Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

驚異奇航—星塵號

科學月刊_96
・2011/11/18 ・6469字 ・閱讀時間約 13 分鐘 ・SR值 531 ・七年級

-----廣告,請繼續往下閱讀-----

星塵號於1999 年發射升空,飛越彗星,並獲得其塵埃樣本,完成人類史上首次收集彗星物質的任務。

文 / 劉名章、沈君山

圖一:星塵號發射時的景象。

西元2006 年1 月15 號洛杉磯時間凌晨兩點鐘,一道人造火球劃過了天際,直抵猶他州沙漠。這時,噴射推進實驗室(Jet Propulsion Lab)和NASA 詹森太空中心(Johnson Space Center)的人員無不歡天喜地,因為他們知道,星塵號回來了!這次返航的成功,給太陽系天文學家與宇宙化學家帶來無比的喜悅。這是人類史上第四次如此靠近彗星本體的任務( 前三次分別是Giotto , Deep Space , Deep Impact),同時這是第一次航程最遠的標本收集任務,也是首次利用世上最輕的固體「氣凝膠」(Aerogel)將彗星塵成功帶回地球供實驗室分析的任務。

太陽系的形成一直以來都是天文學家欲解的謎題。不管是透過望遠鏡觀測其他恆星形成區域,透過動力學模型來模擬太陽系與行星的形成,或是透過隕石的研究,最終的目的就是想要了解太陽系的起源。此處將由隕石的研究切入,然後再導引至我們今天的主題:「星塵」(Stardust)。

-----廣告,請繼續往下閱讀-----

先從「老於太陽系顆粒」的研究談起

什麼是presolar grains(老於太陽系顆粒)?顧名思義,字首「pre」代表在某個時間或階段之前,「solar」則是「太陽的」,grain(顆粒)大家都知道,合起來說,就是太陽之前的粒子,翻成白話講則是「老於太陽系的顆粒」。怎麼知道這些顆粒老於太陽系呢?這些顆粒又有什麼重要的地方?其實它們本身就是別的星星(會發光的恆星)所產生的塵埃!

星星在演化的過程中,會透過恆星風或是爆炸的方式將本身物質釋放到星際空間,這些高熱的物質一開始以氣體的形式存在,冷卻之後就會凝結出直徑大約只有數微米或更小的小顆粒;當這些顆粒不小心跑進了正在形成的太陽系,有些被早期太陽系的高溫作用給毀了,有些則運氣很好的躲掉了這些高溫事件而被小行星保存了下來。某天小行星的碎片掉到地上變成隕石,被科學家拿到實驗室用各種物理化學的方法將這些小顆粒分離出來,以便進行各種分析。

圖二:星塵收集器安抵地球時的狀況,星塵號本身則繼續航 向無盡的宇宙。

這些顆粒是星星所產生的,因此這些顆粒中的每個原子都是從母星球「繼承」下來的。透過這些塵埃,科學家們便可以容易地在實驗室內了解星球內部的元素演化過程。您可能會很好奇,這些顆粒那麼小,要怎麼知道他們到底是太陽系或是外星的產物?這時候就是同位素分析派上用場的時候了。太陽系物體內的同位素成分一般來說算是相當的平均的。也就是說,若我們量測地球上的碳同位素比值(12C ∕13C),所得到的結果一定會很接近太陽系的平均值89 ,最多大概也只會有千分之幾的差距;但老於太陽系顆粒的碳同位素比值卻與太陽系的平均值89 有極大的差距,因此認定這些顆粒未曾參與太陽系形成之初的混合作用。

這些老於太陽系的顆粒裡面的原子,是由別的星球本身元素形成的產物,所以會和太陽系內的平均同位素比值相差甚大,以碳同位素為例,目前已發現的碳化矽(SiC)和石墨顆粒中,其碳同位素比值的分布可以從3 到10 萬!這些實驗室所產生的數值,配合上天文觀測與理論計算,提供了天文學家一個相當好的管道去了解遙遠星球內部的化學演化。

