Loading [MathJax]/extensions/tex2jax.js

3

7
1

文字

分享

3
7
1

右腦開發的傳聞與真相

科學松鼠會_96
・2012/04/25 ・2293字 ・閱讀時間約 4 分鐘 ・SR值 470 ・五年級

-----廣告,請繼續往下閱讀-----

作者:圓兒

當今社會上,兒童右腦開發的宣傳鋪天蓋地,右腦的功用被描述的十分重要,遠遠勝過左腦。右腦開發簡直刻不容緩,萬分緊迫。可事實上,關於右腦的傳言很多,孰真孰假,你對右腦瞭解多少呢?

讓我們先來看看下面的判斷題,你能做對幾個:

1. 右腦主導的人和左腦主導的人數相當,可以通過簡單的測試測出你是哪個腦主導。
2. 愛因斯坦是左撇子,他比常人聰明因為他右腦極其發達。
3. 右腦儲存的信息是左腦的10萬倍。
4. 左腦掌管語言邏輯,而右腦負責情緒藝術和創造力
5. 嬰幼兒是右腦開發的關鍵時期

-----廣告,請繼續往下閱讀-----

答案是,上面幾個判斷題只有最後一題是真的,別的都是沒有科學依據的傳言,你答對了幾題呢?假如你對答案疑惑不已,下面就讓我們就來看看更詳細的解釋吧。

1. 右腦主導的人和左腦主導的人數相當,可以通過簡單的測試測出你是哪個腦主導

答:我們都知道左腦控制右半邊的身體,而右腦控制左半邊的身體。世界上大部分人都是習慣使用右手的,也就是右撇子。而左撇子約佔總人口數的百分之十。但並不是所有的左撇子都是右腦佔主導的。一項美國的統計研究表明,對於語言功能來說,95%的右撇子都是左腦型的,而只有不到20%的左撇子是右腦型的(a)。千萬別相信那些簡單的看圖或者各種題目的小測試,它們並不能測出一個人是左腦型的還是右腦型的,只有通過複雜的腦掃瞄實驗才能確定哪個腦佔主導。

2.愛因斯坦是左撇子,他比常人聰明因為他右腦極其發達

答:沒有任何資料顯示愛因斯坦是左撇子。恰恰相反,很多資料照片證明,他是使用右手握筆並寫字的,這表明他其實更有可能是個右撇子。還有傳聞宣稱愛因斯坦的右腦超級發達,這導致他天才的成就。1999年,三位美國科學家在著名醫學雜誌The Lancet (《柳葉刀》)上發表了對愛因斯坦大腦切片進行研究的論文。他們的一個重要發現是,愛因斯坦的大腦頂葉部分比一般人對稱,這主要是由於他的左頂葉比常人要大,大小和形態類似於右頂葉(b)。而頂葉這片腦區主管著視覺空間認知、數學能力和運動想像能力,這很有可能就是導致愛因斯坦超凡的邏輯思維和空間認知能力的主要原因。這說明,愛因斯坦異於常人的主要是左腦,而不是傳聞中的右腦。

3.右腦儲存的信息是左腦的10萬倍

左腦和右腦在形態和結構上是基本相同的,神經細胞數量和突觸接觸點的數量至少在數量級上也是一致的。沒有任何科學實驗顯示右腦和左腦在信息儲存功能上存在巨大的差別,「右腦儲存的信息是左腦的10萬倍」這種言論基本上可以說純屬是無稽之談。

-----廣告,請繼續往下閱讀-----

4. 左腦掌管語言邏輯,而右腦負責情緒藝術和創造力

這個流傳很廣的「左右腦分工明確」的說法其實可以稱為是對腦科學理解的三大誤區之一。(另兩個誤區是「人的大腦利用率只有不到十分之一」和「腦細胞不能再生」,真相是「人的大腦利用率已經很高,接近飽和」和「部分腦細胞是有再生能力的」。)

