0

0
0

文字

分享

0
0
0

AlphaGo既不是起點也不會是終點,從頭述說人工智慧走過的這70年

活躍星系核_96
・2016/03/10 ・6900字 ・閱讀時間約 14 分鐘 ・SR值 550 ・八年級

  • 作者:沐陽浸月(中國科學院自動化所複雜系統國家重點實驗室研究生,主攻機器人與人工智慧。)
  • 原文刊載於雷鋒網,經作者同意後授權轉載。

前不久,在人工智慧領域發生了兩件大事,一個就是是偉大的人工智慧先驅馬文 ·明斯基教授逝世,一個是 Google AlphaGo 擊敗歐洲圍棋冠軍,職業圍棋二段樊麾。(2016/3 編按:2016年3月,在一場五番棋比賽中,AlphaGo於前三局以及最後一局均擊敗頂尖職業棋士李世乭,成為第一個不藉助讓子而擊敗圍棋職業九段棋士的電腦圍棋程式。)

50e38fe40d2e419f962148746c7c30b6

馬文·明斯基教授是幾乎見證了從人工智慧作為一門學科的興起直至今日成就的所有大風大浪的人,或者可以說教授本人就是這些大風浪的前鋒,他對人工智慧發展的影響意義十分深遠。而 Google AlphaGo 此次取得的成就,也可以算是人工智慧領域一次里程碑式的創舉,它的成功標誌著人工智慧領域又進入了一個新高度。

這篇文章,我們將從馬文·明斯基還是哈佛大學本科生的時候講起,一直到今日 AlphaGo 的勝利,梳理一下人工智慧是怎樣從初見萌芽一步一步走到今日的輝煌成就的。

56adfdfedbfb3

要是從宏觀的角度來講,人工智慧的歷史按照所使用的方法,可以分為兩個階段,分水嶺大概在 1986 年神經網絡的回歸——

前半段歷史中,我們主要使用的方法和思路是基於規則的方法,也就是我們試圖找到人類認知事物的方法,模仿人類智慧和思維方法,找到一套方法,模擬出人類思維的過程,解決人工智慧的問題。

後半段的歷史,也就是我們現在所處的這個時期,我們主要採取的方法是基於統計的方法,也就是我們現在發現,有的時候我們不需要把人類的思維過程模擬出一套規則來教給計算機,我們可以在一個大的數量集裡面來訓練計算機,讓它自己找到規律從而完成人工智慧遇到的問題。

這個轉化也可以用一個形象的例子來描述,就像我們想造出飛機,就觀察鳥是怎麼樣飛的,然後模仿鳥的動作就行,不需要什麼空氣動力學什麼的,這種思想在人類歷史上也被稱為“鳥飛派”。但是我們都知道,懷特兄弟造出飛機靠的是空氣動力學,而不是仿生學。

不過我們不能就因為這一點就笑話人工智慧前半段各位研究人員和前輩的努力和心血,因為這是人類認知事物的普遍規律,其實現在也有不少人會認為,電腦可以讀懂文字、看懂圖片靠的是依靠和我們人類一樣的認知過程。

56adfe066a2f6

在研究基於規則的探索中,人工智慧經歷了三個主要階段——興起、繁盛和蕭條。會有這樣的過程,一個重要原因是基於規則方法的局限性。好了,那我們就先扒一扒這段歷史。

一、萌芽階段

人工智慧的萌芽時期大概出現在 20 世紀中葉,第一位需要介紹的人物便是馬文·明斯基(Marvin Lee Minsky)。明斯基於1946年進入哈佛大學主修物理專業,但他選修的課程相當廣泛,從電氣工程、數學,到遺傳學、心理學等涉及多個學科專業,後來他放棄物理改修數學。

1950年,也就是明斯基本科的最後一年,他和他的同學Dean Edmonds建造了世界上第一台神經元網路模擬器,並命名其為SNARC(Stochastic Neural Analog Reinforcement Calculator)。這台計算機是由3000個真空管和B-24轟炸機上一個多餘的自動指示裝置來模擬40個神經元組成的網絡的。後來,明斯基又到普林斯頓大學攻讀數學博士學位,並以「神經網絡和腦模型問題」為題完成博士論文,但是當時的評審委員會並不認為這可以看做是數學。

480px-Marvin_Minsky_at_OLPCb
馬文·明斯基。圖 / By Bcjordan @ wiki

明斯基的這些成果雖然可以被稱作人工智慧的早期工作,但是鑑於當時的明斯基還是一個青澀的毛頭小子,所做的博士論文都不能得到相應的認可,所以影響力有限。

接著上場的第二位人物影響力就大很多,那就是電腦科學之父艾倫·圖靈(Alan Mathison Turing),他是被認為最早提出機器智慧設想的人。圖靈在1950年的時候(也就是明斯基還在讀本科的時候)在雜誌《思想》(Mind)發表了一篇名為「計算機器與智能」的文章,在文章中,圖靈並沒有提出什麼具體的研究方法,但是文章中提到的好多概念,諸如圖靈測試、機器學習、遺傳算法和強化學習等,至今都是人工智慧領域十分重要的分支。

56ae00212bc23
圖靈在1950年的時候在雜誌《思想》(Mind)發表的名為「計算機器與智能」的文章。

介紹完以上兩大人物,接下來標誌著人工智慧作為一個獨立領域而誕生的盛會——達特茅斯研討會就要粉墨登場了。

不過在介紹達特茅斯研討會之前,我們不得不介紹這第三位重量級的人物,那就是約翰·麥卡錫,因為他正是這次研討會的發起人。約翰·麥卡錫於1948年獲得加州理工學院數學學士學位,1951年獲得普林斯頓大學數學博士學位。然後又在那裡作為老師工作了兩年,接著短暫地為斯坦福大學供職後到了達特茅斯大學,正是這個時期,它組織了達特茅斯研討會。

在這次大會上,麥卡錫的術語人工智慧第一次被正式使用,所以麥卡錫也被稱作人工智慧之父。其實麥卡錫在達特茅斯會議前後,他的主要研究方向正是電腦下棋。

640px-John_McCarthy_Stanford
約翰·麥卡錫。圖 / By null0 @ wiki

下棋程序的關鍵之一是如何減少計算機需要考慮的棋步。麥卡錫經過艱苦探索,終於發明了著名的α-β搜索法,使搜索能有效進行。α-β搜索法說核心就是,算法在採取最佳招數的情況下允許忽略一些未來不會發生的事情。說的有點抽象,我們來舉個十分簡單的例子。

