0

0
0

文字

分享

0
0
0

驚異奇航—星塵號

科學月刊_96
・2011/11/18 ・6469字 ・閱讀時間約 13 分鐘 ・SR值 531 ・七年級

星塵號於1999 年發射升空,飛越彗星,並獲得其塵埃樣本,完成人類史上首次收集彗星物質的任務。

文 / 劉名章、沈君山

圖一:星塵號發射時的景象。

西元2006 年1 月15 號洛杉磯時間凌晨兩點鐘,一道人造火球劃過了天際,直抵猶他州沙漠。這時,噴射推進實驗室(Jet Propulsion Lab)和NASA 詹森太空中心(Johnson Space Center)的人員無不歡天喜地,因為他們知道,星塵號回來了!這次返航的成功,給太陽系天文學家與宇宙化學家帶來無比的喜悅。這是人類史上第四次如此靠近彗星本體的任務( 前三次分別是Giotto , Deep Space , Deep Impact),同時這是第一次航程最遠的標本收集任務,也是首次利用世上最輕的固體「氣凝膠」(Aerogel)將彗星塵成功帶回地球供實驗室分析的任務。

太陽系的形成一直以來都是天文學家欲解的謎題。不管是透過望遠鏡觀測其他恆星形成區域,透過動力學模型來模擬太陽系與行星的形成,或是透過隕石的研究,最終的目的就是想要了解太陽系的起源。此處將由隕石的研究切入,然後再導引至我們今天的主題:「星塵」(Stardust)。

-----廣告,請繼續往下閱讀-----

先從「老於太陽系顆粒」的研究談起

什麼是presolar grains(老於太陽系顆粒)?顧名思義,字首「pre」代表在某個時間或階段之前,「solar」則是「太陽的」,grain(顆粒)大家都知道,合起來說,就是太陽之前的粒子,翻成白話講則是「老於太陽系的顆粒」。怎麼知道這些顆粒老於太陽系呢?這些顆粒又有什麼重要的地方?其實它們本身就是別的星星(會發光的恆星)所產生的塵埃!

星星在演化的過程中,會透過恆星風或是爆炸的方式將本身物質釋放到星際空間,這些高熱的物質一開始以氣體的形式存在,冷卻之後就會凝結出直徑大約只有數微米或更小的小顆粒;當這些顆粒不小心跑進了正在形成的太陽系,有些被早期太陽系的高溫作用給毀了,有些則運氣很好的躲掉了這些高溫事件而被小行星保存了下來。某天小行星的碎片掉到地上變成隕石,被科學家拿到實驗室用各種物理化學的方法將這些小顆粒分離出來,以便進行各種分析。

圖二:星塵收集器安抵地球時的狀況,星塵號本身則繼續航 向無盡的宇宙。

這些顆粒是星星所產生的,因此這些顆粒中的每個原子都是從母星球「繼承」下來的。透過這些塵埃,科學家們便可以容易地在實驗室內了解星球內部的元素演化過程。您可能會很好奇,這些顆粒那麼小,要怎麼知道他們到底是太陽系或是外星的產物?這時候就是同位素分析派上用場的時候了。太陽系物體內的同位素成分一般來說算是相當的平均的。也就是說,若我們量測地球上的碳同位素比值(12C ∕13C),所得到的結果一定會很接近太陽系的平均值89 ,最多大概也只會有千分之幾的差距;但老於太陽系顆粒的碳同位素比值卻與太陽系的平均值89 有極大的差距,因此認定這些顆粒未曾參與太陽系形成之初的混合作用。

這些老於太陽系的顆粒裡面的原子,是由別的星球本身元素形成的產物,所以會和太陽系內的平均同位素比值相差甚大,以碳同位素為例,目前已發現的碳化矽(SiC)和石墨顆粒中,其碳同位素比值的分布可以從3 到10 萬!這些實驗室所產生的數值,配合上天文觀測與理論計算,提供了天文學家一個相當好的管道去了解遙遠星球內部的化學演化。