這個傳聞可能是由上世紀60年代「裂腦」實驗引申出來的。當時在治療某些癲癇患者的時候採取了把連接左右腦的胼胝體割裂的方式,從而導致患者左右腦的信息交流中斷。後來這些患者做了一些實驗,通過實驗結果人們引發出左右腦功能上差異的猜想。而在本世紀初,通過核磁共振掃瞄儀對人腦的掃瞄的實驗發現,其實左右腦的功能劃分並非是嚴格的一刀切。人們發現,其實在完成語言,邏輯思維等任務的時候左右腦都會參與,而左腦對細節更加關注,右腦則更看重大局(c)。所以說,其實左右腦的差別,是處理問題方式上的差別,而非其功能本身的差別。另外,去年一篇概括了63篇學術文章、72項試驗的關於創造性綜述(d)中明確指出,沒有任何證據顯示創造性與右腦有著什麼特殊關係。

5.嬰幼兒是右腦開發的關鍵時期

這些判斷題裡只有這條是真的。嬰兒時期是大腦發育最迅速的時期,不僅是右腦開發的最佳時期,也是左腦開發的最佳時期。好的訓練不僅僅要開發一半的大腦,而是要調動左右腦共同完成,只有這樣,才能開發出整個大腦最大的潛能。2009年,一個美國的研究小組發現,平時喜歡共同使用雙手的測試者要比只喜歡單手操作的測試者在一些創造性的測試題目中得分高很多。而如果讓那些單手實驗者在做一些創造性的題目之前雙眼左右的平行移動30秒鐘,他們的創造性會大大的增加(e)。研究人員猜測,左右腦的交流增多的時候,人解決問題的能力也增強。各位爸爸媽媽是不是聽聞上面的研究發現都開始摩拳擦掌,打算讓寶寶多做眼睛左右移動的「運動」了?不過很遺憾,研究人員發現雖然這個增強創造性的方法十分簡單有效,但是創造性的增加只是暫時的,也就90分鐘的時間就過期了,所以並不能作為一個可靠的訓練方法。要想提高左右腦的交流,還要讓孩子多做左右腦同時進行的活動,讓左右腦交流成為一種習慣,比如多做左右兩邊同時調動起來的運動,比如學一門雙手演奏的樂器,比如講故事的時候既講注重細節,也顧全大局,這樣才能有效的調動整個大腦,合理的開發整個大腦。

右腦潛能沒有傳說中的那麼巨大,右腦開發也並不比左腦開發重要很多。一個人在思考,處事,判斷,思維,和語言應用的時候都是協調了左右腦共同完成的,左右腦還是需要協調平衡發展才是關鍵。家長在選擇「早教」方法的時候也應該仔細考察其基本的理念和科學基礎,切勿被華麗的外衣所迷惑。

-----廣告,請繼續往下閱讀-----

發表在《時尚育兒》,有刪改。

參考資料

  • a. Taylor, Insep and Taylor, M. Martin (1990) “Psycholinguistics: Learning and using Language”. page 362
  • b. Sandra F Witelson, Debra L Kigar, Thomas Harvey, The exceptional brain of Albert Einstein, The Lancet, Vol 353, 2149-2153, 1999
  • c. G. R. Fink, P. W. Halligan, J. C. Marshall, C. D. Frith, R. S. J. Frackowiak & R. J. Dolan, Where in the brain does visual attention select the forest and the trees? Nature 382, 626 – 628 (15 August 1996)
  • d. Dietrich A, Kanso R., A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol Bull. 2010 Sep;136(5):822-48
  • e. Shobe ER, Ross NM, & Fleck JI (2009). Influence of handedness and bilateral eye movements on creativity. Brain and cognition, 71 (3), 204-14

原文發表於科學松鼠會

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 3
科學松鼠會_96
112 篇文章 ・ 6 位粉絲
科學松鼠會是中國一個致力於在大眾文化層面傳播科學的非營利機構,成立於2008年4月。松鼠會匯聚了當代最優秀的一批華語青年科學傳播者,旨在「剝開科學的堅果,幫助人們領略科學之美妙」。願景:讓科學流行起來;價值觀:嚴謹有容,獨立客觀

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
1

文字

分享

0
1
1
替晶片打造數學工具的喬治.布爾(George Boole)
數感實驗室_96
・2024/06/01 ・561字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

煮湯時看到調理包背面寫著「加水且加入鹽巴或味精,就大功告成了」。

這句話該怎麼解讀呢?邏輯思維好的人可能很快就能反應過來,意思是加水是必須的,鹽巴和味精至少要加一個。當然,兩者都加也行,但似乎不太健康。

你可能會說:「煮湯時誰會想那麼多?這太哲學了!」其實,19 世紀有位數學家將邏輯建立在數學而非哲學之上,他的貢獻深深影響了現代電腦的運算。他就是我們今天的主角——喬治.布爾(George Boole)。