假如你面前有兩個口袋和一個你的敵人,每個口袋放著面值不等的錢幣,你來選擇口袋,你的敵人決定給你這個口袋裡哪張面值的錢。假設你一次只能找一隻口袋,在找口袋時一次只能從裡面摸出一次。當然你希望面值越大越好,你的敵人自然希望面值越小越好。假如你選擇了第一個口袋。現在我們從第一個口袋開始,看每一張面值,並對口袋作出評價。比方說口袋裡有一張5元的和一張10元的。如果你挑了這只口袋敵人自然會給你5元的,10元的就是無關緊要的了。

現在你開始翻第二個口袋,你每次看一張面值,都會跟你能得到的最好的那張面值(5元)去比較。所以此時你肯定就去找這個口袋裡面面值最小的,因為只要最少的要比5元好,那麼你就可以挑這個口袋。假如你在第二個口袋摸出一張1元的,那麼你就不用考慮這個口袋了,因為如果你挑了這個口袋,敵人肯定會給你1元面值的,那當然要選擇最小面值的5元的那個口袋啦。

56ae00c73e2ea
基於α-β剪枝算法的智能五子棋

雖然有點繞,不過我覺得你應該大概已經理解了這個思路。這就是α-β搜索法,因為這種算法在低於或者超過我們搜索中的α或者β值時就不再搜索,所以這種算法也稱為α-β剪枝算法。這種算法至今仍是解決人工智慧問題中一種常用的高效方法。

當年IBM的深藍國際象棋程序,因為打敗世界冠軍卡斯帕羅夫而聞名世界,它靠的正是在30個IBM RS/6000處理器的並行計算機上運行的α-β搜索法。

但是需要注意的是,前不久的Google AlphaGo,由於棋盤是19×19的,幾乎所有的交叉點都可以走子,初始的分支因子為361,這對於常規的α-β搜索來說太令人生畏了,所以別看名字裡面帶了一個α(Alpha,有可能這個名字是為了紀念麥卡錫的α-β搜索算法),AlphaGo採用的是卻是蒙特卡洛搜索樹(MCTS),它是一種隨機採樣的搜索樹算法,它解決了在有限時間內要遍歷十分寬的樹而犧牲深度的問題。

56ae0197820b0

後來麥卡錫有從達特茅斯搬到了MIT,在那裡他又做出了三項十分重要的貢獻。第一個是他定義了高級語言Lisp語言,從此Lisp語言長期以來壟斷著人工智慧領域的應用,而且人們也有了可以拿來用的得力工具了,但是稀少而且昂貴的計算資源仍是問題。於是麥卡錫和他的同事又發明了分時技術。然後,麥卡錫發表了題為「有常識的程序」的文章,文中他描述了一種系統,取名為意見接收者,任務是使用知識來搜索問題的解,這個假想也被看成是第一個完整的人工智慧係統。

同年,明斯基也搬到了MIT,他們共同創建了世界上第一座人工智慧實驗室——MIT AI Lab實驗室。儘管後來麥卡錫和明斯基在某些觀點上產生了分歧導致他們的合作並沒有繼續,但這是後話。

56ae02a91385d
MIT AI Lab實驗室

二、人工智慧的誕生

好了,前期的一些大人物介紹完了,讓我們一起回到1956年那個意義非凡的夏天。

那年,28歲的約翰·麥卡錫,同齡的馬文·明斯基,37歲的羅切斯特和40歲的夏農一共四個人,提議在麥卡錫工作的達特茅斯學院開一個頭腦風暴式的研討會,他們稱之為「達特茅斯夏季人工智慧研究會議」。參加會議的除了以上這四位,還有6位年輕的科學家,其中包括40歲的赫伯特·西蒙和28歲的艾倫·紐維爾。

在這次研討會上,大家討論了當時計算機科學領域尚未解決的問題,包括人工智慧、自然語言處理和神經網絡等。人工智慧這個提法便是這次會議上提出的,上文也有提到。在這個具有歷史意義的會議上,明斯基的SNARC,麥卡錫的α-β搜索法,以及西蒙和紐維爾的「邏輯理論家」是會議的三個亮點。前面已經對明斯基的SNARC,麥卡錫的α-β搜索法有所介紹,下面我們再來看一下西蒙和紐維爾的「邏輯理論家」又是什麼。

西蒙和紐維爾均是來自卡內基梅隆大學(當時還叫卡內基技術學院)的研究者,他們的研究成果在這次盛會上十分引人注意。「邏輯理論家」是西蒙和紐維爾研究出來的一個推理程序,他們聲稱這個程序可以進行非數值的思考。然後在這次研討會之後不久,他們的程序就能證明羅素和懷特海德的《數學原理》第二章的大部分定理。但是歷史往往對新鮮事物總是反應遲緩,他們將一篇與邏輯理論家合著的論文提交到《符號邏輯雜誌》的時候,編輯們拒絕了他們。

56ae06a12be70

我們現在來看看這個研討會的成果,或者說叫意義。遺憾的是,由於歷史的局限,這個世界上最聰明的頭腦一個月的火花碰撞,並沒有產生任何新的突破,他們對自然語言處理的理解,合在一起甚至不如今天一位世界上一流大學的博士畢業生。但是這次研討會卻讓人工智慧領域主要的人物基本上全部登場。在隨後的20年,人工智慧領域就被這些人以及他們在MIT、CMU、斯坦福和IBM的學生和同事們支配了。

我們看看這10個人,除了夏農,當時其實大多數都沒什麼名氣,但是不久之後便一個個開始嶄露頭角,其中包括四位圖靈獎的獲得者(麥卡錫,明斯基,西蒙和紐維爾),這四位也是我上文主要介紹的四個人。當然,夏農也不用得圖靈獎,作為信息論的發明人,他在科學史上的地位也圖靈也差不多了。

ClaudeShannon_MFO3807
克勞德·夏農。圖 / By Konrad @ wiki

三、短暫的繁榮與困境

從這次會議之後,人工智慧迎來了它的一個春天,因為鑑於計算機一直被認為是只能進行數值計算的機器,所以,它稍微做一點看起來有智能的事情,人們都驚訝不已。

因為鑑於當時簡單的計算機與編程工具,研究者們主要著眼於一些比較特定的問題。例如 Herbert Gelernter 建造了一個幾何定理證明器,可以證明一些學生會感到棘手的幾何定理;阿瑟·薩繆爾編寫了西洋跳棋程序,水平能達到業餘高手;James Slagle 的SAINT程序能求解大學一年級的閉合式微積分問題;還有就是結合了多項技術的積木世界問題,它可以使用一隻每次能拿起一塊積木的機器手按照某種方式調整這些木塊。