-----廣告,請繼續往下閱讀-----

那從這些老於太陽系的顆粒中,我們除了可以回推這些顆粒的來源外,還可學到什麼呢?大家都知道,宇宙中的各種元素是由星星透過核融合或是爆炸所產生的。雖然從1957 年的第一篇元素形成論文開始,至今已有數不盡的理論模型問世,百家爭鳴,好不熱鬧。但是這麼多工作累積起來,可能也無法完全描述與理解大自然的神秘,更無法去驗證模型的真確性。這些小顆粒適時的在這一塊缺口中補上一角,讓科學家們可以在實驗室中,以較天文觀測精密的測量方式,提供遙遠恆星內部元素形成的資料。除此之外,這些小顆粒還可以提供科學家們古老銀河系化學演化、銀河系的年齡、星球周邊塵埃盤的形成和最早期的太陽系天文物理環境的資訊。在此限於主題與篇幅便不多談。

回到太陽系起源的研究

在太陽系中,有八大行星和一堆小型天體;前四顆類地行星,每一個都已經受過或長或短的分異過程與地質作用,現今之結構與組成已經和形成之初大異其趣。對於要了解太陽系的起源,幫助不太大。後四顆類木行星,雖然一般相信它們形成的時間極早,但由於絕大部份是氫氣,氦氣及一些氣體分子所組成,標本收集有相當程度的困難,多以太空船探測任務為主,不僅耗時且所費不貲;再加上這些氣體星球不能完全反應太陽系最初期成份,所以我們需要固體。

加州大學洛杉磯分校的麥克基甘教授(Kevin McKeegan)說的好:固體會記錄而氣體不會。因此現今普遍的宇宙化學研究,多是利用隕石中的同位素與礦物組成,試著了解太陽系形成時,周遭的天文物理環境與太陽星雲的化學組成。只是隕石大多來自於小行星,而小行星本體也或多或少受到了一些後期的變質作用,如撞擊,水與熱作用等等。造成一些最原始的同位素訊號或礦物受到了不同程度的改變。也因此,即使是所謂最原始的隕石,在某種程度上仍然不夠原始,這由隕石中稀有氣體相對於太陽的豐度較低的例子可以為證。

腦筋動到彗星上

圖三:星塵號所拍攝到的威德二號彗星影像。

既然隕石沒有辦法完完全全的反應太陽星雲最原始的化學成份,那我們還有什麼方法可以試著了解這個問題呢?科學家腦筋於是動到彗星身上。

-----廣告,請繼續往下閱讀-----

天文學家普遍認為彗星也是太陽系最初期的產物,很可能跟隕石一樣記錄了太陽系最初的成份;更重要的,彗星被保存在極冷的地方,從彗星離子尾光譜中的分析得知,其相當程度的保留了有機物與揮發物質,所以我們多半相信,彗星所留下來的訊號應該會比隕石更完整,更接近真實。同時彗星內部更有可能保存大量的老於太陽系的顆粒。也因為如此,星塵號任務在90 年代中期,由華盛頓大學天文系布朗李教授(Donald Brownlee)主導之下,開始了整體的計畫與進展。在1999 年的2 月發射升空, 2004 年1 月穿過了「威德二號」彗星(Wild-2)的尾巴收集塵埃,並在2006年的1月返回地球表面,完成了這一段旅程。

或許有人會問,我們了解彗星有什麼好處?除了剛剛上面講的,試著去追溯太陽系最原始的成份,了解太陽系的起源,及尋找老於太陽系的顆粒之外,還有那些問題是可以藉由彗星塵提供一些線索的: 一、行星際空間顆粒(Interplanetary Dust Particles)與彗星塵的關係?二、地球上的水是彗星帶來的嗎?三、生命的起源與彗星的關係?