-----廣告,請繼續往下閱讀-----

那從這些老於太陽系的顆粒中,我們除了可以回推這些顆粒的來源外,還可學到什麼呢?大家都知道,宇宙中的各種元素是由星星透過核融合或是爆炸所產生的。雖然從1957 年的第一篇元素形成論文開始,至今已有數不盡的理論模型問世,百家爭鳴,好不熱鬧。但是這麼多工作累積起來,可能也無法完全描述與理解大自然的神秘,更無法去驗證模型的真確性。這些小顆粒適時的在這一塊缺口中補上一角,讓科學家們可以在實驗室中,以較天文觀測精密的測量方式,提供遙遠恆星內部元素形成的資料。除此之外,這些小顆粒還可以提供科學家們古老銀河系化學演化、銀河系的年齡、星球周邊塵埃盤的形成和最早期的太陽系天文物理環境的資訊。在此限於主題與篇幅便不多談。

回到太陽系起源的研究

在太陽系中,有八大行星和一堆小型天體;前四顆類地行星,每一個都已經受過或長或短的分異過程與地質作用,現今之結構與組成已經和形成之初大異其趣。對於要了解太陽系的起源,幫助不太大。後四顆類木行星,雖然一般相信它們形成的時間極早,但由於絕大部份是氫氣,氦氣及一些氣體分子所組成,標本收集有相當程度的困難,多以太空船探測任務為主,不僅耗時且所費不貲;再加上這些氣體星球不能完全反應太陽系最初期成份,所以我們需要固體。

加州大學洛杉磯分校的麥克基甘教授(Kevin McKeegan)說的好:固體會記錄而氣體不會。因此現今普遍的宇宙化學研究,多是利用隕石中的同位素與礦物組成,試著了解太陽系形成時,周遭的天文物理環境與太陽星雲的化學組成。只是隕石大多來自於小行星,而小行星本體也或多或少受到了一些後期的變質作用,如撞擊,水與熱作用等等。造成一些最原始的同位素訊號或礦物受到了不同程度的改變。也因此,即使是所謂最原始的隕石,在某種程度上仍然不夠原始,這由隕石中稀有氣體相對於太陽的豐度較低的例子可以為證。

腦筋動到彗星上

圖三:星塵號所拍攝到的威德二號彗星影像。

既然隕石沒有辦法完完全全的反應太陽星雲最原始的化學成份,那我們還有什麼方法可以試著了解這個問題呢?科學家腦筋於是動到彗星身上。

-----廣告,請繼續往下閱讀-----

天文學家普遍認為彗星也是太陽系最初期的產物,很可能跟隕石一樣記錄了太陽系最初的成份;更重要的,彗星被保存在極冷的地方,從彗星離子尾光譜中的分析得知,其相當程度的保留了有機物與揮發物質,所以我們多半相信,彗星所留下來的訊號應該會比隕石更完整,更接近真實。同時彗星內部更有可能保存大量的老於太陽系的顆粒。也因為如此,星塵號任務在90 年代中期,由華盛頓大學天文系布朗李教授(Donald Brownlee)主導之下,開始了整體的計畫與進展。在1999 年的2 月發射升空, 2004 年1 月穿過了「威德二號」彗星(Wild-2)的尾巴收集塵埃,並在2006年的1月返回地球表面,完成了這一段旅程。

或許有人會問,我們了解彗星有什麼好處?除了剛剛上面講的,試著去追溯太陽系最原始的成份,了解太陽系的起源,及尋找老於太陽系的顆粒之外,還有那些問題是可以藉由彗星塵提供一些線索的: 一、行星際空間顆粒(Interplanetary Dust Particles)與彗星塵的關係?二、地球上的水是彗星帶來的嗎?三、生命的起源與彗星的關係?

