0

0
0

文字

分享

0
0
0

藏在玉米田裡面的遺傳大秘密,為人類帶來什麼貢獻?

研之有物│中央研究院_96
・2019/02/27 ・3503字 ・閱讀時間約 7 分鐘 ・SR值 524 ・七年級

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 執行編輯|林婷嫻、美術編輯|張語辰

為什麼要研究植物「減數分裂」?

氣候變遷迫使農田休耕、作物歉收,人類需要體質更優良也更美味的作物。一直以來,科學家利用「遺傳育種」,從大自然的遺傳多樣性中,透過有性生殖篩選保留優良的基因組合。在中研院植物暨微生物研究所王中茹的實驗室裡,透過超高解析度顯微鏡觀察玉米染色體世界,正在破解同源染色體如何重組的謎團。其中,發現蛋白質 DSY2 是解開謎團的第一個線索。

「遺傳育種」運用的機制之一為:當生殖細胞進行減數分裂時,來自爸媽的同源染色體交換部份 DNA 片段、產生新的基因組合,像「天然洗牌」般完成基因重組。這看似簡單的育種過程,困難關鍵之一在於發生染色體重組的「位置」和「數目」有許多限制。

王中茹與研究團隊發現,當玉米的生殖母細胞進行減數分裂時,有一個關鍵蛋白質 DSY2 會影響 DNA 斷裂和互換。這基因重組的過程,是育種學家尋找更多有用的基因、產生更多遺傳組合,以培育更優良品種的基礎。

-----廣告,請繼續往下閱讀-----
王中茹研究團隊鑽進顯微鏡的世界中,發現促成玉米基因「 天然洗牌」的關鍵蛋白質 DSY2 。
攝影│張語辰

探討基因如何透過「天然洗牌」重組的過程,也就是研究「減數分裂時的染色體互換」。雖然是國際趨勢,但在台灣很少人在作物上分析其中的分子機制。因為這類基礎研究不會有什麼立即性的大發現,需要愚公移山的時間與精力。王中茹與相當年輕的團隊,憑著渴望了解新事物的好奇,在這個領域中執著於尋找控制基因重組的關鍵,除了滿足對遺傳學的熱情,更希望可以縮短育種的時程,找到解決糧食危機的機會。

要迅速了解 DSY2 蛋白質的功能,就像要迅速破關瑪莉歐遊戲一樣困難,如果早已忘記國高中課本教的「減數分裂」、「染色體聯會」等內容,讀到這裡可能會怒關視窗。但別急,本文從王中茹的研究生涯專訪說起,像愛麗絲掉進兔子洞般,縮小自己進入顯微鏡的奇幻世界,發現以前課本不會教的染色體奧妙。

擁有人生中第一台顯微鏡,是什麼時候?

國小三年級時,我梭哈自己畢生存的壓歲錢,買了一台兩千多元的兒童型顯微鏡,看到細胞的瞬間我真心覺得『太~酷~了~!』

「水田裡、池塘裡、沙子裡任何東西,可以放在顯微鏡上的我全都拿來看。那時候不認識顯微鏡底下的微生物、草履蟲,也還沒有網路,我哥就拿他的國中課本讓我查,或一起去圖書館找資料,漸漸對顯微鏡中的世界感到神奇。我很喜歡用顯微鏡探索未知的事物,這種新鮮感促使我走上研究染色體和 DNA 這條路。」王中茹興奮地回憶。

超高解析度螢光顯微鏡中的世界不只美,更能發現人類肉眼看不到的細胞奧妙,圖中可以看見玉米染色體的「聯會複合體」結構。此照片獲得 2009 年 OLYMPUS BioScapes 比賽世界第二名。 
顯微鏡攝影│王中茹

第一次看到染色體,是什麼心情?

「第一次看到染色體是大學就讀台大植物系的時候,在遺傳學實驗中觀察洋蔥的根尖細胞。但印象最深刻的是,在研究所細胞遺傳學的實驗中,我們抽了自己的血、養了自己血裡的淋巴細胞,做了自己染色體的核型、排出每一條染色體、觀察染色體的數目和大小,這一切讓我興奮地不得了!」從王中茹的眼中,看見漫畫人物般熊熊燃燒著的火光。

-----廣告,請繼續往下閱讀-----

爸爸媽媽在世上能找到彼此已經很不容易,當精子和卵子相遇,才形成「我」。在我的生殖細胞中,他們的染色體還要重新尋找彼此配對,才能傳到我的下一代,這不是很浪漫嗎?

