0

0
0

文字

分享

0
0
0

小行星來訪地球的前世今生:2008 TC3多線索

臺北天文館_96
・2011/11/20 ・3420字 ・閱讀時間約 7 分鐘 ・SR值 556 ・八年級

-----廣告,請繼續往下閱讀-----

2008年10月6日,位於美國亞利桑那州的Catalina巡天望遠鏡(Catalina Sky Survey)偶然發現到2008 TC3小行星即將拜訪地球,在當時帶來前所未有的震撼。計算出小行星的飛行軌跡之後,天文學家得知重達80噸的這顆巨大岩石將會為地球帶來一個撞擊事件。19小時以後,小行星2008 TC3劃破北蘇丹天空、在努比亞沙漠上空約37公里處發生爆炸,這是史上頭一遭預測小行星撞地球事件,並且預測結果相當的成功。幸運的是,撞擊落點是偏遠地區,並未引起大災難,反倒是這些在還未撞擊地球前,尚在飛行途中就已經被做過光譜分類的小行星成分資料,直到現在還提供科學家一個前所未有的好機會,好好研究小行星的碎片。

撞擊發生後不久,流星天文學家Peter Jenniskens博士(屬SETI和NASA Ames研究中心)及物理學家Mauwia Shaddad(屬喀土穆大學)所率領的數支探險隊,隨即在範圍29平方公里的沙漠中展開隕石回收工作,地毯式搜索下,收集了近600片/塊散落小行星,不過,這顆原本總重量達80噸的小行星,在撞擊碎成隕石後,總重量只剩不到10公斤。

第6站隕石碎片揭開了很多有關小行星帶及太陽系誕生初期的秘密,它很有特色,現在有人乾脆將它稱為Almahata Sitta隕石。Almahata Sitta這個阿拉伯文字的意思是「第6站」,是行駛在瓦迪哈勒法和喀土穆之間的火車所經過的一個火車站,小行星墜落在地球上的碎片是在該區找到的。

研究人員表示,小行星帶裡頭有著許多不同型態的物質,它們為太陽系初期情況如何拍攝了很多幅快照。他們發現,這些小行星自從太陽系形成以來改變並不太大,代言了太陽系早期有著怎樣的化學多樣性,還有,這些小天體在太陽系形成初期的時候曾經歷過哪些作用和變化。而科學家們相信,了解小行星帶的組成成分,對於未來我們如何處理直撲地球而來的較大型小行星,會很有幫助。

-----廣告,請繼續往下閱讀-----

在地面上,科學家研究了數以千計的隕石並加以分類編目,在太空中也曾光譜分析過幾百個小行星,「第6站」回收的這批隕石特別之處在於:它的身分還是小行星、還飛在太空中時,它已經被透過光譜儀加以分析,掉落地面後,它又迅速被科學家所發現及回收,所以成為了清清楚楚可顯示小行星隕石與母小行星之間有何關連性的「史上第一」。

證實小行星和特定型隕石之間具有相關性是個了不起的發現。因為我們從太空中看小行星只能看到其外表,從「第6站」隕石,我們能對照看到一個天體的內部情況,而這個天體的表面是在撞擊前就看過的。具有這樣的了解以後,為我們查考小行星內外部如何變化就提供了一張地圖。使我們對太空中這一類別的天體家族有更清楚的了解,並掌握到它們在太陽系中的分佈情形。

地球上所發現近3/4的隕石都是普普通通的岩質類球粒隕石。但是在分析過Almahata Sitta「第6站」隕石後,科學家們發現這是一類罕見的、富含碳的隕石,被歸類為橄輝無球粒隕石。一般相信,橄輝無球粒這型隕石是來自於大型富含有機物質的原始小行星,並且小行星曾經經歷過一次熔化。

「這是隕石中的怪咖,它是火成岩。」另一組對「第六站」隕石很有興趣的人馬,是Frederich和他學生等人。Frederich表示,「它就和地球上的火山岩石一樣,意思也就是說,這個隕石的起源是岩漿。很確定的是,在過去的某一個時間點上它曾經融化過。它們就像你在地球上會撿到的一塊岩石,但同時,卻也含有一些我們稱之為『比較原始』的物質,譬如石墨、有機化合物等其他東西。」

-----廣告,請繼續往下閱讀-----

這也就是說,橄輝無球粒隕石,特別是「第六站」這批隕石,同時含有來自原始型小行星和演化型小行星的兩種物質,兩者截然不同。

過去收集到的隕石中,屬性屬於橄輝無球粒隕石這一類的比例相當低,這也讓大家對「第六站」隕石更加好奇。「第六站」隕石細粒度非比尋常,質地相當多孔,極為易碎。研究人員相信這一點也和2008 TC3小行星為何在經過地球的高層大氣時就碎掉四散相當有關。

Friedrich 和他一位Fordham的學生,透過一臺「電感耦合等離子體質譜儀」來分析這批隕石,這種質譜儀是專門用來觀查岩石等無機合成物的儀器。

Friedrich表示:「我們發現,幾百片不同的碎片,化學成分卻的確都是橄輝無球粒隕石沒錯,同時,幾百片碎片也似乎都沒有任何的糟地球污染的證據,這是另一件有趣的事情。」當然,這批隕石在撞擊後立即被尋獲、「新鮮」感十足,未遭汙染是理所當然的。「目前地球上所發現的大多數橄輝無球粒隕石都是在南極洲,通常這些南極所採集的樣品似乎總有某些元素濃度特別高,如鑭,鈰等稀土元素。但「第六站」隕石似乎並無明顯污染跡象。」未受污染的隕石,能使研究人員更精確探索太陽系的組成。

-----廣告,請繼續往下閱讀-----

一般而言,球粒隕石大多未曾經過母小行星熔化或分異等作用 – 雖然研究人員還在懷疑,它們或許也未必典型代表隕石和小行星母體間的相關性 – 無論如何,相對的,橄輝無球粒隕石則通常會顯出其母體小行星曾有過融化。

所以曾被加熱到熔點的小行星,應該會看起來嗎?