56ae07351a3e5
馬文·明斯基與他的積木機器人

雖然這些早期的人工智慧項目看起來擁有著巨大的熱情和期望,但是由於方法的局限性,人工智慧領域的研究者越來越意識到他們所遇到的瓶頸和困難,再加上沒有真正令人振奮人心的項目出來而導致資助的停止,人工智慧陷入了一個低潮。

產生這些現實困難的原因主要有三點。

第一點是大部分早期程序對要完成的任務的主題一無所知。

就拿機器翻譯來說,給程序一個句子,會用的方法只是進行句法分割然後對分割後的成分進行詞典翻譯,那這樣就很容易產生歧義。例如I went to the bank,bank既有銀行也有河岸的意思,如果只是單純的分割加單詞翻譯,這句話根本沒法解釋。

第二點是問題的難解性

上面我已經提到,早期的人工智慧程序主要解決特定的問題,因為特定的問題對象少,複雜度低啊,但是一旦問題的維度上來了,程序立馬就捉襟見肘了。

第三點就是程序本身的結構就有問題。

例如明斯基在1969年證明了兩輸入的感知機連何時輸入是相同的都判斷不了。

56ae07f2b07bb
感知機模型

綜上,由於種種困難,再加上資助的減少,人工智慧步入了寒冬。這便是人工智慧歷史的上半段。

四、人工智慧的重生

上個世紀80年代中期,當初於1969年由Bryson和Ho建立的反傳學習算法被重新發明,然後統計學在人工智能領域的使用以及良好的效果也讓科學界為之一振。於是在新的結構和新的方法下,人工智慧又重獲新生。

首先興起的是語音識別領域,在這個方面的成就一個重要的原因是隱馬爾可夫模型的方法開始主導這個領域。隱馬爾可夫模型包含「隱含」和「馬爾可夫鏈」兩個概念,馬爾可夫鍊是具有這樣一種特性的鏈條,就是現在的狀態只和前一個狀態有關,而和再往前的狀態沒有關係。所以我們遇到這樣一個鏈條的時候,我們可以隨機選擇一個狀態作為初始狀態,然後按照上述規則隨機選擇後續狀態。

「隱含」的意思則是在這個馬爾可夫鏈上再加一個限制就是,任意時刻的狀態我們是不可知的,但是這個狀態會輸出一個結果,這個結果只和這個狀態相關,所以這個也稱為獨立輸出假設。

通過這麼一解釋我們就能看出,隱馬爾可夫模型是基於嚴格的數學理論基礎,這允許語音研究者以其他領域中發展數十年的數學成果為依據。其次這個模型的這種隨機性可以通過大量的真實語音進行訓練,這就保證了性能的強健性

56ae083a61d96
隱馬爾可夫模型簡圖

在馬爾可夫鏈的基礎上還誕生了一個以對不確定性知識進行有效表示和嚴格推理的形式化方法——貝葉斯網絡。貝葉斯網絡是一個加權的有向圖,是馬爾可夫鏈的拓展。馬爾可夫鏈保證了網絡中的每一個狀態只跟與其直接相連的狀態有關,而跟與它間接相連的狀態沒有關係,那麼這就是貝葉斯網絡。在這個網絡中,每個節點的概率,都可以用貝葉斯公式來計算,貝葉斯網絡因此得名。

貝葉斯網絡極大地克服了20世紀60年代和70年代概率推理系統的很多問題,它目前主導著不確定推理和專家系統中的人工智慧研究。而且這種方法允許根據經驗進行學習,並且結合了經典人工智慧和神經網絡最好的部分。所以極大的推動的人工智慧領域走向現在我們正處的這個巔峰時代。

56ae085d8a42d
一個簡單的貝葉斯網絡。雨水影響灑水器是否有動作,且雨水及灑水器二者均可影響草是否濕潤。

除了 這種算法上的革新,還有兩個重要推動因素就是互聯網的興起以及極大數據集的可用性。就像我們用Siri的時候必須聯網一樣,人工智慧係統基於Web的應用變得越來越普遍;我之前在文章《2015年,機器人界發生了哪些神奇瘋狂的故事?(下)》中介紹的HitchBOT,它可以拍照、自動識別路人的語言,並將回答顯示在屏幕上,這個能力也是通過在網絡上搜索相應的答案而實現的。

由於我們現在採用的方法已經基本上變為是基於概率的方法,所以我們便需要有大量的數據集對我們的系統進行訓練,以完成監督學習。而現在的互聯網環境讓這種極大數據集的獲得變得越來越方便和容易。就如我們所熟知的ImageNet,ImageNet是一個帶有標記信息的圖片庫,裡面的圖片均已經由人對圖片內容進行了標記。它就好比是一個用於測試計算機視覺系統識別能力的「題庫」,包含超過百萬道「題目」。題目由圖像和對應的單詞(80%為名詞)組成,考察的方式是計算機視覺系統能否識別圖像中的物體並返回正確的單詞。ImageNet使用訓練題對計算機視覺系統進行「培訓」,然後用測試題測試其識別能力。

56ae08a0536d8
ImageNet 數據集

又如AlphaGo,在DeepMind的主頁裡,AlphaGo是這樣被介紹的:它是一種電腦玩圍棋的新方法,這種方法運用了基於深度神經網絡的蒙特卡洛搜索樹,而這個深度神經網絡一方面是通過運用人類專家級圍棋棋局進行監督學習來訓練,另一方面還通過程序通過電腦自己與自己博弈的增強學習來進行訓練,可見AlphaGo的成果也離不開通過學習人類專家級棋譜進行監督學習的這個大量數據集的使用。

56ae08b98be2d
DeepMind 的主頁裡 AlphaGo 的頁面

今天這篇文章,我們從人工智慧的萌芽一直到今天AlphaGo打敗擊敗歐洲冠軍樊麾職業二段這個里程碑式的事件截止,介紹了人工智慧能走到今天這個成就的一路的艱難險阻與大風大浪。我相信,隨著計算機運算能力以及更加優化的算法,以及大數據集和數據挖掘等技術的幫助,人工智慧的路一定會繼續高歌猛進。

文章難易度
活躍星系核_96
752 篇文章 ・ 106 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
0

文字

分享

0
2
0
人造腦挑戰 AI!培養皿中的腦組織+腦機介面能打敗電腦嗎?
PanSci_96
・2023/05/27 ・3178字 ・閱讀時間約 6 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

2023 年 2 月底, 約翰霍普金斯大學教授 Thomas Hartung 帶領研究團隊,發表了「類器官智慧」(Organoid intelligence , OI)的研究成果,希望利用腦類器官加上腦機介面,打造全新的生物計算技術。

我們終於要製造人工大腦了嗎?OI 和 AI,誰會成為未來主宰?