選定目標

各位也可能會覺得好奇,彗星一大把在天上,為什麼星塵號不去別的彗星而要去威德二號呢?其實很簡單,有三個主要原因:天時,地利與人和。天時與地利指的是,這顆彗星會在適當的時間出現在適當的地點,讓科學家們可以較容易的設計收集塵埃時的太空船路徑與速度。為什麼這很重要?各位可以想像,若在和太空船遭遇時的相對速度太大,塵埃就會直接穿過收集器而帶不回地球了。因此,星塵號幾乎是追著彗星的尾巴,從後面以每秒六公里的速度,將塵埃「抓進」氣凝膠當中。

那人和又是什麼呢?大家都知道,當彗星跑進內太陽系受到太陽加熱後,揮發物質就會因為高溫而逸失;經過多次循環後(>1000 次),彗星最後就不再會有彗尾了。像哈雷彗星,它從第一次被發現到1986年,總共已經進來大約一百次。它的原始成份已受了相當大的改變而不再「新鮮」了。所以,它已無法還原太陽系最原始的成份。而威德二號彗星,在1974 年之前都是屬於木星族彗星(Jovian comet ,指近日點在木星軌道附近),之後受木星重力擾動而改變了它的軌道,近日點內移到火星附近;至今進入內太陽系約五次。也因此這顆彗星從沒有真正的過度靠近太陽而被大量的揮發,其化學組成仍是相對的原始。這對於我們所期待的研究,真是再理想也不過的目標。

-----廣告,請繼續往下閱讀-----
圖四:星塵號接近彗星收集微塵時的景象模擬。

如何收集—氣凝膠的妙用

圖五:切開收集到星塵的氣凝膠,保留紅蘿蔔形狀的破壞軌 道、以便容易取出微塵。

雖然星塵號追在威德二號彗星的尾巴後面,藉此減緩相互之間的相對速度,但星塵號仍承受著將近6倍步槍子彈速度微粒的衝擊。如果採用強硬手段直接將微塵擋住,那麼微塵將因高速的動能轉化為熱而將自身蒸發掉,致使該顆粒改變了外形及化學成份。此時氣凝膠的妙用就出現了。

氣凝膠是一種以矽為主的固體,結構像海綿一樣具有微米等級的多孔性,其中99.8 %的體積是空的。因此它的密度比玻璃輕1000 倍,同時還具有極低的導熱性及強度頗高的支撐性。當微粒撞上氣凝膠時,借著連續性的撞擊破壞氣凝膠,因而製造出比自身長度長200倍的一條類似紅蘿蔔形狀的破壞軌道。因此熱能被分散在此破壞軌道中,達到減速微粒且不破壞其外形及化學成份的目的。此破壞軌道還有項好處,它明確的指示出微塵停下的位置。否則要在直徑約50 公分大小的收集器內尋找微米大小的顆粒還真是一件困難的工作。

氣凝膠被安置在網球拍形狀的收集器上,因為具有雙面收集微塵的能力,科學家除了利用正面收集彗星微塵外,更利用星塵號在飛行旅途中以反面收集行星際空間的顆粒。由於顆粒都被埋在氣凝膠內,如何分辨何者為彗星微塵,何者為行星際空間的顆粒?解決的方法乃利用破壞軌道行成紅蘿蔔形狀的路徑,因為具有方向性所以可以輕易分辨出來。

跌破專家眼鏡的大發現

就在星塵號安然回到地球的兩天後,收集標本的大鐵罐在詹森太空中心的無塵室被打開,開始作最初期的狀況確認。加州大學洛杉磯分校的麥克基甘教授在現場時的轉述,他說:「這是非常完美的成功!有些彗星塵劃過的軌跡可以用肉眼清楚看到,並且收集到的東西似乎比大家原先預想的要來的多且大。當然,這只是非常非常初步的肉眼確認,我們真正會發現什麼,仍要等待初步檢驗團隊(Preliminary Examination Team,PET)的結果。PET至少需要半年的時間才能完成初步的彗星礦物學分析、氧氮同位素分析、化學組成分析,及紅外光譜學的分析等等。然後我們才能初步的知道這些標本所帶來的資訊」。