選定目標

各位也可能會覺得好奇,彗星一大把在天上,為什麼星塵號不去別的彗星而要去威德二號呢?其實很簡單,有三個主要原因:天時,地利與人和。天時與地利指的是,這顆彗星會在適當的時間出現在適當的地點,讓科學家們可以較容易的設計收集塵埃時的太空船路徑與速度。為什麼這很重要?各位可以想像,若在和太空船遭遇時的相對速度太大,塵埃就會直接穿過收集器而帶不回地球了。因此,星塵號幾乎是追著彗星的尾巴,從後面以每秒六公里的速度,將塵埃「抓進」氣凝膠當中。

那人和又是什麼呢?大家都知道,當彗星跑進內太陽系受到太陽加熱後,揮發物質就會因為高溫而逸失;經過多次循環後(>1000 次),彗星最後就不再會有彗尾了。像哈雷彗星,它從第一次被發現到1986年,總共已經進來大約一百次。它的原始成份已受了相當大的改變而不再「新鮮」了。所以,它已無法還原太陽系最原始的成份。而威德二號彗星,在1974 年之前都是屬於木星族彗星(Jovian comet ,指近日點在木星軌道附近),之後受木星重力擾動而改變了它的軌道,近日點內移到火星附近;至今進入內太陽系約五次。也因此這顆彗星從沒有真正的過度靠近太陽而被大量的揮發,其化學組成仍是相對的原始。這對於我們所期待的研究,真是再理想也不過的目標。

-----廣告,請繼續往下閱讀-----
圖四:星塵號接近彗星收集微塵時的景象模擬。

如何收集—氣凝膠的妙用

圖五:切開收集到星塵的氣凝膠,保留紅蘿蔔形狀的破壞軌 道、以便容易取出微塵。

雖然星塵號追在威德二號彗星的尾巴後面,藉此減緩相互之間的相對速度,但星塵號仍承受著將近6倍步槍子彈速度微粒的衝擊。如果採用強硬手段直接將微塵擋住,那麼微塵將因高速的動能轉化為熱而將自身蒸發掉,致使該顆粒改變了外形及化學成份。此時氣凝膠的妙用就出現了。

氣凝膠是一種以矽為主的固體,結構像海綿一樣具有微米等級的多孔性,其中99.8 %的體積是空的。因此它的密度比玻璃輕1000 倍,同時還具有極低的導熱性及強度頗高的支撐性。當微粒撞上氣凝膠時,借著連續性的撞擊破壞氣凝膠,因而製造出比自身長度長200倍的一條類似紅蘿蔔形狀的破壞軌道。因此熱能被分散在此破壞軌道中,達到減速微粒且不破壞其外形及化學成份的目的。此破壞軌道還有項好處,它明確的指示出微塵停下的位置。否則要在直徑約50 公分大小的收集器內尋找微米大小的顆粒還真是一件困難的工作。

氣凝膠被安置在網球拍形狀的收集器上,因為具有雙面收集微塵的能力,科學家除了利用正面收集彗星微塵外,更利用星塵號在飛行旅途中以反面收集行星際空間的顆粒。由於顆粒都被埋在氣凝膠內,如何分辨何者為彗星微塵,何者為行星際空間的顆粒?解決的方法乃利用破壞軌道行成紅蘿蔔形狀的路徑,因為具有方向性所以可以輕易分辨出來。

跌破專家眼鏡的大發現

就在星塵號安然回到地球的兩天後,收集標本的大鐵罐在詹森太空中心的無塵室被打開,開始作最初期的狀況確認。加州大學洛杉磯分校的麥克基甘教授在現場時的轉述,他說:「這是非常完美的成功!有些彗星塵劃過的軌跡可以用肉眼清楚看到,並且收集到的東西似乎比大家原先預想的要來的多且大。當然,這只是非常非常初步的肉眼確認,我們真正會發現什麼,仍要等待初步檢驗團隊(Preliminary Examination Team,PET)的結果。PET至少需要半年的時間才能完成初步的彗星礦物學分析、氧氮同位素分析、化學組成分析,及紅外光譜學的分析等等。然後我們才能初步的知道這些標本所帶來的資訊」。