-----廣告,請繼續往下閱讀-----

在工作會議中,清晰的邏輯思維能幫助我們有條理地表達觀點,並迅速理解他人的意見;程式設計中,邏輯是核心,透過布林代數和邏輯運算,電腦能根據條件執行不同的任務,在智慧家電中利用邏輯閘判斷多個輸入條件來控制輸出結果。

因此,布爾提出的這一套邏輯思維與布林代數,不僅在學術領域至關重要,更是日常生活中不可或缺的工具。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/

0

1
0

文字

分享

0
1
0
跳脫古典數學邏輯!直覺主義的興起——《大話題:邏輯》
大家出版_96
・2023/04/08 ・1479字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

非古典邏輯:直覺主義

布勞威爾 (1881 – 1966)是最早脫離所謂「古典邏輯」系統的學者之一。他反對弗雷格和羅素將數學化約為邏輯的構想,認為數學根基於我們對某些基本數學物件(如數字和直線)的「直覺」,因此他的學說便稱為「直覺主義」。

直覺主義。圖/大話題:邏輯

惡魔論證

布勞威爾主要將焦點擺在無限集合和序列上,例如所有正數的集合和無理數(如 π 和)小數點後的數字形成的序列等等。他的論證大致如下:

我邏輯上能證明 666 這個序列一定會出現在任何無理數(如 π)的擴張裡。因為若主張 666 不在裡面,就代表 666 不出現在 π 的小數點後數字的任何地方,但這一點在數學上是無法證明的。就算世界上所有白紙都寫滿π的小數點後數字,還是有無限多的數字沒檢查到。

惡魔論證。圖/大話題:邏輯。

直覺邏輯的興起

雖然布勞威爾只想證明有些數學證明的方式和邏輯證明不同,但有些人發現他的論證也能用來證明某些數學領域的邏輯和其他數學領域不同,甚至有些人還據以建構出一套邏輯系統,並嘗試證明這套邏輯適用於所有數學領域。這套系統就叫「直覺邏輯」。

直覺邏輯系統。圖/大話題:邏輯。

直覺主義 v.s. 歸謬法

直覺邏輯有一個關鍵特點,就是不能用萊布尼茲的歸謬法。歸謬法是先假設某個數學陳述的否定為真,然後導出矛盾,進而證明該陳述為真。但要從「某事的否定為假」推導出「某事為真」就得仰賴排中律,因此在某些數學領域裡,歸謬法並不符合數學應該運作的方式,也就是從公理推導出數學語句。

-----廣告,請繼續往下閱讀-----
直覺邏輯與歸謬法互相對立。圖/大話題:邏輯。

直覺主義的數學熱潮

上述問題在 1930 年代引發了一波新的數學熱潮,不少學者嘗試用直覺邏輯替一些常用的基本數學陳述找到證明,也確實找到了不少。

數學系和哲學系紛紛成立,新的學術領域也隨之誕生。就連希爾伯特的方法明明是直覺邏輯的對手,也被加以改造,只使用得到認可的直覺主義程序。直到這股風潮引起了哥德爾的注意。

儘管後來學者對這場爭辯的興趣削弱了一些,但「唯有構造性證明才能確保一個陳述句為真」的基本看法至今仍然得到不少邏輯學家、數學家、科學家和哲學家支持。

許多人試著用直覺邏輯替數學陳述找證明。圖/大話題:邏輯。

處理未來陳述句的老問題

大約同一時期,波蘭數學家盧卡西維茨(1897 – 1956)1920 年提出的構想勾起了一些學者的興趣。此前十多年,這個構想從來不曾在波蘭以外的地區引起多大反應。盧卡西維茨當時想解決的,是從亞里斯多德到羅素都面對過的老問題。

-----廣告,請繼續往下閱讀-----

編按:「如何判斷大笨鐘一千年後會遇上大雪」這句話的真值?

未來陳述句是邏輯無法確認之事。圖/大話題:邏輯。

——本文摘自《大話題:邏輯》,2023 年 3 月,大家出版出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
大家出版_96
14 篇文章 ・ 11 位粉絲
名為大家,在藝術人文中,指「大師」的作品;在生活旅遊中,指「眾人」的興趣。