-----廣告,請繼續往下閱讀-----

首先是礦物學方面。最重要的發現之一為星塵號所收集到的微塵中居然出現高溫環境下形成的礦物(形成溫度約凱氏溫度1300~1400度上下),比如說橄欖石、隕氮鈦石(osbornite; TiN)、輝石與我們在隕石的鈣鋁包裹體(Ca-Al-rich Inclusions)中找到的高溫礦物一樣。這些東西,讓研究太陽系化學的科學家們著實嚇了一大跳。彗星不是在40 天文單位(AU)之外形成的天體嗎?在這麼冷的環境中,應該多以揮發性物質或是低溫物質為主,為什麼會有在高溫下才能形成的礦物存在?小行星和彗星,一個大約在3AU,另一個在40AU以外,為什麼某些彗星塵的礦物組成跟隕石中的鈣鋁包裹體類似?若在這麼大的空間範圍內,找到組成相似的高溫礦物,這似乎代表的是,在太陽系早期必須要有大尺度輻射狀輸送物質的能力(radial transport),其轉移範圍從內太陽系到小行星帶,甚至到外太陽系,才有可能辦到。那這個大尺度輻射狀輸送物質的能力的物理背景是什麼?為什麼可以把小顆粒從內太陽系高溫處搬到3AU 甚至更遠的40AU 以外?

再來是同位素分析方面。PET 的同位素小組,分析了彗星塵中,氫、碳、氮與氧同位素的組成。這些分析,試圖回答下面的幾個問題。第一,彗星是不是主要由老於太陽系的物質組成的?第二,彗星中有多少真正的「星塵」(真正從演化後期的恆星中所形成的)?第三,彗星微塵中的同位素組成,和隕石、行星際空間微粒的關係又是什麼?第四,早期太陽系中的混合作用究竟到什麼程度?

首先是氫同位素方面,被分析的彗星微塵中,基本上沒有太令人印象深刻的成份,其D/H(氘∕氫比值) 落在已知的行星際微塵的D/H 範圍內,類似彗星水分子中的同位素成份,但低於彗星中氰化氫(HCN)的同位素值,更遠較最極端的行星際空間顆粒的比值低上許多。當然, D/H 很容易受到各種不同因素的影響,尤其是這些灰塵是透過撞擊而被氣凝膠抓住,在這個過程中,D/H極有可能產生變化。所以,這些量測到的D/H 可能無法反應威德二號彗星的水分子的同位素成份。

再來是碳與氮同位素,這兩種同位素的量測,主要是要來找尋老於太陽系的顆粒(presolar grains)。這些顆粒,由於是在星球中凝結下來,所以基本上它們保存了原先星球中,元素形成的特徵。而這些特徵和太陽系的平均值相差甚大。以碳同位素來說,太陽系物質的12C ∕ 13C 平均比值是約89 ,若今天發現了一顆微粒,它的12C ∕ 13C 比值約是52 ,那我們可以很篤定的說,這顆微粒絕非在太陽系內形成的顆粒,而是一顆從某個AGB 星球或是紅巨星來的小塵埃!氮同位素也是同樣的道理,只是平均太陽系的比值大約是300上下。所以,若我們發現一顆灰塵,其14N∕13N的比值離300有極大的差距,那我們也可以很肯定,這顆顆粒一定不是太陽系內產生的。

-----廣告,請繼續往下閱讀-----

知道了這個前提,我們再回到星塵號的標本上。分析的結果也是讓大家驚訝莫名,PET階段分析氣凝膠中的微塵,居然沒有一顆是老於太陽系的顆粒!幸好,在收集器上的用鋁箔紙包裹住的部份中,在某個撞擊坑洞旁邊找到了一顆老於太陽系的顆粒,可惜的是,這顆小傢伙已被分析光光了,屍骨無存。從這個初步分析,顯示在彗星中(至少是威德二號這顆) 似乎沒有太多老於太陽系的顆粒。但這只是第一步。後續尚有許多標本等待研究,或許會有更多驚奇也說不定。

