全部結晶,也讓實驗學家十分頭疼。圖/giphy

以往的相關研究通常只能依賴分子模擬,不過最近在實驗上有了最新突破。

-----廣告,請繼續往下閱讀-----

美國西北太平洋國家實驗室的研究人員準備了一片僅有 15 奈米厚的薄冰,接著利用短暫的雷射脈衝,極速加熱一小塊區域,使其轉為液態過冷水,直到它很快地降溫並重新結晶。

整個過程只有短短幾十奈秒,不過,這個突破已經足夠讓我們使用紅外線光譜來測量過冷水的分子結構。

結果發現,早在結晶開始的短短的幾十奈秒之間,過冷水就找到了它最舒服的平衡狀態;這個狀態還是由兩種結構不同的液體型態所組成,分為高密度與低密度結構,密度分別約為 0.9 和 1.1 g/cm3

實驗發現,過冷水中高密度水所佔的比例,會隨著溫度降低逐漸減少。也就是說,過冷水能在低於攝氏零度的環境下維持液態,很有可能是兩種不同密度的水比例不同所造成的。

-----廣告,請繼續往下閱讀-----

其實,這種特殊的二元性質也能在一般常溫的液態水中看到,分為四面體和非四面體結構。不過這類的現象在過冷水是首次被發現,也為水在低溫時的行為提供重要的實驗數據。關於水的各種理論模型,我們終於得以區分何者較接近真實。

  1. Water structure and science
  2. Gleason, A. E., Bolme, C. A., Galtier, E., Lee, H. J., Granados, E., Dolan, D. H., … & Swift, D. (2017). Compression freezing kinetics of water to ice VII. Physical Review Letters119(2), 025701.
  3. Tschauner, O., Huang, S., Greenberg, E., Prakapenka, V. B., Ma, C., Rossman, G. R., … & Tait, K. (2018). Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science359(6380), 1136-1139.
  4. Kringle, L., Thornley, W. A., Kay, B. D., & Kimmel, G. A. (2020). Reversible structural transformations in supercooled liquid water from 135 to 245 K. Science369(6510), 1490-1492.
  5. Shi, R., & Tanaka, H. (2020). Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water. Journal of the American Chemical Society142(6), 2868-2875.
-----廣告,請繼續往下閱讀-----
linjunJR_96
33 篇文章 ・ 931 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。

0

0
0

文字

分享

0
0
0
NASA:證實火星有流動的液態鹽水
歐柏昇
・2015/09/29 ・1903字 ・閱讀時間約 3 分鐘 ・SR值 469 ・五年級

-----廣告,請繼續往下閱讀-----

  • 編譯 / 歐柏昇

Credits: NASA/JPL/University of Arizona
Credits: NASA/JPL/University of Arizona

美國國家航空暨太空總署( National Aeronautics and Space Administration, NASA)火星偵察軌道器(Mars Reconnaissance Orbiter, MRO)的新發現,提供目前最強烈的證據,顯示今日的火星有間歇流動的液態水。

在這顆紅色行星表面,具有神秘條紋的山坡上,研究人員利用MRO上面的成像光譜儀,偵測到含水礦物的特徵。這些淺黑的條紋,看起來會隨著時間推移而流動。條紋在溫暖的季節時變黑,而沿著陡坡往下流動;且在較冷的季節則顏色褪去。當溫度高過華氏-10度(攝氏-23度),就會在火星上好幾個地點出現;較冷的時候則消失。

NASA科學任務理事會副主任及太空人約翰.格倫斯菲爾德(John Grunsfeld)說:「我們對於火星的探索都是『跟隨著水』,來尋找宇宙中的生命,而現在我們有了令人信服的科學,證實我們長久料想的事。這是重要的新發展,看來確認了水──儘管是鹽水──今日在火星表面流動。」

-----廣告,請繼續往下閱讀-----

這些下坡的流動,稱為季節性斜坡紋(recurring slope lineae, RSL),它被認為可能與液態水有關。在坡道上新發現的水合鹽類,便指明了與這些深色特徵的關聯。水合鹽類會降低液態鹽水的凝固點,這就像在地球上,馬路上的鹽會造成冰和雪更快融化。科學家說,這可能是淺層的地表下流動,並有一些水透過毛細作用來到地表上。這樣就可以解釋變黑的現象。