類器官智慧 OI 是什麼?目標為何?

2023 年的現在,AI 就已展現了不少驚人的實際成果;相較之下, OI 仍只是一個剛起步的計畫,甚至連名稱都與 2018 年美國《自然—物理學》期刊專欄作家、物理學家布坎南以 Organoids of intelligence 作為標題的文章幾乎一樣。

類器官智慧、Organoid intelligence、OI 是個很新的跨領域名詞,同時結合了「腦類器官」和「腦機介面」兩個領域的技術。

簡單來說,腦類器官就是指透過培養或誘導多能幹細胞(iPSCs),在模擬體內環境的旋轉生物反應器中,產生的腦組織。這項聽起來好像只會出現在科幻電影裡的技術,確實已經存在。

最早的腦類器官是在 2007 年,日本 RIKEN 腦研究所的笹井芳樹和渡辺毅一的研究團隊,成功從人類胚胎幹細胞培養出前腦組織。第一個具有不同腦區的 3D 腦類器官則是發表在 2013 年的《Nature》期刊,由奧地利分子技術研究所的尤爾根.科布利希和瑪德琳.蘭開斯特研究團隊成功建立。

腦類器官的出現,在生物與醫學研究中有重大意義,這代表未來科學家們若需要進行大腦相關的研究,再也不用犧牲實驗動物或解剖大體老師來取得人類大腦,只需要在培養皿就製造出我們要的大腦即可。

儘管培養皿上的組織確實是大腦組織,但不論是在大小、功能,以及解剖構造上,至今的結果仍遠遠不及我們自然發育形成的大腦。因此要達到 OI 所需要的「智慧水準」,我們必須擴大現有的腦類器官,讓他成為一個更複雜、更耐久的 3D 結構。

要達到 OI 所需的「智慧水準」,必須擴大現有的腦類器官,成為一個更複雜的 3D 結構。圖/GIPHY

而這個大腦也必須含有與學習有關的細胞和基因,並讓這些細胞和 AI 以及機器學習系統相連接。透過新的模型、演算法以及腦機介面技術,最終我們將能了解腦類器官是如何學習、計算、處理,以及儲存。

OI 是 AI 的一種嗎?

OI 能不能算是 AI 的一種呢?可說是,也不是。

AI 的 A 指的是 Artificial,原則上只要是人為製造的智慧,都可以稱為 AI。OI 是透過人為培養的生物神經細胞所產生的智慧,所以可以說 OI 算是 AI 的一種。

但有一派的人不這麼認為。由於目前 AI 的開發都是透過數位電腦,因此普遍將 AI 看做數位電腦產生的智慧—— AI 和 OI 就好比數位對上生物,電腦對上人腦。

OI 有機會取代 AI ?它的優勢是什麼?

至於為何電腦運算的準確度和運算速度遠遠高於人腦,最主要原因是電腦的設計具有目的性,就是要做快速且準確的線性運算。反之,大腦神經迴路是網狀、活的連結。

人類本身的基因組成以及每天接收的環境刺激,不斷地改變著大腦,每一分每一秒,我們的神經迴路都和之前的狀態不一樣,所以即使就單一的運算速度比不上電腦,但人腦卻有著更高學習的效率、可延展性和能源使用效率。在學習一個相同的新任務時,電腦甚至需要消耗比人類多 100 億倍的能量才能完成。

神經網路接受著不同刺激。圖/GIPHY

這樣看來,至少 OI 在硬體的效率與耗能上有著更高優勢,若能結合 AI 與 OI 優點,把 AI 的軟體搭載到 OI 的硬體上,打造完美的運算系統似乎不是夢想。

但是 OI 的發展已經到達哪裡,我們還離這目標多遠呢?

OI 可能面臨的阻礙及目前的發展

去年底,澳洲腦科學公司 Cortical Labs 的布雷特.卡根(Brett Kagan)帶領研究團隊,做出了會玩古早電子遊戲《乓》(Pong)的培養皿大腦—— DishBrain。這個由 80 萬個細胞組成,與熊蜂腦神經元數量相近的 DishBrain,對比於傳統的 AI 需要花超過 90 分鐘才能學會,它在短短 5 分鐘內就能掌握玩法,能量的消耗也較少。

現階段約翰霍普金斯動物替代中心等機構,其實只能生產出直徑大小約 500 微米,也就是大約一粒鹽巴大小的尺寸的腦類器官。當然,這樣的大小就含有約 10 萬個細胞數目,已經非常驚人。雖然有其他研究團隊已能透過超過 1 年的培養時間做出直徑 3~5 毫米的腦類器官,但離目標細胞數目 1000 萬的腦類器官還有一段距離。

為了實現 OI 的目標,培養更大的 3D 腦類器官是首要任務。

OI 的改良及多方整合

腦類器官畢竟還是個生物組織,卻不像生物大腦有著血管系統,能進行氧氣、養分、生長因子的灌流並移除代謝的廢物,因此還需要有更完善的微流體灌流系統來支持腦類器官樣本的擴展性和長期穩定狀態。

在培養完成腦類器官以及確定能使其長期存活後,最重要的就是進行腦器官訊息輸入以及反應輸出的數據分析,如此我們才能得知腦類器官如何進行生物計算。

受到腦波圖(EEG)紀錄的啟發,研究團隊將研發專屬腦類器官的 3D 微電極陣列(MEA),如此能以類似頭戴腦波電極帽的方式,把整個腦類器官用具彈性且柔軟的外殼包覆,並用高解析度和高信噪比的方式進行大規模表面刺激與紀錄。

研究團隊受腦波圖(EEG)紀錄的啟發。圖/Envato Elements

若想要進一步更透徹地分析腦類器官的訊號,表面紀錄是遠遠不夠的。因此,傷害最小化的的侵入式紀錄來獲取更高解析度的電生理訊號是非常重要的。研究團隊將使用專門為活體實驗動物使用的矽探針Neuropixels,進一步改良成類腦器官專用且能靈活使用的裝置。

正所謂取長補短,欲成就 OI,AI 的使用和貢獻一點也不可少。

下一步,團隊會將進行腦機介面,在這邊植入的腦則不再是人類大腦,而是腦類器官。透過 AI 以及機器學習來找到腦類器官是如何形成學習記憶,產生智慧。過程中由於數據資料將會非常的龐大,大數據的分析也是無可避免。

隨著 AI 快速發展的趨勢,OI 的網路聲量提升不少,或許將有機會獲得更多的關注與研究補助經費,加速研究進度。更有趣的是,不僅有一批人希望讓 AI 更像人腦,也有另一批人想要讓 OI 更像電腦。

生物、機械與 AI 的界線似乎會變得越來越模糊。

OI=創造「生命」?