染色體為什麼要在細胞中重新尋找彼此配對?這是生物有性繁殖中最重要的「減數分裂」過程,有減數分裂才能確保爸媽、小孩、孫兒輩都是 23 對染色體,不會生出染色體以倍數成長的子孫。

而在減數分裂過程中,同源染色體會互換一部分 DNA 片段,配對互換的過程可確保正確地將一套染色體傳到細胞中,同時讓爸爸和媽媽給的基因在「我」的生殖細胞透過「天然洗牌」重組,增加更多的遺傳變異性。

這種奧妙的遺傳現象,發生在每一次的減數分裂中,在生物學上極為重要。透過顯微鏡觀察玉米減數分裂如何發生,了解這必要的細胞分裂機制,若能掌握發生的關鍵,就有機會透過控制染色體互換與基因重組,加速育種效率,培育出玉米界的馮迪索抵抗致命氣候,不只強壯也很美味。

爸爸和媽媽的染色體,在細胞中要尋找彼此、配對互換 DNA,才有機會生出更好的下一代。
圖說設計│林婷嫻、張語辰

基因會「天然洗牌」的生物那麼多,為什麼特別研究玉米?

王中茹崇拜地指著 Barbara McClintock 的照片說:「我在大三時對於一直死背教科書中已知的知識感到枯燥、迷惘,那時看了《玉米田裡的先知》這本書,受到 Barbara McClintock 啟發。

-----廣告,請繼續往下閱讀-----
王中茹的辦公桌後方貼著偶像 Barbara McClintock 的照片,她終身致力於玉米細胞遺傳學研究,因為發現跳躍基因,被認為是「玉米田裡的先知」。
攝影│張語辰

她是細胞遺傳學家,當時的研究技術還沒有現在這麼先進,她透過長期觀察顯微鏡、做遺傳實驗,在 1940 – 1950 年代就發現基因會從染色體的原本位置跳躍到另一處。但當時的科學家無法想像、也無法理解這麼先驅的發現,加上 Barbara McClintock 是女性不受重視,實驗室就被迫搬到整棟樓最陰暗的角落,就算到處演講也沒有人在乎。她仍然堅持自己的研究幾十年,直到 1983 年才正式得到諾貝爾獎的肯定。

「這個故事雖然辛酸苦情,卻喚醒我小時候透過顯微鏡,看到微小新世界的那股興奮,因為受到 Barbara McClintock 這位細胞遺傳學家的影響,後來我讀台大植物系碩士班時就找了細胞遺傳學的陳其昌老師,從研究菸草的核型開始,博士班時轉為研究螢光定位標記玉米 DNA 的方法和遺傳圖譜。」

玉米是國際間重要的糧食作物,產量和價格都持續攀升。
資料提供│王中茹

「想提高玉米的體質和產量,要從玉米基因組解序下手,了解哪些基因代表玉米的哪些特性。但當年解序時, DNA 片片斷斷位於染色體各處,拼組起來很困難,科學家需要一種方法來分類、指引哪一段 DNA 位於哪一條染色體上,讓研究更好運作。因此我讀博士班時投入大量時間研究『螢光原位雜交 (簡稱 FISH )』技術如何應用在玉米上,建立染色體圖譜,既可增加了解玉米染色體的組成,也有助克服解序時拼組片段遇到的困難。」王中茹搭配當年的研究照片說明。

A圖:壓扁處理的玉米染色體。C圖:維持 3D 球狀的玉米染色體。將選擇好的 DNA 用會發光的染料標記,發螢光的 DNA 會到染色體上尋找和自己互補的 DNA,這種「螢光原位雜交 (FISH)」技術有助科學家了解染色體。
資料提供│王中茹

另外一個讓王中茹堅持研究玉米的原因是,玉米的花粉母細胞比阿拉伯芥、酵母菌的大很多,透過超高解析度顯微鏡可以很清楚地看到細胞減數分裂的過程、染色體如何配對互換 DNA 。而玉米雄花穗有上千個花藥,其中的減數分裂細胞在花穗上依序進入減數分裂,這個特性讓我們容易取得大量同步和相鄰階段的細胞,阿拉伯芥、水稻、哺乳類等其他模式物種都沒有這種研究上的便利。

-----廣告,請繼續往下閱讀-----

「當玉米的花藥生長到 1 公厘時,1 個花藥中的 600 個細胞會同時進行減數分裂,並且開始 複製、 DNA 打斷、配對、重組、同源染色體分離……等步驟,我們透過流式細胞儀,將上萬個同時進行減數分裂的細胞一顆顆分離出來,以大數據的角度運用蛋白質體學 (Proteomics)、基因組學 (Genomics) 分析,就能從玉米身上發現別的物種無法提供的資訊,例如哪一段區域的 DNA 和別的區域很不一樣,進而找到影響 DNA 打斷的關聯。」像是發現寶藏般驚喜,王中茹強調研究玉米的優勢。