-----廣告,請繼續往下閱讀-----

首先是礦物學方面。最重要的發現之一為星塵號所收集到的微塵中居然出現高溫環境下形成的礦物(形成溫度約凱氏溫度1300~1400度上下),比如說橄欖石、隕氮鈦石(osbornite; TiN)、輝石與我們在隕石的鈣鋁包裹體(Ca-Al-rich Inclusions)中找到的高溫礦物一樣。這些東西,讓研究太陽系化學的科學家們著實嚇了一大跳。彗星不是在40 天文單位(AU)之外形成的天體嗎?在這麼冷的環境中,應該多以揮發性物質或是低溫物質為主,為什麼會有在高溫下才能形成的礦物存在?小行星和彗星,一個大約在3AU,另一個在40AU以外,為什麼某些彗星塵的礦物組成跟隕石中的鈣鋁包裹體類似?若在這麼大的空間範圍內,找到組成相似的高溫礦物,這似乎代表的是,在太陽系早期必須要有大尺度輻射狀輸送物質的能力(radial transport),其轉移範圍從內太陽系到小行星帶,甚至到外太陽系,才有可能辦到。那這個大尺度輻射狀輸送物質的能力的物理背景是什麼?為什麼可以把小顆粒從內太陽系高溫處搬到3AU 甚至更遠的40AU 以外?

再來是同位素分析方面。PET 的同位素小組,分析了彗星塵中,氫、碳、氮與氧同位素的組成。這些分析,試圖回答下面的幾個問題。第一,彗星是不是主要由老於太陽系的物質組成的?第二,彗星中有多少真正的「星塵」(真正從演化後期的恆星中所形成的)?第三,彗星微塵中的同位素組成,和隕石、行星際空間微粒的關係又是什麼?第四,早期太陽系中的混合作用究竟到什麼程度?

首先是氫同位素方面,被分析的彗星微塵中,基本上沒有太令人印象深刻的成份,其D/H(氘∕氫比值) 落在已知的行星際微塵的D/H 範圍內,類似彗星水分子中的同位素成份,但低於彗星中氰化氫(HCN)的同位素值,更遠較最極端的行星際空間顆粒的比值低上許多。當然, D/H 很容易受到各種不同因素的影響,尤其是這些灰塵是透過撞擊而被氣凝膠抓住,在這個過程中,D/H極有可能產生變化。所以,這些量測到的D/H 可能無法反應威德二號彗星的水分子的同位素成份。

再來是碳與氮同位素,這兩種同位素的量測,主要是要來找尋老於太陽系的顆粒(presolar grains)。這些顆粒,由於是在星球中凝結下來,所以基本上它們保存了原先星球中,元素形成的特徵。而這些特徵和太陽系的平均值相差甚大。以碳同位素來說,太陽系物質的12C ∕ 13C 平均比值是約89 ,若今天發現了一顆微粒,它的12C ∕ 13C 比值約是52 ,那我們可以很篤定的說,這顆微粒絕非在太陽系內形成的顆粒,而是一顆從某個AGB 星球或是紅巨星來的小塵埃!氮同位素也是同樣的道理,只是平均太陽系的比值大約是300上下。所以,若我們發現一顆灰塵,其14N∕13N的比值離300有極大的差距,那我們也可以很肯定,這顆顆粒一定不是太陽系內產生的。

-----廣告,請繼續往下閱讀-----

知道了這個前提,我們再回到星塵號的標本上。分析的結果也是讓大家驚訝莫名,PET階段分析氣凝膠中的微塵,居然沒有一顆是老於太陽系的顆粒!幸好,在收集器上的用鋁箔紙包裹住的部份中,在某個撞擊坑洞旁邊找到了一顆老於太陽系的顆粒,可惜的是,這顆小傢伙已被分析光光了,屍骨無存。從這個初步分析,顯示在彗星中(至少是威德二號這顆) 似乎沒有太多老於太陽系的顆粒。但這只是第一步。後續尚有許多標本等待研究,或許會有更多驚奇也說不定。