此外PET 團隊還有一項重大的發現,他們在氣凝膠及支撐框住氣凝膠的鋁芯中發現了氨基乙酸。一開始研究團隊無法排除此氨基乙酸可能來自地球上的污染的想法。此時同位素的功用又出現了,經過進一步的研究他們發現該氨基乙酸的碳具有較多的13C,也就是說其12C∕13C的比值比89 小很多,因此証實此氨基乙酸非太陽系內部的產物。由於筆者對生命科學的涉略不多,因此借用下面兩位專家的發言,來為這項大發現做註腳。

美國航太總署(NASA)的艾西拉博士(Jamie Elsila)說︰「氨基乙酸是具有生命的有機體製造蛋白質的物質之一,同時這是第一次在彗星上找到氨基酸」;「我們的發現支持生命的成份在太空間形成,並借由隕石和彗星的衝擊而傳播到地球的理論」。同時NASA 的主任皮契爾博士(Carl Pilcher)說︰「氨基乙酸在彗星的發現支持了組成生命的基本架構在太空中是隨處可見的想法,並且強化了在宇宙中生命的存在也許是共通的而不是罕見的論述」。

最後是氧同位素。氧是類地行星中最豐富的元素。而每個類地行星(含小行星)的平均氧同位素值都有些微的差異,所以氧同位素基本上可拿來當作這些行星的指紋。但是若把規模放到只有幾個毫米大小,我們會發現,在隕石的鈣鋁包裹體中,不同礦物居然有著不同的異常豐度,彼此間的差異可達到5%!如果是老於太陽系的顆粒,氧同位素的差異甚至可以達到好幾個數量級。星塵號部分微塵在經過初步分析後,具有隕石鈣鋁包裹體類似的礦物組合,同時居然和鈣鋁包裹體有相同的氧同位素成份!這下子不只礦物組成相似,連氧同位素都完全一模一樣。這更加讓我們相信,彗星中的某些小微塵,是和隕石中的某些礦物顆粒是完全相同的。所以,這和前面所寫的相呼應,在太陽系早期勢必要有大尺度輻射狀輸送物質的能力,從內太陽系到小行星帶再到庫伯帶以外,這一連串的巧合才有可能發生。

-----廣告,請繼續往下閱讀-----

這些發現,最感到振奮的應該是前清大校長徐暇生院士,中研院李太楓院士,及中研院副研究員尚賢博士。他們在1998 年提出的X-wind 模型,已預測彗星上的物質有可能在礦物相上與同位素比值上的特點與隕石中的部份物質相符。模型中這些高溫顆粒形成在吸積盤的端點,非常靠近原始太陽約0.05AU 距離的地方,後來太陽磁場與吸積盤面的交互作用,產生了兩極噴流和盤面上一股強力的「風」,將這些高溫礦物帶離到小行星帶甚至更遠的庫伯帶,再和其他物質堆積形成小行星或是彗星。

其實,以上所說,都只是星塵號相當初步的一個結果。還有很多尚未被探索的顆粒等待科學家們去了解,不管是礦物學,光譜學,同位素分析,還是其他各種各樣稀奇的方法。在可預期的將來,這些彗星塵仍會繼續送到世界各地的實驗室進行各項研究。在台灣,李太楓院士所領導的團隊,也正在為分析這些標本而磨刀霍霍。希望在不久的將來,台灣也能夠在這個前無古人的實驗室彗星塵分析競賽中打響知名度;也希望到時候我們將能夠回答上面所列出的數個問題,讓我們對太陽系起源有更深一層的了解。

劉名章:任職中研院天文及天文物理研究所

沈君山:任職中研院地球科學研究所

原刊載於《科學月刊》第四十二卷第十一期

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3768 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
2

文字

分享

0
7
2
水是從哪裡來的?改寫宇宙謎團:科學家揭露地球水源的真正來源!——《你的身體怎麼來的?》
商周出版_96
・2025/01/25 ・2808字 ・閱讀時間約 5 分鐘

彗星送水論?地球的水是從哪來?