玉米的花粉母細胞不但很大,同時進行減數分裂的細胞更高達上萬個,這是玉米給我們得天獨厚的大數據資料,能發現什麼就靠我們把握。

在本文中透過王中茹的研究生涯 Q & A,一步步認識染色體、DNA、減數分裂與研究玉米的重要性,而王中茹研究團隊發現什麼關鍵,不但增進科學家了解植物的減數分裂,更可能有助解決糧食危機?將於下篇〈破解!玉米沒告訴你的「基因洗牌」關鍵〉揭曉。

延伸閱讀

本文轉載自中央研究院研之有物,原文為玉米染色體有什麼好看?專訪細胞遺傳學家王中茹,泛科學為宣傳推廣執行單位

文章難易度
研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

1

0
1

文字

分享

1
0
1
被垃圾科學耽誤的人生:哈沃德的冤獄與平反——《法庭上的偽科學》
商周出版_96
・2024/01/04 ・4615字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

紐約市沃斯街四十號,無辜計畫

哈沃德的故事:因被冤枉身陷囹圄三十四年

基思.艾倫.哈沃德可以說是一名倖存者。他被維吉尼亞州錯誤定罪,但是逃過死刑執行。而且還是兩次。梅克倫堡矯正中心在一九八四年爆發了所謂的「大逃亡」(The Great Escape)1,那是有六名死囚越獄的空前維安漏洞,哈沃德面對其後的嚴密禁閉也倖存了下來。哈沃德面臨過殘酷的獄警、僅存的希望全被澆熄、父母的死訊,他的身分也被侵蝕到只能淪為 1125797 號罪犯,但是他倖存了下來。

他在維吉尼亞州刑罰體系中所有最嚴酷的監獄裡倖存下來了,先是梅克倫堡,接著是奧古斯塔(Augusta),然後又在蘇塞克斯二監(Sussex II)待了十年,還有現在的諾托韋,他在諾托韋那樣環境惡劣的監獄醫務室裡進行了重大的腸道手術,並且活了下來。雖然很勉強。

圖/unsplash

在被錯誤監禁的三十四年裡,哈沃德排的這條等待救援的隊伍從未向前移動。大量監禁讓他身邊的囚犯如雨後春筍般湧現,因此這條隊伍只會越排越長。他最初因為傑西.佩隆的入室謀殺案和對他妻子特蕾莎.佩隆的性虐待案而被關到梅克倫堡時,維吉尼亞州每十萬名居民中有大約一百五十人遭到監禁。

當我們發現特蕾莎用過的性侵採證套組、把它送去做 DNA 檢驗時,維吉尼亞州的監禁率已經超過每十萬名居民有四百五十多名囚犯,每十萬名黑人居民則是超過兩千四百人。2在那個看不見的國度裡,到底住著多少無辜的 1125797 號囚犯,我們不會知道。但是統計顯示,在維吉尼亞州和全國有數千名無辜的人被關在牢裡;他們大部分人都永遠不會再拿回他們的名字了。

-----廣告,請繼續往下閱讀-----
圖/unsplash

維吉尼亞州剝奪了哈沃德生命中的每一個里程碑。他沒能結婚,沒有小孩,沒有做過除海軍之外的其他職業。他在二十幾歲之後,除了監獄檔案的照片,就只有一張自己的照片。他具有指標意義的生日,三十歲……四十歲……五十歲……六十歲,都是在鐵牢裡度過的,他只是沒死而已。

事情一開始不是這樣的。他也曾經奮鬥過。他從獄中出庭為自己辯護一事,曾經讓他的有罪判決遭到撤銷。為他贏來一次重新審判的機會、再一次讓真相大白的機會。但是當陪審團第二次做出有罪判決、上訴法院也維持這個裁決時,哈沃德體內的鬥志突然被掏空了。他決定放棄,讓餘生都在監獄裡度過。就像他有一次對我說的:「我就待在牢裡等死算了。」

重新審判:不可靠的咬痕證據

就訴訟而言,二○一六年發現了性侵採證套組,州也同意進行檢驗,這使得前進的道路變得清晰。哈沃德和史蒂夫.錢尼不同,他不需要維吉尼亞州法院或是其他法院承認咬痕證據完全不可靠。他不需要新法律或是定罪完善小組就可以重返法庭。也不需要當初把哈沃德的牙齒和特蕾莎.佩隆大腿上的咬痕「配對」的六名牙醫取消他們的證詞。