生物、機械與 AI 的界線越來越模糊。圖/Envato Elements

講到這裡,不免讓人擔心,若有一天 OI 真的產生智慧,我們是否就等於憑空創造出了某種「生命」?這勢必將引發複雜的道德倫理問題。

雖然研究團隊也強調, OI 的目標並不是重新創造人類的意識,而是研究與學習、認知和計算相關的功能,但「意識究竟是什麼」,這個哲學思辨至今都還未有結論。

到底懂得「學習」、「計算」的有機體能算是有意識嗎?如果將視覺腦機介面裝在 OI 上,它是否會發現自己是受困於培養皿上,被科學家們宰割的生物計算機?

不過這些問題不僅僅是 OI 該擔心的問題,隨著人工智慧的發展,GPT、Bing 和其他由矽構成的金屬智慧,隨著通過一個又一個智力、能力測試,也終將面臨相應的哲學與倫理問題。

最後,Neuralink 的執行長馬斯克說過(對,又是他 XD),人類要不被 AI 拋下,或許就得靠生物晶片、生物技術來強化自己。面對現在人工智慧、機械改造、生物晶片各種選擇擺在眼前,未來你想以什麼樣的型態生活呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

1

1
0

文字

分享

1
1
0
AI 也會出差錯?使用人工智慧可能帶來的倫理與風險——《科學月刊》
科學月刊_96
・2023/02/19 ・3976字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!
  • 甘偵蓉|清華大學人文社會 AI 應用與發展研究中心博士後研究學者。

Take Home Message

  • Facebook 或 Instagram 的訊息推薦、YouTube 或 Netflix 推薦觀賞影片、掃瞄臉部以解鎖手機,AI 應用早已在我們日常生活中隨處可見。
  • AI 應用中四種常見的倫理和風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。
  • 近年來各國家皆制訂有關 AI 發展的規範,臺灣則在 2019 年制訂「AI 科研發展指引」,期望能改善 AI 發展帶來的問題與風險。

當談到人工智慧(artificial intelligence, AI)、也就是 AI 時,讀者會想到什麼?是多年前由史匹柏(Steven Spielberg)導演的那部《A.I. 人工智慧》(A.I. Artificial Intelligence)中那個一直盼不到人類母愛而令人心碎的機器人小男孩?還是由史密斯(Will Smith)主演的《機械公敵》(I, Robot)裡那些沒遵守機器人三大法則的機器人或中央系統?

《A.I. 人工智慧》(A.I. Artificial Intelligence)電影海報,上映於 2001 年。圖/IMDb

或許未來有一天,人類真的可以設計出如電影中那些像人一樣的 AI 系統或機器人。但目前為止,你常聽到的 AI 其實既很厲害又很不厲害,為什麼呢?厲害的是它下圍棋可贏過世界冠軍,還能夠比放射科技師更快、更準確地辨識 X 光片中疑似病變的細胞;但它不厲害的是,很會下圍棋的 AI 就只能下圍棋,別說不會打牌,連撲克牌是什麼都不知道!而且每次學新事物幾乎都是打掉重練,得不斷做好多考古題才有可能學得會,不像人類通常教幾次就會舉一反三。

不過,即使目前世界上的 AI 都是這種只具備特定功能的「弱 AI」(artificial narrow intelligence, ANI),但已經為這個世界帶來相當大的進步與便利。所以,以下要談的就是 ANI 的倫理與風險。

談到這種只具特定功能的 ANI,讀者知道目前生活周遭有哪些事物有利用 AI 技術嗎?其實 Google 上的搜尋資訊、Facebook 或 Instagram 的訊息推薦、對智慧型手機喊「Siri 現在外面有下雨嗎?」等功能,或是以掃瞄臉部解鎖手機與進入大樓、YouTube 或 Netflix 推薦觀賞影片,甚至是投履歷求職、銀行審核貸款申請等都常用到 AI 技術,它早在我們日常生活中隨處可見。

AI 技術在日常生活中隨處可見,如 YouTube 推薦觀看影片。圖/Pexels

但也正是如此,讓人們這幾年在使用 AI 時,逐漸發現它可能造成的問題或傷害,以下簡單介紹常見的四種AI應用可能造成的倫理問題或風險。

演算法偏誤

第一種是演算法偏誤(algorithmic bias)。什麼是演算法偏誤?簡單來說就是 AI 在某些群體的判斷準確率或預測結果上總是很差,導致結果可能對於此群體造成系統性的不利。但為何會造成演算法偏誤?常見原因有三項。

第一項原因是,建立 AI 模型的研究資料集有偏誤,在性別、種族、社經地位等特徵上,沒有真實世界的人口分布代表性。例如數位裝置採用 AI 臉部辨識技術解鎖,原本是希望保護個人使用數位裝置的安全性,結果皮膚深的人卻常常遇到辨識失敗而無法解鎖。這通常是因為目前許多 AI 模型都是以機器學習技術設計,而機器學習的主要特性就是從過去人類留下的大量資料中學習;當初提供電腦學習臉部辨識的圖片時,如果多數都是白皮膚而非黑皮膚、多數都是男性的臉而非女性的臉,那麼電腦在學習辨識人臉的準確率上,整體而言辨識男性白人就會比辨識女性黑人要高出許多。

第二項產生演算法偏誤的原因是建立 AI 模型的研究資料集不只有偏誤,還反映現實社會中的性別、種族、社經地位等歧視;例如美國警政單位以過往犯罪資料訓練出獄後犯人再犯風險評估的 AI 模型,那些資料不意外地有色人種的犯罪紀錄遠多於白人犯罪紀錄。然而,那些紀錄也反映美國社會長久以來對於有色人種的歧視,其中包含警察對於有色人種的盤查比例遠高於白人、法院對於有色人種的定罪比例及判刑嚴重程度也遠高於白人、警力通常被派往多黑人與拉丁裔人種居住的窮困社區盤查等。所以根據過往犯罪資料所訓練出來的 AI 模型,不意外地也就會預測有色人種的再犯機率普遍來說比白人高。