想知道古地球如何得到水的行星科學家將矛頭指向大泥球。似乎數十億年前曾有彗星雨落下,為我們帶來大量的水。

但,彗星又來自何方?

科學家長期認為彗星誕生於比火星更遠的寒冷區域。一九九〇年代,學者更進一步認定大部分彗星已經被日益成長的行星吸收。然而荷蘭天文學家揚.歐特(Jan Oort)提出不同見解,主張可以有數以兆計的彗星在太陽系邊緣存活,它們距離行星太遠所以沒被重力拉扯,最終圍繞太陽系形成巨大球形外殼,現在將該區域稱為歐特雲。歐特雲的大量彗星可以填滿地球海洋,問題是它們太遠,是地日距離的數千倍,實在不大可能到得了。

揚·歐特認為彗星圍繞太陽系形成遠距離的歐特雲,雖然數量足夠填滿地球的海洋,但距離遠到不易抵達地球。圖 / unplash

於是又有研究者懷疑部分彗星在太陽系較內側存活,或許是土星軌道外,這樣也比歐特雲近了一千倍。然而僅僅停留在臆測,因為想要在那麼遠的地方找到直徑不過數十英里或更小的彗星太困難,大家沒有傻到去做這種嘗試。

-----廣告,請繼續往下閱讀-----

唯二例外是年輕的麻省理工學院教授戴夫.朱維特(Dave Jewitt)和他的研究生盧珍(Jane Luu)。裘伊特頭頂高聳,笑容可掬,性格充滿英國式幽默,父母是倫敦的工廠工人和電話操作員。童年時偶然在夜空看見流星勾起他對天文學的迷戀。

從天文學觀測到重水比例:揭開水的宇宙密碼

一九八五年,他突發奇想將新的數位型光感測器 CCD(譯按:感光耦合元件)連接到望遠鏡,藉此在太陽系遙遠角落尋找彗星這種小天體。朱維特認為我們看不見不代表不存在,但研究需要資金,只可惜多數人都不相信,所以計畫案一次一次被拒絕。三十多年後,回憶起當初遭受的輕蔑他依舊義憤填膺。「最常得到的回答是『無法證明計畫裡的測量實際可行』,」他說:「我的天,這是什麼蠢邏輯?整個計畫的意義就是去做一些以前沒做過的嘗試。就算最後真的不可行又怎麼樣呢,重點不就是得試試看嗎?」批判他的人可能陷入了「現有工具檢測不到就代表不存在」的認知偏誤,習慣性地假設科學家尚未找到就代表目標處什麼也沒有。

朱維特和盧珍拒絕放棄,偷偷從其他研究案借用望遠鏡時間尋找數十億英里外可疑的微小物體。

很長時間毫無收穫。一年又一年,然後四年五年六年。直到一九九二年夏夜,他們在夏威夷大島茂納凱亞天文臺工作。那時候他們心灰意冷,覺得五年多光陰白費了,卻沒想到忽然發現了非常微弱的光點。察覺這個點微微移動時,朱維特還暗忖「不可能是真的」,但它確實存在。兩人找到的天體位於海王星外的軌道,後來進一步證實那邊還有數百萬顆彗星。該區域被命名為古柏帶,淵源是最早提出此概念的荷蘭天文學家30,他在一九五〇年代就探討了這個可能(諷刺的是他本人不相信)。

-----廣告,請繼續往下閱讀-----

科學家在古柏帶找到大量彗星,人體內的水看似已經確定來源。地球形成後不久,彗星從古柏帶,或許一部分從更遠的歐特雲抵達,送來覆蓋這顆行星表面的水。彗星堪稱飛行的冰山,攜帶的水量確實足以填滿地球海洋。理論很快得到多數人接納及傳播,謎題終於得到解答。