圖/unsplash

哈沃德很幸運:他有 DNA 。檢測開始之後,就會像是一顆小圓石被丟出來,滾下山坡引起 被壓住的真相一波又一波的雪崩。其規模之大,會讓哈沃德甚至不需要重回法庭。

-----廣告,請繼續往下閱讀-----

他幾乎立刻就被排除在可能的嫌疑人之外,也就是說所有檢驗項目,包括性侵採證套組、凶手蓋在特蕾莎頭上的尿布,以及她被性侵時的沙發墊,上面的生物證據都不可能是他的。

我的辦公室裡傳來更多歡呼聲。這種感覺不同於最初發現物證箱時的那種驚喜。是好消息,但也是預期中的結果。無辜計畫法律團隊的每個人都相信基思.哈沃德是清白的,也都知道他是清白的。

圖/unsplash

之前在訴訟中移交的文件就已經證明了:刑事專家不實宣稱在犯罪現場收集到的血清證據,根據在 DNA 之前的血型技術無法確定。其實在審判之前就可以將哈沃德排除在取樣之外了。後來他又被排除在 DNA 證據之外,就是理所當然的了。

接著,我們得知 DNA 分析人員可以從保存的生物樣本中發展出完整的基因輪廓。這表示除了可以排除哈沃德是 DNA 的來源,甚至還有可能得知到底是誰的 DNA ;不同於史蒂夫.錢尼案中的 DNA 已經受到毀損,只能夠做到排除錢尼。

-----廣告,請繼續往下閱讀-----
圖/unsplash

從每一件證據中提取的 DNA 輪廓都沒有更新的資訊。它們都來自同一名男性,既不是基思.哈沃德,也不是特蕾莎的丈夫傑西。反而是一名陌生人把他的 DNA 留在整個犯罪現場。發現證據的位置和特蕾莎的證詞完全一致,因此顯得更有說服力,這份證據也與哈沃德自己的陳述一致;哈沃德說他從來沒有進過佩隆家。

證人誤認是錯誤定罪一大主因?

這在大多數州就足以推翻有罪判決了。但也還是有可能出現荒謬的「沒被起訴的共同射精者」理論。不過,這個案件中有一名受害者還活著。特蕾莎強忍著痛苦和性侵她的人共度了三小時。她知道那天晚上只有一個入侵者。一名殺了她丈夫的凶手。一個「咬了她的人」。

圖/unsplash

早在 DNA 排除哈沃德之前,特蕾莎本人就為哈沃德的清白提供了最有說服力的證據:她拒絕指認哈沃德。哈沃德是因為咬了他的女朋友而被逮捕,而且還戴著手銬,在這樣容易誤認的情境中,特蕾莎都沒有指認哈沃德就是毀了她家庭的那名水手。

她的這個立場在兩次審判中都沒有絲毫動搖。許多犯罪受害者很可能會接受暗示,或是不論有意或無意,急著指認被警方確信是凶手的那個人。的確,證人指認時的誤認,通常是因為警方的建議而導致的無心之過,是錯誤定罪的一大主因。

-----廣告,請繼續往下閱讀-----

除了咬痕,另外的唯一證據就是駐衛指認了哈沃德。然而,即使在當時,他的證詞也是勉強得來而且不可靠的,我們得知在取得他的證詞時,用了可以「強化」記憶的祕密催眠,因此顯然缺乏可信度。

圖/unsplash

即使用催眠誘導的指認可以相信,不過駐衛也只是說在襲擊案發生當晚,他有看到哈沃德回到基地。是的,他是說那個人穿了血跡斑斑的制服,不過那人其實不是基思.哈沃德,而且在當時的紐波特紐斯,喝醉酒的水手在酒吧跟人打架,然後滿身是血回到船上,也不是什麼罕見的事。歸根究柢,不論證人指認的這番話具有多少分量,它都不代表哈沃德那天晚上有進入佩隆家。只有洛威爾.萊文和阿爾文.凱吉的專家證人證詞明確說出了這一點。而 DNA 也證明了兩位牙醫是錯的。

真正的兇手到底是誰!?