根據「第六站」隕石最新研究顯示,這批隕石最原始可能來自於三個不同類型的小行星、經碰撞形成了另一個新的母小行星。這也可以解釋為什麼「第六站」隕石包含來自演化型和原始型小行星等兩種型態很不相同的物質。

其他證據也顯示,這顆小行星屬於不尋常的「多重組合型」橄輝無球粒隕石(類)。有跡可循嗎?NASA的太空中心人員證實:這些隕石曾被加熱達攝氏1150至1300度高溫,後來又經歷過每小時數千度的快速冷卻,在此期間,小行星中的碳將一部分橄欖石礦物鐵轉成金屬鐵。

-----廣告,請繼續往下閱讀-----

因此,根據以上資料回溯2008 TC3小行星的來時路,可以這麼說吧:數十億年前,曾有一顆小行星,遭受過一次巨大碰撞,結果它有一部份礦物質熔化 – 但並非全部礦物質都熔化。後來,它又再次受到一個大碰撞,把這顆體積小於行星的天體撞碎成許多更小的小行星,而在幾十億年後,它的旅途在地球畫上了終點,2008 TC3,就是這些小行星碎裂遺骸之一。

NASA Johnson 太空中心人員Mike Zolensky指出, 橄輝無球粒隕石這種隕石的特性是多孔,孔壁上塗著橄欖石晶體礦物質,經過X光斷層掃描發現,這些孔呈現出沒有完全焊接在一起的粗粒穀狀物,孔隙的內襯則出現氣相沉積物。這代表第6站隕石是個「團集」作用的產物,從粗粒到細粉都有;在撞擊中遭不完整縮減的顆粒,稍後在高溫焊接中又重新地再被組接在一起。

從「第6站」撞擊現場回收的隕石,它的含碳比例也是在所有已知隕石中最高的。已發現有石墨和奈米金剛石的碳晶體,還發現了一些在高溫中仍倖存的原始有機物質,包括高豐度的多環芳烴,甚至連一些氨基酸也大難不死。

來自法國Observatoire de la Cote d’Azur的學者Julie Gayon-Markt博士從另一個角度提供了一些2008 TC3小行星家族的內資情報。

-----廣告,請繼續往下閱讀-----

「由於像這樣,屬性與已知大為不同的隕石掉落在地球上其實很罕見,回答這樣的一顆小行星究竟來自何處,是很具挑戰性的有趣問題,小行星2008TC3如何形成,具有一個可能的解釋,它和一些礦物性質非常不同的小行星碎片彼此間的低速碰撞,或許有關。」

Gayon-Markt和她的團隊甚至還求教於「各小行星在主小行星帶的動能和光譜」等資料,希望能為解答第6站隕石的源起問題提供一些線索。他們的追蹤研究結果顯示,位置在主小行星帶內側,Nysa-Polana這個小行星家族,很有可能就是2008 TC3的故鄉。

「原始型」小行星,自太陽系誕生以來鮮少發生改變,一般含有高比例的水合礦物和有機物質。然而,其他類型的小行星還有許多是在特定時間點,有可能透過放射性物質衰變而受到加熱,熔化的岩漿分離成鐵質核心、四圍再包覆著岩質的地幔。

既想探索太陽系緣起之謎,又想解開那顆曾在2008年掉落地球的小行星身世之謎者,為數不少,Friedrich 和Gayton-Markt 這兩位鑽研著第六站隕石的研究員,代表著眾多好奇科學家的探索旅程。他們說,研究這些隕石是跨學科的合作,「我們的工作僅僅是大拼圖的一小塊。」(Lauren譯)

-----廣告,請繼續往下閱讀-----

設置在美國亞利桑那州的萊蒙山天文台的Catlina巡天望遠鏡,在2008年10月6日發現了2008 TC3小行星的動畫照片資料 (Richard Kowalski)。

設置在美國亞利桑那州的萊蒙山天文台的Catlina巡天望遠鏡,在2008年10月6日發現了2008 TC3小行星的動畫照片資料 (Richard Kowalski).

  2008 TC3小行星撞擊地球後造成的各種隕石 圖片來源: P. Jenniskens,等人. Click image for full description

2008 TC3小行星撞擊地球後造成的各種隕石 圖片來源: P. Jenniskens,等人. Click image for full description

  “Almahata Sitta”,俗稱「第6站」隕石,其中編號15號的黑色碎片,在週遭淺色的沙漠岩石間形成了顏色上的明顯對比,照片攝於蘇丹北部努比亞沙漠。圖片來源: Peter Jenniskens (SETI Institute/NASA Ames)

“Almahata Sitta”,俗稱「第6站」隕石,其中編號15號的黑色碎片,在週遭淺色的沙漠岩石間形成了顏色上的明顯對比,照片攝於蘇丹北部努比亞沙漠。圖片來源: Peter Jenniskens (SETI Institute/NASA Ames)
資料來源:中研院天文網[2011.11.11]

-----廣告,請繼續往下閱讀-----

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

-----廣告,請繼續往下閱讀-----

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

-----廣告,請繼續往下閱讀-----
科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

-----廣告,請繼續往下閱讀-----

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1529 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

所有討論 1