科學家認為古柏帶與歐特雲彗星攜帶的水,可能就是地球水源的來源。圖 / unplash

小行星的貢獻:來自太空岩石的生命之源

真的嗎?一九九五年,波瀾再起。亞利桑那州鳳凰城附近一場觀星派對上,輪到混凝土供應公司零件經理湯瑪斯.博普(Thomas Bopp)借用朋友的望遠鏡,他留意到視野角落有個模糊光點。同一天晚上,新墨西哥州克勞德克羅夫特村天文學家艾倫.海爾在家中發現同樣物體。這顆新發現的彗星,是有史以來見過最亮的,命名為稱為海爾─博普彗星。

翌年,戴夫.朱維特隨學者團隊返回茂納凱亞觀測站,這次以強大的電波望遠鏡觀測海爾─博普彗星。他們在海拔一萬四千英尺(約四千兩百六十七公尺)的稀薄空氣中每十三至十六小時輪班一次測量夜間光譜,試圖比較彗星中一種罕見的水形式比例是否與地球海洋相符。

或許有些人還不知道其實水分子有不同形式。大部分水由氫原子組成,核心只有一個質子。但還有別種水存在,由於重量多出一成所以稱為重水,其氫原子是同位素,核心除質子外還包含一個中子。重水很罕見,在地球海洋中每六千四百個水分子只有一個是重水。因此,茂納凱亞團隊準備測量海爾─博普彗星時原本很有信心會找到相同比例的重水,畢竟地球的水應該來自彗星。

-----廣告,請繼續往下閱讀-----

然而觀測結果並非如此。海爾─博普彗星重水含量是地球海洋兩倍。這就麻煩了,先前天文學家在哈雷彗星發現類似的高比例重水,當初只視為異常案例,然而後來在百武二號彗星又測量到相同數據。三次觀測結果一致成為難以忽視的證據,顯示彗星並不吻合地球海洋的水分子組成。

「天文學家對海爾─博普的觀測結果作何反應?」我問。

「嚇壞了。」朱維特的意思是指數據背後的涵義:「有點像新時代運動31的意識覺醒之類。」他笑了笑又說:「好像不該說這種話才對。」但顯而易見,學界頗受震撼,一夕間又不能靠融化彗星形成海洋了。雖然惠普爾沒說錯,彗星確實充滿水,但海洋來自太陽系其他地方。具體究竟是哪兒?

朱維特和其他許多學者一樣,注意力轉向飄浮在太空中的巨大岩石,即所謂小行星。

-----廣告,請繼續往下閱讀-----

從石頭榨水,乍聽很無稽,但事實上有些岩石確實可以。如果加熱隕石,也就是從小行星落到地球的碎片,困在晶體結構內的水分子就能變成水蒸氣。多年前科學家已經知道小行星含水,這些岩石含水量差異很大。多數靠近太陽形成的小行星幾乎不含水,但在火星之外冰冷區域形成者水分含量則可高達百分之十三。

朱維特等人的想法是:如果撞擊地球的小行星夠大就會帶來豐沛的水。此外,天文學家還知道火星木星之間軌道上有一大群小行星,並將該區域稱為小行星帶。而且,小行星中重水與彗星不同,吻合地球海洋和人體。各種線索指向我們這兒的水應該來自宇宙岩石。

感覺好像結案了,但其實小行星帶距離地球三億英里遠。從那種距離要一桿進洞得有多高明的技術?有足夠數量的小行星算準角度飛向地球以水覆蓋地表,這個現象發生機率有多高?人類又如何進一步理解?

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

-----廣告,請繼續往下閱讀-----

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

-----廣告,請繼續往下閱讀-----
科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

-----廣告,請繼續往下閱讀-----

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
-----廣告,請繼續往下閱讀-----
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1596 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事