哈沃德的案件已經走向崩解。真正的證據(affirmative evidence)不是指向他有罪,而是指向另一個第三人。無論在哪一州,這個「新發現」的證據應該都對推翻任何一個有罪判決綽綽有餘了,但是維吉尼亞州和大多數州都不一樣。維吉尼亞州是全美國對無罪主張最有敵意的州之一。被判無期徒刑的囚犯很少有活著走出來的。要讓無辜者重獲自由,通常前提是必須破案。

然後「聯合 DNA 索引系統」(CODIS)就找到他了:在訴訟中喊出了「將軍!」

-----廣告,請繼續往下閱讀-----
圖/unsplash

根據美國的 DNA 數據庫「聯合 DNA 索引系統」,確定性侵取證套組、沙發墊和尿布上的 DNA 是來自一名叫做傑里.克羅蒂的人。在這起性侵謀殺案發生時,克羅蒂是卡爾文森號航空母艦的一名水手,這艘航空母艦當時停泊在紐波特紐斯的船塢。

基思.哈沃德也在這艘船上服役。克羅蒂和哈沃德長得有點像,他曾經因為綁架罪而在俄亥俄州的監獄服刑,並在十年前死於獄中。在哈沃德入獄期間,他還犯下其他暴力犯罪,但是都沒有像一九八二年對佩隆一家的暴行那樣殘忍;當然,除非克羅蒂還犯了其他沒有被偵破的案件,或是被以為已經破案的犯罪。

全美國對無罪主張最有敵意的州?

媒體壓力再次升高。但不是像一九八二年那樣,當時行凶的水手逍遙法外,因此有兩名美國參議員敦促要盡速逮捕他;這次的壓力是要推翻多年前因為媒體推波助瀾而造成的有罪判決。

圖/unsplash

弗蘭克.格林(Frank Green)是《里奇蒙時報》(Richmond Times-Dispatch)的記者,他長期以來都對維吉尼亞州對無辜者的敵意有批判性觀察,他詳細報導了哈沃德的故事,從聲請推翻他的有罪判決的那一刻起。連諾托韋裡面的囚犯都注意到了。

-----廣告,請繼續往下閱讀-----

哈沃德在監獄裡的朋友們都為他打氣。他們開始從監獄圖書館的報紙上剪下與哈沃德案件有關的新聞剪報,並保留給他。隨著哈沃德的案件從一團混亂的垃圾科學訴訟,轉變成教科書等級的 DNA 平反案件,格林的報導刊登位置也越來越靠近頭版。當哈沃德的聲請在等待維吉尼亞州最高法院的決定時,他成了頭版新聞,而當 DNA 檢驗證明哈沃德是無辜的時候,他直接登上頭條。

圖/unsplash

既然已經在「聯合 DNA 索引系統」找到符合者了,但凡有一點基本的正當程序概念,都會覺得繼續監禁哈沃德是不可接受的。他顯然是無辜的。任何殘存的反對意見都消失無蹤了。

總檢察長在一場匆忙召開的新聞發布會上,公開承認哈沃德是無罪的,並要求該州高等法院盡速對其聲請做出裁決。維吉尼亞州最高法院在第二天就宣布基思.哈沃德是一個無辜的人。

——本文摘自《法庭上的偽科學》,2023 年 12 月,出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

原文注釋

  1. Bill McKelway, “From the Archives: How the 1984 Escape from Virginia’s Death Row Happened,” Richmond Times-Dispatch, May 30, 2009,瀏覽日期二○二一年七月五日,richmond.com/from-the-archives/from-the-archives-how-the-1984-escapefrom-virginias-death-row-happened/article_19ea1684-9af2-5d24-86ab-5875eaf2068c.html。 ↩︎
  2. Prison Policy Initiative, Virginia profile,瀏覽日期二○二一年七月五日,www.prisonpolicy.org/profiles/VA.html。 ↩︎
所有討論 1
商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

1
1

文字

分享

0
1
1
發育中胚胎如何淘汰異常細胞?——《生命之舞》
商周出版_96
・2023/10/21 ・2937字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

為了理解染色體異常細胞對鑲嵌型胚胎的影響,我們必須要創造出數百個小鼠胚胎,並研究數千個胚胎不同部位的細胞。這麼龐大的工作量需要有一位專職的科學家,也需要資金。

在匯整如何測試這個假設的思緒時,我在絨毛膜採樣檢查後又進行了另一個羊膜穿刺檢查,這個檢查一樣在超音波影像的引導下,將針插入包圍發育胎兒的羊膜囊中,以取得少量的透明羊水樣本來進行分析。保護胎兒的羊水會帶有胎兒細胞,可以用來確認是否具有染色體問題。這次的檢查結果是沒有問題的,我們都鬆了一口氣。不過,得要到我把孩子抱在手上那時,我才能百分之百地放心。

圖/unsplash

還有其他的好消息是,我有了資源可以進行了解我檢查結果的研究。我在發現懷孕那天所進行的面試,讓我獲得惠康基金會的資深研究補助金。這筆補助金原本打算用在另一個計畫上,不過他們給我足夠的自由度,可以直接挪用其中部分資金來為鑲嵌型胚胎建立模型。

如何製造染色體異常的細胞?