Credits: NASA/JPL/University of Arizona
Credits: NASA/JPL/University of Arizona

亞特蘭大的喬治亞理工學院的盧金德拉.歐嘉(Lujendra Ojha)是發表這項新發現的報告的第一作者,這篇文章發表在9月28日出版的《自然地球科學》(Nature Geoscience)期刊。

他說:「我們只有在這些季節特徵最寬的時候發現水合鹽類,表示這些深色條紋本身、或者某個造成深色條紋的機制,就是水合作用的來源。不管是哪一種情況,在山坡上偵測到水合礦物,就代表水在這些條紋的形成過程中,扮演重要的角色。」

-----廣告,請繼續往下閱讀-----

2010年,當歐嘉還是亞利桑那大學的大學生時,便利用MRO的高解析度成像科學設備(High Resolution Imaging Science Experiment, HiRISE),首次注意到這些令人困惑的特徵。HiRISE目前已經在火星上數十個地點觀測到RSL。新的研究結合了HiRISE的觀測,以及MRO的火星專用小型偵察影像頻譜儀(Compact Reconnaissance Imaging Spectrometer for Mars, CRISM)的礦物分布圖。

光譜儀的觀測,顯示了多個RSL地點的水合鹽類特徵,但只有在深色條紋相對較寬的時候會出現。當研究人員觀測同一個地點、但RSL較少的時期,就沒有偵測到水合鹽類。

歐嘉與其他共同作者,將此光譜的特徵解釋為過氯酸鹽的水合礦物。它的化學特徵與這些水合鹽類最相符的,可能是過氯酸鎂、氯酸鎂及過氯酸鈉的混合物。有些過氯酸鹽,讓液體甚至在華氏-94度(攝氏-70度)這麼低溫的情況下,都不會結冰。在地球上,自然產生的過氯酸鹽集中在沙漠,而有些種類的過氯酸鹽可以拿來作為火箭的推進劑。

之前人們就曾在火星上看到過氯酸鹽。NASA的鳳凰號和好奇號,都曾在火星的土壤中找到過氯酸鹽,而有些科學家還相信,1970年代的維京計畫已測量到這樣的特徵。不過,這次對於測量到RSL的地區,其水合型態的過氯酸鹽研究,跟先前的登陸器探測的地區並不同。這也是首次透過軌道上的衛星,來確認過氯酸鹽。

-----廣告,請繼續往下閱讀-----

MRO具有六個科學儀器,從2006年開始量測火星。

source:wikimedia
source:wikimedia

在加州帕薩迪納的NASA噴射推進實驗室的MRO計畫科學家理查德.楚雷克(Rich Zurek)說:「MRO可觀測火星許多年的能力,以及能夠看到這些特徵清楚的細節, 促成了這樣的發現:首次識別了令人困惑的季節性條紋,而現在則是解釋了它們是什麼,邁出了一大步。」

這些新發現對於歐嘉來說,是更強烈地證明了他五年前首次觀察到的火星坡道上神秘的線條,真的就是現存的水。他說:「大多數人談到火星上的水,通常談的是古老的水、或是結冰的水。現在我們知道,這個故事不只是如此。這是第一次明確支持我們對於RSL的『液態水形成假說』的光譜觀測證據。」這項發現,是NASA火星任務眾多突破性結果當中最新的一項。

-----廣告,請繼續往下閱讀-----

NASA華盛頓總部的火星探測計畫首席科學家麥克.邁爾(Michael Meyer)說:「為了解決這個謎團,眾多太空船花費了幾十年的時間,而現在我們知道,在這個寒冷、荒蕪的行星上有液態水。似乎對火星研究越多,我們就越知道生命如何維繫,以及未來哪裡有足以維持生命的資源。」

文章來源:

延伸閱讀:

-----廣告,請繼續往下閱讀-----
歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。