此外PET 團隊還有一項重大的發現,他們在氣凝膠及支撐框住氣凝膠的鋁芯中發現了氨基乙酸。一開始研究團隊無法排除此氨基乙酸可能來自地球上的污染的想法。此時同位素的功用又出現了,經過進一步的研究他們發現該氨基乙酸的碳具有較多的13C,也就是說其12C∕13C的比值比89 小很多,因此証實此氨基乙酸非太陽系內部的產物。由於筆者對生命科學的涉略不多,因此借用下面兩位專家的發言,來為這項大發現做註腳。

美國航太總署(NASA)的艾西拉博士(Jamie Elsila)說︰「氨基乙酸是具有生命的有機體製造蛋白質的物質之一,同時這是第一次在彗星上找到氨基酸」;「我們的發現支持生命的成份在太空間形成,並借由隕石和彗星的衝擊而傳播到地球的理論」。同時NASA 的主任皮契爾博士(Carl Pilcher)說︰「氨基乙酸在彗星的發現支持了組成生命的基本架構在太空中是隨處可見的想法,並且強化了在宇宙中生命的存在也許是共通的而不是罕見的論述」。

最後是氧同位素。氧是類地行星中最豐富的元素。而每個類地行星(含小行星)的平均氧同位素值都有些微的差異,所以氧同位素基本上可拿來當作這些行星的指紋。但是若把規模放到只有幾個毫米大小,我們會發現,在隕石的鈣鋁包裹體中,不同礦物居然有著不同的異常豐度,彼此間的差異可達到5%!如果是老於太陽系的顆粒,氧同位素的差異甚至可以達到好幾個數量級。星塵號部分微塵在經過初步分析後,具有隕石鈣鋁包裹體類似的礦物組合,同時居然和鈣鋁包裹體有相同的氧同位素成份!這下子不只礦物組成相似,連氧同位素都完全一模一樣。這更加讓我們相信,彗星中的某些小微塵,是和隕石中的某些礦物顆粒是完全相同的。所以,這和前面所寫的相呼應,在太陽系早期勢必要有大尺度輻射狀輸送物質的能力,從內太陽系到小行星帶再到庫伯帶以外,這一連串的巧合才有可能發生。

-----廣告,請繼續往下閱讀-----

這些發現,最感到振奮的應該是前清大校長徐暇生院士,中研院李太楓院士,及中研院副研究員尚賢博士。他們在1998 年提出的X-wind 模型,已預測彗星上的物質有可能在礦物相上與同位素比值上的特點與隕石中的部份物質相符。模型中這些高溫顆粒形成在吸積盤的端點,非常靠近原始太陽約0.05AU 距離的地方,後來太陽磁場與吸積盤面的交互作用,產生了兩極噴流和盤面上一股強力的「風」,將這些高溫礦物帶離到小行星帶甚至更遠的庫伯帶,再和其他物質堆積形成小行星或是彗星。

其實,以上所說,都只是星塵號相當初步的一個結果。還有很多尚未被探索的顆粒等待科學家們去了解,不管是礦物學,光譜學,同位素分析,還是其他各種各樣稀奇的方法。在可預期的將來,這些彗星塵仍會繼續送到世界各地的實驗室進行各項研究。在台灣,李太楓院士所領導的團隊,也正在為分析這些標本而磨刀霍霍。希望在不久的將來,台灣也能夠在這個前無古人的實驗室彗星塵分析競賽中打響知名度;也希望到時候我們將能夠回答上面所列出的數個問題,讓我們對太陽系起源有更深一層的了解。

劉名章:任職中研院天文及天文物理研究所

沈君山:任職中研院地球科學研究所

原刊載於《科學月刊》第四十二卷第十一期

-----廣告,請繼續往下閱讀-----
文章難易度
科學月刊_96
249 篇文章 ・ 3738 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

6
2

文字

分享

0
6
2
水是從哪裡來的?改寫宇宙謎團:科學家揭露地球水源的真正來源!——《你的身體怎麼來的?》
商周出版_96
・2025/01/25 ・2808字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

彗星送水論?地球的水是從哪來?