我們有一大堆事情要做。首先,我們得要找到一種可信的方式(最好不只一種)來製造染色體異常的細胞。然後我們還要找到一種方式來標記這些細胞,好讓它們在正常細胞旁發育時,我們可以追蹤到它們。製造異常細胞比我們原先所想得更加困難。海倫測試許多種不同的方法來干擾染色體分離的過程,我們最後用到一種名為逆轉素(reversine)的藥物,這是我們實驗室中另一個研究計畫使用過的藥物。

-----廣告,請繼續往下閱讀-----

逆轉素是種小分子抑制劑。我們想要使用逆轉素來抑制染色體分離中的一個關鍵過程。那是一個分子檢查點,在正常情況下會暫停細胞分裂(有絲分裂),直到有正確數目的染色體(帶有 DNA)被拉開,並分離到兩個不同的子細胞間為止。逆轉素會阻斷名為單極紡錘體蛋白激酶(monopolar spindle 1 kinase)的酵素,而這種酵素會在細胞分裂時確保染色體公平分配。

圖/unsplash

為了確認逆轉素確實會造成染色體異常,我們經由標記隨機選出的三個染色體來分析有用藥及無用藥的胚胎。我們所使用的標記方法名為螢光原位雜合技術(fluorescence in situ hybridization, FISH),這種技術會外加一個探針(短 DNA 序列)及一個螢光標記。當探針在樣本中碰到類似的 DNA 片段時,就會在螢光顯微鏡下發光。經由螢光原位雜合技術的追蹤,確認了海倫使用逆轉素後,確實會增加染色體異常胚胎的數量。

逆轉素的效用是暫時性的,海倫一把藥劑洗掉,檢查點就恢復正常功能。這很重要,因為這表示我們可以將胚胎染色體異常的發生限制在特定的發育期間內。

染色體異常的胚胎能正常發育嗎?

確信可以製造出染色體異常的胚胎後,我們需要確定這些施用過逆轉素的胚胎是否會完全發育。海倫對四細胞胚胎施用逆轉素,並觀察到在發育 4 天後,它們的細胞數量比未施藥的胚胎要來得少。不過雖然細胞數量較少,還是可以形成三組基本的細胞世系。

-----廣告,請繼續往下閱讀-----

為了找出施用內逆轉素的胚胎是否可以長成小鼠,我們將這些胚胎植入母體中。這個時間點是在我們創造出體外培養胚胎的技術之前。每 10 個正常胚胎有 7 個會著床,而這個比例在施藥後的胚胎上則降了一半。最重要的是,施用逆轉素的胚胎沒有一個能夠成長為活生生的老鼠。這個實驗顯示,當胚胎中大多數的細胞都出現染色體異常時,它們的發育最終會以失敗收場,即使它們著床了、也發育了一陣子。

圖/unsplash

製造同時有異常與正常細胞的胚胎

現在我們可以進一步來探討那個重要的問題:若是只有部分胚胎細胞帶有染色體異常,發育又會受到何種程度的影響?為了找出答案,我們必須製造出鑲嵌型胚胎,也就是混合了染色體異常細胞與染色體正常細胞的胚胎。因此我們決定經由製造嵌合體來達到這個目的。

因為我們無法在對同個胚胎施用逆轉素時只讓其中一些細胞出現染色體異常,所以無法經由這個方式製造出鑲嵌型胚胎,因此我們想到了運用嵌合體的作法,將來自不同胚胎的細胞結合建構成嵌合體(鑲嵌型胚胎是由單顆受精卵生長發育而成的)。創造嵌合體而非鑲嵌型胚胎的好處是,我們可以系統性地去研究要具有多少異常細胞才會干擾到發育。很幸運地,這個作法成功了。

圖/unsplash

海倫在小鼠胚胎從兩細胞階段分裂到四細胞階段時,經由口吸管的方式施用逆轉素,並在八細胞階段將細胞一個個地分開。然後她將來自正常胚胎的四個細胞與來自施藥胚胎的四個細胞結合創造出八細胞嵌合體胚胎。