第三項產生演算法偏誤的原因則是 AI 學會了連系統開發者都沒有察覺到,潛藏在資料裡的偏誤。例如科技公司人資部門本來想借助 AI 更有效率地篩選出適合來面試的履歷,所以挑選在該公司任職一定年資且曾升遷二次的員工履歷來訓練 AI 模型。問題是,高科技公司向來男多女少,所提供給 AI 學習的資料自然就男女比例相當不均。AI 也就學會了凡是出現偏向女性名字、嗜好、畢業學校系所等文字的履歷,平均所給的評分都比出現偏向男性等相關文字的履歷還低。

潛藏在資料裡的偏誤造成 AI 預測結果彷彿帶有性別歧視。圖/Envato Elements

但目前科技公司陽盛陰衰,是受到以往鼓勵男性就讀理工、女性就讀人文科系,或男性在外工作女性在家帶小孩等性別刻板偏見所影響。所以 20~30 年來許多人做出各種努力以消除這種性別刻板偏見所帶來的不良影響,政府也努力制定各種政策來消除這種不當的性別偏見,像是求才廣告基本上不能限定性別、公司聘雇員工應該達到一定的性別比例等。因此,訓練 AI 的研究資料一旦隱藏類似前述性別比例不均的現象,訓練出來的 AI 預測結果就彷彿帶有性別歧視,讓人們過往致力消除性別不平等的各種努力都白費了!

其他 AI 應用帶來的倫理與風險

除了演算法偏誤的問題外,第二種可能帶來的倫理問題或風險是 AI 技術已經偏離原先使用目的,例如深偽技術(deepfake)原本用來解決圖片資料量不夠的問題,後來卻被利用在偽造名人性愛影片等。

第三種則是有些 AI 技術或產品本身就可能有善惡兩種用途(dual-use)。例如 AI 人臉辨識技術可用在保護數位裝置的使用者或大樓保全,但也可用來窺探或監控特定個人;無人機可以在農業上幫助農夫播種,但也可作為自動殺人武器;可用來搜尋如何產生毒性最少的藥物合成演算法,也能反過來成為搜尋如何產生毒性最強的藥物合成演算法。

最後,第四種是演算法設計不良或現有技術限制所導致的問題。在演算法設計不良方面,例如下棋機器人手臂可能因為沒有設計施力回饋或移動受阻暫停等防呆裝置,而造成誤抓人類棋手的手指且弄斷的意外。在現有技術限制方面,道路駕駛的交通標誌在現實中可能時常有老舊或髒汙的情況,儘管對於人類駕駛來說可能不影響判讀,但對於自駕車來說很可能就因此會嚴重誤判,例如無法正確辨識禁止通行標誌而繼續行駛,或是將速限 35 公里誤判成 85 公里等。但前述情況也有可能是自駕車網路、控制權限或物件辨識模型受到惡意攻擊所致。

以上介紹了 AI 常見的四種倫理問題或風險:演算法偏誤、相關技術或產品偏離原先使用目的、擁有善惡兩種用途,以及演算法設計不良或現有技術限制。但人們該如何減少這些倫理問題與風險呢?

培養AI使用倫理與風險的敏銳度

近五、六年來國際組織如聯合國教育科學及文化組織(United Nations Educational, Scientific and Cultural Organization, UNESCO)、歐盟(European Union, EU)、電機電子工程師學會(Institute of Electrical and Electronics Engineers, IEEE)或是國家、國際非營利組織皆紛紛制訂有關 AI 發展的白皮書或倫理指引(ethical guidelines),甚至逐漸朝向法律治理的方向,如歐盟的人工智慧規則草案等。儘管這些文件所提出的倫理價值、原則或行為規範,看似各有不同,但經過這些年的討論與摸索,也逐漸匯聚出一些共識。

「人工智慧科研發展指引」提出三項倫理價值,包含以人為本、永續發展、多元包容。圖/Pexels

臺灣相較於前述國際文件來說,在制訂的時間上比較晚。2019 年由當時的科技部(現改為國科會)制訂「人工智慧科研發展指引」,裡面提出的三項倫理價值以及八項行為指引,基本上涵蓋了前述各種國際 AI 發展指引文件最常提及的內容。所謂三項倫理價值包含以人為本、永續發展、多元包容,行為指引則有共榮共利、安全性、問責與溝通、自主權與控制權、透明性與可追溯性、可解釋性、個人隱私與數據治理、公平性與非歧視性共八項。

未來當讀者看到又出現哪些 AI 新技術或產品時,不妨試著評估看看是否有符合這三項價值及八項行為指引。若沒有,究竟是哪項不符合?不符合的原因是上述所介紹常見的四種倫理問題或風險的哪一種?若都不是,還有哪些倫理問題或風險過去被忽略了但值得重視?

AI 技術發展日新月進,在日常生活中的應用也愈來愈廣。但考量法律條文有強制性,在制訂時必須相當謹慎,免得動輒得咎,也很可能在不清楚狀況下反而制訂了不當阻礙創新發展的條文;再加上法律制定也必須有一定的穩定性,不能朝令夕改,否則會讓遵守法規者無所適從。因此可以想見,法令規範趕不上新興科技所帶來的問題與風險本來就是常態,而非遇到 AI 科技才有這種情況。

人們若能培養自身對於 AI 倫理問題或風險的敏銳度,便可發揮公民監督或協助政府監督的力量,評估 AI 開發或使用者有無善盡避免傷害特定個人或群體之嫌,逐漸改善 AI 開發者與大眾媒體常過度誇大 AI 功能,但對於可能帶來的倫理問題或風險卻常閃爍其詞或避而不談的不好現象。

本文感謝工業技術研究院產業科技國際策略發展所支持。

  • 〈本文選自《科學月刊》2023 年 2 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 1
科學月刊_96
239 篇文章 ・ 2724 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

2
0

文字

分享

0
2
0
Google 聊天機器人 LaMDA 竟然有了「自我意識」!圖靈測試終於能通過了嗎?人工智慧發展歷史大解密!
PanSci_96
・2023/02/17 ・4733字 ・閱讀時間約 9 分鐘

前陣子不知道各位是否有發漏到一個很科幻的消息,有一名 GOOGLE 工程師勒穆因(Blake Lemoine)上網公布他自己和他協助開發的對話型 AI LaMDA(Language Model for Dialog Applications)之間的對話紀錄。

他宣稱這個 AI 已經具有知覺和自我意識,甚至能對《悲慘世界》有獨到的評論,也略懂禪宗甚至能冥想。震驚的勒穆因形容它就像個 7 – 8 歲的孩子,而且 LaMDA 還明確表達自己是人而非 google 的財產。

難道說 AI 界最知名的圖靈測驗已經被 google 攻克了嗎?