想知道古地球如何得到水的行星科學家將矛頭指向大泥球。似乎數十億年前曾有彗星雨落下,為我們帶來大量的水。

但,彗星又來自何方?

科學家長期認為彗星誕生於比火星更遠的寒冷區域。一九九〇年代,學者更進一步認定大部分彗星已經被日益成長的行星吸收。然而荷蘭天文學家揚.歐特(Jan Oort)提出不同見解,主張可以有數以兆計的彗星在太陽系邊緣存活,它們距離行星太遠所以沒被重力拉扯,最終圍繞太陽系形成巨大球形外殼,現在將該區域稱為歐特雲。歐特雲的大量彗星可以填滿地球海洋,問題是它們太遠,是地日距離的數千倍,實在不大可能到得了。

揚·歐特認為彗星圍繞太陽系形成遠距離的歐特雲,雖然數量足夠填滿地球的海洋,但距離遠到不易抵達地球。圖 / unplash

於是又有研究者懷疑部分彗星在太陽系較內側存活,或許是土星軌道外,這樣也比歐特雲近了一千倍。然而僅僅停留在臆測,因為想要在那麼遠的地方找到直徑不過數十英里或更小的彗星太困難,大家沒有傻到去做這種嘗試。

-----廣告,請繼續往下閱讀-----

唯二例外是年輕的麻省理工學院教授戴夫.朱維特(Dave Jewitt)和他的研究生盧珍(Jane Luu)。裘伊特頭頂高聳,笑容可掬,性格充滿英國式幽默,父母是倫敦的工廠工人和電話操作員。童年時偶然在夜空看見流星勾起他對天文學的迷戀。

從天文學觀測到重水比例:揭開水的宇宙密碼

一九八五年,他突發奇想將新的數位型光感測器 CCD(譯按:感光耦合元件)連接到望遠鏡,藉此在太陽系遙遠角落尋找彗星這種小天體。朱維特認為我們看不見不代表不存在,但研究需要資金,只可惜多數人都不相信,所以計畫案一次一次被拒絕。三十多年後,回憶起當初遭受的輕蔑他依舊義憤填膺。「最常得到的回答是『無法證明計畫裡的測量實際可行』,」他說:「我的天,這是什麼蠢邏輯?整個計畫的意義就是去做一些以前沒做過的嘗試。就算最後真的不可行又怎麼樣呢,重點不就是得試試看嗎?」批判他的人可能陷入了「現有工具檢測不到就代表不存在」的認知偏誤,習慣性地假設科學家尚未找到就代表目標處什麼也沒有。

朱維特和盧珍拒絕放棄,偷偷從其他研究案借用望遠鏡時間尋找數十億英里外可疑的微小物體。

很長時間毫無收穫。一年又一年,然後四年五年六年。直到一九九二年夏夜,他們在夏威夷大島茂納凱亞天文臺工作。那時候他們心灰意冷,覺得五年多光陰白費了,卻沒想到忽然發現了非常微弱的光點。察覺這個點微微移動時,朱維特還暗忖「不可能是真的」,但它確實存在。兩人找到的天體位於海王星外的軌道,後來進一步證實那邊還有數百萬顆彗星。該區域被命名為古柏帶,淵源是最早提出此概念的荷蘭天文學家30,他在一九五〇年代就探討了這個可能(諷刺的是他本人不相信)。

-----廣告,請繼續往下閱讀-----

科學家在古柏帶找到大量彗星,人體內的水看似已經確定來源。地球形成後不久,彗星從古柏帶,或許一部分從更遠的歐特雲抵達,送來覆蓋這顆行星表面的水。彗星堪稱飛行的冰山,攜帶的水量確實足以填滿地球海洋。理論很快得到多數人接納及傳播,謎題終於得到解答。