-----廣告,請繼續往下閱讀-----

我們要追蹤細胞的命運就需要標記。我朋友凱特.哈迪安東納基斯(Kat Hadjantonakis)與金妮.帕帕約安努在紐約對小鼠進行基因改良,讓牠們的細胞核具有綠色螢光蛋白,所以我們就採用了具有這種特性的小鼠。我們將這類小鼠胚胎施予逆轉素,施過藥的細胞會與未施過藥的細胞有不同的顏色,這樣我們就可以做出區別。具有綠色螢光蛋白的細胞讓我們可以明確看到新細胞是在何時與何處誕生以及新細胞的後續分裂,還有,若是細胞死亡了,我們也可以看到是在何時與何處死亡的。我們可用此種方式為個別細胞建立「譜系圖」。

染色體異常細胞在胚胎發育過程中會被清除嗎?

我們為這些鑲嵌型胚胎拍攝了影片,以精準追蹤每個細胞的命運。海倫在螢幕上看見,異常細胞數量的下降主要發生在產生新個體組織的那一部分胚胎,也就是上胚層。這些異常細胞會在凋亡的過程中死去,也就是經歷程序性的細胞死亡。在注定成為胚胎本體的那一部分胚胎中,施用過逆轉素的細胞經歷凋亡的頻率是未施藥細胞的兩倍以上。

圖/unsplash

這個結果表示,在注定成為胎兒的那一部分胚胎中,異常細胞有被清除的傾向。這支持了我的假設,也就是在這一部分的胚胎中,異常細胞競爭不過正常細胞,不過實際運用的機制跟我原來所想的不一樣。

我簡直不敢相信。這是我們真的會研究出重要成果的第一個徵兆,發育中的胚胎不僅可以自我建構,也同樣可以自我修復。幾年前當我懷著賽門那時,絨毛膜採樣檢查所檢測到的染色體異常細胞的後代,有沒有可能在成長為賽門的那部分胚胎中自我毀滅了呢?

-----廣告,請繼續往下閱讀-----
這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

3
2

文字

分享

0
3
2
精子從哪裡進入卵子會影響胚胎發育?——《生命之舞》
商周出版_96
・2023/10/20 ・2697字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

當我第一次驚喜瞥見打破對稱性的可能起源時,我驚訝地發現到這段歷程似乎很早就開始了,而這也為我運用綠色螢光蛋白追蹤細胞分化的研究鋪起了大道。卡羅琳娜與我想要進一步探索這個研究發現,所以我們提出了一個有關其終極源頭的簡單問題:精子進入卵子的位置是否對於胚胎一開始失去對稱性有任何影響?在線蟲與青蛙這類動物的胚胎中確實是這樣,但在哺乳動物(例如小鼠)的胚胎中也一樣嗎?

對稱藝術

當我們將生命的起源以動畫演繹出時,常常看到的影像就是精子設法進入沒有任何特徵的圓形卵子上,並融入其中。若情況是這樣的話,就很難看出精子進入卵子的位置是要如何對未來一切發育有所影響。在這個理想化的卵子上,任一處表面都與其他表面沒有任何差異。不過,當然還是存在有個參考指標,那個等同於「這邊是上面」的指標就是:極體。

圖/pexels

極體是從減數分裂的不對稱過程中所產生,細胞「骨架」在這個過程中會聚集以協助細胞進行分裂。這個細胞骨架稱為紡錘體,它會從細胞中心點往細胞邊緣移動,產生出一個大大的卵子與一個小小的極體。我們可以合理認為,紡錘體與染色體的移動可能打破了卵子的對稱性,也造成了擠壓極體的發育。許多人的確注意到極體最終總是會落在受精卵進行分裂的那個平面上。

理查.加德納這位我們之前見過的科學家,發現極體會附著在卵子上,它不只會確立受精卵首次分裂成兩個細胞的那個平面,它還會在幾天後確立出囊胚的對稱軸。這項發現讓我們有所啟發。這真的是因為卵子中的軸向資訊會一直持續到囊胚階段,還是有其他的因素會影響胚胎發育的對稱性?在我們進行科學研究的過程中,我與卡羅琳娜在當下這個時間點想要知道的是,精子進入卵子的位置是否也會影響胚胎發育,並提供第二個定位線索。

卵子上的座標——精子進入的位置會影響胚胎發育嗎?