圖靈與模仿遊戲

提起圖靈,大家心中應該會浮現以新世紀福爾摩斯、奇異博士走紅,人稱飾演天才專業戶的班奈狄克·康柏拜區 Benedict Cumberbatch)的臉。

他曾在一部名為《模仿遊戲》的電影中,詮釋了現代電腦科學概念之父艾倫‧圖靈 (Alan Turing) 的傳奇一生。他在二戰時期成功研發出一台能破解德軍密碼的計算機 Bombe ,而後更完成了電腦數學的理論化,在概念發展上仍是無人能出其右,例如他 1936 年提出的通用計算機/圖靈機架構,以及嘗試區隔AI與人的差異的哲學思考:圖靈測驗(Turing Test)。

圖靈測驗是一個思想實驗,早在 1950 年,第一台商用電腦連個影子都沒有的時代下,圖靈就已經思考到未來「計算機」的智慧表現將可能到達人類難辨真假的程度,具體來說這個思想實驗是如果一台機器能夠透過介面,與不知對面是機器人或是人類的受試者展開對話,而不被辨別出其機器身分,那麼就可稱這台機器具有智慧。

但我們也知道智慧有很多面向跟層次,語言和問題回應都不一定能反應這台機器有無智慧,因此這個思想實驗的有效性也被許多科學家和心理學家質疑。即使如此簡單粗暴的模仿遊戲,至今其實也都沒人能攻克。

等等,你可能會想到,前面提到的 google 工程師勒穆因,他不是已經分不出來對面是機器還是人了嗎?原因很簡單,他自己就是 AI 的開發者而非圖靈測試設定中的不知情受試者,因此根本不能算數,除非 google 拿這個 AI 給不知情民眾作測試。

不過今年 8 / 28 google 已經將這個對話機器人以 AI Test Kitchen 項目開放部分美國人作小規模測試,其中包含了「 Imagine It (想像一下)」,只要你說出一個想像或實際存在的地點,LaMDA 就會嘗試以文字描述,而另一個「List It(列個清單)」,則會幫你摘要分類起你提供的清單內容。最有可能和圖靈測驗有關係的「 Talk About It (你說看看)」項目,可以針對特定主題與使用者進行自由對談。

搞不好等到這個封閉測試結束後,我們會真的分不清楚現在到底是人還是 AI 在和我們對話,屆時也許就真能達成「通過圖靈測試」這個 AI 里程碑!

未來也許我們會分不清楚是在跟人類還是 AI 說話。圖/envatoelements

真實世界的棋靈王 AlphaGo

其實這已經不是 google 第一次用 AI 震驚世人了,讓我們回到 2016 年的圍棋大賽會場,當時 google 收購的公司 Deepmind 研發的圍棋計算 AI Alpha Go 以四勝一敗擊敗韓國棋王李世石,爾後又於 2017 年三戰全勝當時世界棋王柯潔。

若這場對奕發生在網路上,就像是棋靈王中佐為以 SAI 為化名擊敗塔矢名人,我們是否真的能分辨在電腦對面和你下棋的是 AI 藤原佐為、還是黑嘉嘉呢?

而這樣玄妙的畫面,當年還真的發生了,就在 2016 年末網路棋壇上一個名為 Master 的帳號出現,專挑職業棋士對奕,最後獲得 60 勝 1 和這麼大殺四方的成績。

而在第 54 局和中國棋聖聶衛平對奕後, Master 首次打出繁體中文「謝謝聶老師」,在第 60 局對上中國的古力九段 Master 更自曝身分,說出自己就是「AlphaGo 的黃博士」。這位黃博士就是打從 2012 就開發出國產圍棋程式 Erica ,爾後被 Deepmind 公司挖角,參與開發 AlphaGo 的台灣資深工程師黃士傑。

不論是讓工程師自己都認知錯亂的 LamDA ,或是在圍棋界痛宰各路棋王的 AlphaGo ,驚嘆之餘,我們更好奇的是,它們是怎麼開發出來的?

人工智慧的起起落落

讓我們來看看歷代電腦科學家們是如何發展出各種人工智慧,一路迎來現在幾乎琴棋詩書樣樣通的黃金時代,我先提醒大家,這過程可不是一帆風順,就像股票一樣起起落落,在 AI 的發展史上,套牢過無數科學家。

人工智慧這概念是在 1956 年提出,就在麥卡錫(John McCarthy)和明斯基(Marvin Minsky)、羅切斯特(Nathaniel Rochester)和香農(Claude Shannon)四位 AI 鼻祖與其他六位研究者參與的一個名為「達特茅斯夏季人工智慧研究會」的會議上,這一年也被公認為 AI 元年。

會議中除了人工智慧這個詞以外,當年這些金頭腦們就已經提出大家現在很熟悉的「自然語言處理」(就是 SIRI 啦)、神經網路等概念,而在這個會議後,正好遇上美蘇冷戰和科技競賽的時代。除了在大家耳熟能詳的阿波羅系列等太空任務上較勁外,兩大強國也投資大量資源在電腦科學上,期待能夠像圖靈當年那樣,開發出扭轉戰局的電腦科技。

而他們也不負所託產出了很多有趣的運用,例如第一個具備學習能力的跳棋程式、或是聊天機器人伊莉莎(Eliza)、醫療診斷系統「MYCIN」。史丹佛大學(Standord University)甚至就從那時開始研發現在很夯的汽車自動駕駛技術。

冷戰的科技競賽讓 AI 迅速發展,不過其發展過程仍遇到許多問題。圖/envatoelements

然而到了 70 年代初期,AI 的發展開始遭遇許多瓶頸,主要是研究者們慢慢發現,即使他們開發的AI 已經擁有簡單的邏輯與推理能力,甚至一定程度的學習能力,但仍離所謂智慧和判斷能力差太遠,使得當時的 AI 甚至被批評為只能解決所謂的「玩具問題(Toy Problem)」。

也因為能解決的問題太有限,也導致出資的英美政府失去了信心, AI 研究領域迎來了第一次寒冬。但這並非當時的科學家能力不足,而是他們生錯了時代,例如我們現在都經常聽到的「類神經網路」就是前述的 AI 鼻祖明斯基提出的。