科學家認為古柏帶與歐特雲彗星攜帶的水,可能就是地球水源的來源。圖 / unplash

小行星的貢獻:來自太空岩石的生命之源

真的嗎?一九九五年,波瀾再起。亞利桑那州鳳凰城附近一場觀星派對上,輪到混凝土供應公司零件經理湯瑪斯.博普(Thomas Bopp)借用朋友的望遠鏡,他留意到視野角落有個模糊光點。同一天晚上,新墨西哥州克勞德克羅夫特村天文學家艾倫.海爾在家中發現同樣物體。這顆新發現的彗星,是有史以來見過最亮的,命名為稱為海爾─博普彗星。

翌年,戴夫.朱維特隨學者團隊返回茂納凱亞觀測站,這次以強大的電波望遠鏡觀測海爾─博普彗星。他們在海拔一萬四千英尺(約四千兩百六十七公尺)的稀薄空氣中每十三至十六小時輪班一次測量夜間光譜,試圖比較彗星中一種罕見的水形式比例是否與地球海洋相符。

或許有些人還不知道其實水分子有不同形式。大部分水由氫原子組成,核心只有一個質子。但還有別種水存在,由於重量多出一成所以稱為重水,其氫原子是同位素,核心除質子外還包含一個中子。重水很罕見,在地球海洋中每六千四百個水分子只有一個是重水。因此,茂納凱亞團隊準備測量海爾─博普彗星時原本很有信心會找到相同比例的重水,畢竟地球的水應該來自彗星。

-----廣告,請繼續往下閱讀-----

然而觀測結果並非如此。海爾─博普彗星重水含量是地球海洋兩倍。這就麻煩了,先前天文學家在哈雷彗星發現類似的高比例重水,當初只視為異常案例,然而後來在百武二號彗星又測量到相同數據。三次觀測結果一致成為難以忽視的證據,顯示彗星並不吻合地球海洋的水分子組成。

「天文學家對海爾─博普的觀測結果作何反應?」我問。

「嚇壞了。」朱維特的意思是指數據背後的涵義:「有點像新時代運動31的意識覺醒之類。」他笑了笑又說:「好像不該說這種話才對。」但顯而易見,學界頗受震撼,一夕間又不能靠融化彗星形成海洋了。雖然惠普爾沒說錯,彗星確實充滿水,但海洋來自太陽系其他地方。具體究竟是哪兒?

朱維特和其他許多學者一樣,注意力轉向飄浮在太空中的巨大岩石,即所謂小行星。

-----廣告,請繼續往下閱讀-----

從石頭榨水,乍聽很無稽,但事實上有些岩石確實可以。如果加熱隕石,也就是從小行星落到地球的碎片,困在晶體結構內的水分子就能變成水蒸氣。多年前科學家已經知道小行星含水,這些岩石含水量差異很大。多數靠近太陽形成的小行星幾乎不含水,但在火星之外冰冷區域形成者水分含量則可高達百分之十三。

朱維特等人的想法是:如果撞擊地球的小行星夠大就會帶來豐沛的水。此外,天文學家還知道火星木星之間軌道上有一大群小行星,並將該區域稱為小行星帶。而且,小行星中重水與彗星不同,吻合地球海洋和人體。各種線索指向我們這兒的水應該來自宇宙岩石。

感覺好像結案了,但其實小行星帶距離地球三億英里遠。從那種距離要一桿進洞得有多高明的技術?有足夠數量的小行星算準角度飛向地球以水覆蓋地表,這個現象發生機率有多高?人類又如何進一步理解?

——本文摘自《你的身體怎麼來的?從大霹靂到昨日晚餐,解密人體原子的故事》,2025 年 01 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

-----廣告,請繼續往下閱讀-----

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

-----廣告,請繼續往下閱讀-----
科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

-----廣告,請繼續往下閱讀-----

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
-----廣告,請繼續往下閱讀-----
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1577 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事