就像在地表上某個地點跟北極的相對位置,可以定義所謂的經線,我與卡羅琳娜想要知道,精子進入卵子的位置是否也可以提供相對於極體位置的另一位置資訊。若真的是這樣,我們就能更精準確立進行首次分裂的那個平面。這感覺起來很合理,因為極體的形成與精子的進入位置都會重新排列之後會運用在卵子分裂上的細胞骨架。若不是這樣,分裂的那個平面與精子的進入位置之間就只有隨機的關係。

-----廣告,請繼續往下閱讀-----

以現代科技來說,我們很容易就可以解決這個問題。我們可以將這個過程拍成影片,來看看從精子進入卵子後到後續細胞進行分裂的幾天之間究竟發生了什麼事。但在我們開始研究的那個年代,不存在這樣的選項。我們無法拍攝小鼠胚胎從受精開始進入發育的影片,要等到幾天後胚胎進入囊胚階段才行。我們只能想辦法去標記精子進入的位置,以便可以追蹤它與受精卵在數小時後首次分裂的那個平面之間的關係。

圖/pexels

我一開始想著要用某種自然一點的東西,像是胚胎幹細胞這種非常微小的細胞,在卵子受精後馬上附著在精子進入點上,因為那時還可以看到進入點,但最後我有了更簡單的辦法:我們改用肉眼看不見的微小螢光珠。我們成功了,但我很後悔沒有給這些珠子取個像「微球體」這樣酷炫的科學名稱。當然,同領域人士不認同的不僅僅只是這些珠子要怎麼命名,但「珠子」這個名稱有種簡樸感,所以批評者會用這個名稱來貶低我們的研究,這就是我們得要付出的代價。

一開始很容易就能看到精子是從哪裡進入卵子的。它會留下一個名為受精錐(fertilization cone)的小小凸起。受精錐是由卵子的細胞骨架所建構,並由肌動蛋白的纖維所組成,它大約會凸起半個小時。這時間剛好足夠嵌入一至兩個珠子來標記位置。

我們將這些珠子浸到名為植物血凝素(phytohemagglutinin)的蛋白質混合物中,珠子就會具有黏性。植物血凝素常用於讓細胞聚集在一起。因為人的手不夠穩定,所以卡羅琳娜會以一隻機械手臂來拿取具有黏性的珠子,並將珠子放到卵子的表面上,同時還會以另一隻機械手臂牢牢固定住剛受精的卵子。

-----廣告,請繼續往下閱讀-----
圖/pexels

雖然珠子很小,直徑只有 0.0001 至 0.0002 公分,但在紫外線的照射下看起來大多了,亮綠色的點讓我們很容易就可以追蹤它的命運。觀察受精卵的發育時,我們發現珠子最終會來到細胞首次分裂所產生的兩個細胞之間的邊緣,或者是非常接近這個地方。

受精卵的分裂平面真的是由精子決定的嗎?

我們一直都在挑戰我們的思考與發現。上述情況有可能是任何落在卵子表面的珠子都會掉進分裂溝(cleavage furrow)中。所以為了確認,我們進行了一項對照實驗,卡羅琳娜將另一顆類似的珠子隨機放在卵子表面的其他地方。令我們欣慰的是,這顆珠子最終沒有掉進細胞分裂時所產生的分裂溝中。對我們而言,這表示精子進入卵子的位置以某種方式「被記住」了,並且成為受精卵偏好進行分裂的地點。換句話說,若我們是對的,受精卵之所以會在這個平面進行分裂,是因為偏好(biased)而非隨機(randomly)。

我們持續獲得了各種新發現。在胚胎從兩個細胞發育成四個細胞的階段中,帶有精子進入標記的那個細胞,會傾向於先進行分裂。這個細胞的命運之所以會改變,是因為精子帶入的物質滋養了它嗎?受精的三天後,精子進入標記會留置在囊胚兩部位之間的邊緣處,一個部位是含有會形成胚胎本體的胚胎部分,另一個則是胚外部分。

這表示了,兩細胞胚胎內的其中一個細胞較容易發育成胚胎,另一個則傾向於變成胚外部分。我們感到震驚。我們觀察影像好幾個小時,甚至好幾天。我一開始根本不敢相信這些發現,所以我請卡羅琳娜一再重複進行實驗,打破早期對稱性的證據怎麼這麼簡單,會不會太簡單了?

-----廣告,請繼續往下閱讀-----

可以理解地,對此感到懷疑的人士可能會吹毛求疵地表示,決定分裂平面的不是精子進入點,而是將珠子嵌在進入點的這個動作。為了驗證這個可能性,我們進行了許許多多的對照實驗,我之後會提到。我們已經確認過,將珠子放置在受精錐以外的任何一個地方,都不足以決定分裂的平面。但我們還有諸多其他事項要一而再、再而三的確認,因為我們必須很確定。

這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,商周出版,未經同意請勿轉載。

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。