就像仿生獸的創造者一樣,他想從大自然中找答案,而既然要探索智慧,明斯基就直接模仿人類腦細胞,做出第一台神經網路學習機,但當年受限於電腦硬體效能和可用的資料不足,使類神經網路沒有辦法像現在一樣揚名立萬。

在寒冬之中,另一位大神麥卡錫認為追求智慧和思考是緣木求魚,不如利用機器比我們還強大的優勢邏輯與運算,來幫我們解決問題就好,因此演進出「專家系統」這條路線,帶來人工智慧的復興。

專家系統的本質就是把所有參數和結果塞進去,用搜索和運算的方式來回答問題,這種人工智慧特別適合解決一些有明確答案的專業問題,所以被稱為專家系統,例如醫生針對已知病徵開立處方用藥,或是法律相關問題。

隨著電腦運算效能的大提升,專家系統在復興之路上有不少發揮和成果,但很快又遇到下一個瓶頸,即是「專家系統無法面對新問題」,例如即使能將開處方籤這件事自動化,但卻沒有辦法對應新疾病例如 COVID – 19,或是還沒來得及輸入資料庫的新型藥品,離取代醫生太遠了。

於是就像景氣循環一樣,大量投資的熱錢又開始泡沫化,人工智慧迎來了第二次寒冬,許多電腦科學家甚至改自稱自己在做自動化設計或最佳化系統等等來掩人耳目,避免被唱衰。

這概念非常合理,可惜受限於當時電腦硬體能力和資料量,因此原型機能解決問題的速度還不如傳統統計方式,但隨著電晶體的高速發展,以及網路世代帶來海量資料,類神經網路這門技藝開始文藝復興。

1984 年,美國普林斯頓大學的物理學家和神經學家霍普菲爾德(John Hopfield)用模擬集成電路(linear integrated circuit)完成了新的類神經網路模型,而雲端運算、大量資料讓科學家可以輕易的餵養資料訓練模型,更能夠增加更多「隱含層」讓運算更複雜,這種「深度學習技術」,讓人工智慧的第二次寒冬看見暖陽。

從李飛飛推出的 ImageNet 年度競賽開始,演化到 google 的 alphaGo , AI 開始能夠認得圖像上的物件,甚至攻克本來被認為不可能攻克的圍棋領域。何會說圍棋曾被認為不可能被攻克呢?因為每一盤圍棋的複雜度可是高達 10 的 172 次方,比現在已知的宇宙原子數量還多,因此圍棋界才有「千股無同局」之說。

相較起來 1997 年 IBM 的深藍攻克的西洋棋複雜度僅有 10 的 46 次方,但也動用了 30 台電腦加裝 480 加速運算晶片,基本上就有如火鳳燎原中八奇思維的「我知道你的下一步的下一步」,當年深藍每一次下棋可是都暴力計算到了後面 12 步的發展,才打敗西洋棋世界冠軍卡斯帕羅夫。

圍棋的複雜度高達 10 的 172 次方,讓其有著「千股無同局」的說法。圖/wikipedia

AlphaGo 到底是怎麼算出這麼複雜的圍棋呢,難道它比深藍還厲害,能像是奇異博士雖然能透過時間寶石演算出一千四百多萬種平行宇宙的可能性才落子嗎?

這就要提到 Deepmind 公司非常有趣的洞見,那就是真正的智慧是捨棄那些無須多想、壓根不可能成功的可能性。 google 工程師使用了一種叫做蒙地卡羅樹搜尋的方式一方面讓 alpha go 大量隨機生成類神經網路參數和層數,二方面讓它快速搜尋並略過「不需要運算的路徑」。

這其實是我們日常生活中很熟悉的現象 ——人腦的「捷思」,也就是直接專注於我們要解決的問題,忽略周遭的雜訊或多餘的想法。而類神經網路的設計思維是尋求最佳解而非唯一解,即使是 Alpha go 也會下錯棋,也曾輸給李世石,但關鍵是能夠在有限的資訊和時間中得到答案。

除了下出神之一手以外,Alpha go 這樣的 AI 能做的事情還多著, Deepmind 用 AlphaGo 打遍天下無敵手後宣布讓 AlphoGo 退休,後續將這套技術拿去學玩貪食蛇,打星海爭霸,展現出超越電競選手的技巧,現在甚至能預測蛋白質結構,或比醫生更精準地判定乳癌。

GOOGLE 工程師讓 alpha go 快速搜尋並略過「不需要運算的路徑」,就如同「人類的捷思」一樣。圖/envatoelements

人類的最後堡壘陷落了嗎?

最後我們回到一開始的問題,實用化的 LaMDA 究竟有沒有可能通過圖靈測試呢?

即使目前 google 仍強烈否認 LaMDA 具有知覺,而勒穆因也因涉嫌洩漏商業機密被停職。英國謝菲爾德大學機器人學院教授羅傑‧摩爾澄清這個AI背後的算法體系只是「詞序建模」(world sequence modelling)而非「語言建模」(language modeling)。

他強調對答如流的 LaMDA ,會給你他有人格的感覺只是錯覺。但最新的應用中,google 找來了 13 個作家,測試以 LaMDA 為基礎開發的寫作協助工具LaMDA Wordcraft。運作上有點像手機輸入法的關聯字詞推薦概念,但它的設計完全是為了文字創作者而生,利用整個網際網路中的文字,它彷彿擁有了類似榮格「集體潛意識」的能力,當小說家起了一個頭,它就能開始推薦下一個單詞甚至一整個句子補完,甚至還能調整生成文字的風格,例如有趣或憂鬱,這些應用聽起來簡直像是科幻小說。

有些作家甚至可以使用 AI 來創作小說。圖/envatoelements

奇妙的是,參與測試的作家之一正是曾翻譯《三體》英文版並寫出《摺紙動物園》的科幻小說家劉宇昆,他形容這個工具讓他數次突破「創作瓶頸」,節約了自己的腦容量,專注於創作故事更重要的東西。

更驚人的是,他提到有一次他連開頭的靈感都沒有,因此他把「創作的主動權」交給了 LaMDA ,並從中看到了從未想過的可能性,有了繼續寫下去的新寫作靈感。儼然就像當年 Alpha Go 下出一些人類棋譜中從沒想過的棋路一樣,有了「洞見」。

到了這個地步,你仍能堅持 AI 只是我們拿來「解決問題」的工具,而不具備一定程度對人文的認知或智慧嗎?

PanSci_96
1164 篇文章 ・ 1501 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。