0

0
0

文字

分享

0
0
0

海面上的超大型離岸風機,是抵禦氣候變遷和提高能源自主的瑪利亞之牆嗎?

鳥苷三磷酸 (PanSci Promo)_96
・2015/12/13 ・6267字 ・閱讀時間約 13 分鐘 ・SR值 586 ・九年級

本文由第二期能源國家型科技計畫(NEP-II)能源政策之橋接及溝通小組贊助,泛科學策劃執行。

文/廖英凱(泛科學專欄作者)

source:Andreas Klinke Johannsen
source:Andreas Klinke Johannsen

從千年前的風車磨坊,到今日海邊偶爾可見的風力發電機。使用風力是個歷史悠久且成熟的能量來源。而因應氣候變遷的減碳需求,風力發電在發電過程中不排碳;建置完成後,又能自給自足不需仰賴進口,能降低國家對外的能源依賴程度。在未來幾年內,風力發電必然是個需要積極開發的能源選項。

然而,風力發電因為利用風的能量,除了會有因風速影響而有不穩定的問題外,單一風機的功率也不高,需要建置多架風機才能對全國或較大區域的用電量有所助益。在目前的政策規劃中,考量滿發時數、可用面積,並排除對當地居民、生態環境影響與設置困難度等的條件下,預估在2020年時,可建置450架裝置容量總計1.2GW的陸域風力發電[1]

同一份計畫也預估在2020至2030年間,因台灣環境地狹人稠,在陸域上將難以找到其他可安裝大型風機的地點。例如近年剛落幕的苑裡反瘋車自救會與德商英華威集團爭議,即是因風車設置距離與環境影響而引發一系列的環境運動[2]。此外,我國風力發電效率較高的時節集中在冬季,與夏季的用電高峰剛好錯開,也是一相當可惜的自然限制[3]。若要更大化地運用風力資源,一個備受期待的努力方向就是「離岸風機」了。

圖片1
風機高度示意圖[4]

佇立海中的超大型風車

離岸風機原理很直觀,實作略麻煩。目前的技術是利用深度在60m以內的海床,在海床上打入海底基樁,並在基樁上架設風機。同時也鋪設海底電纜,並視狀況來架設海上變電站與氣象觀測塔,最後將電纜連接回陸上變電站,併入陸上電網。

由於設置於海域上,對於空間需求與鄰避效應的壓力大大降低,因此可以興建更大的風扇來取得更多電力,也可以增加興建高度以避開受到地面磨擦力而減弱的氣流。就今年開始規劃中的 Vestas V164風力發電機來說,他的風扇直徑長達164公尺,單一葉片的長度,就與A380客機的翼寬79.8公尺接近[5](50米級超大型巨人表示:________),國際能源總署(IEA)更預估在2020年時,風機的直徑將發展至252公尺[6]!!

12

從離岸風機的開發架設流程來看,開發單位首先須針對可能開發的地點,進行1-5年的開發前調查,此階段的調查需要研究當地的風能狀況、地震與颱風等自然條件,評估如鳥類遷徙等生態特色,以及水下噪音、施工品質等環境影響;以及因地制宜尋找或設計適宜技術與設備。

當評估可行後,再進行為期1-2年的海床基樁、海底電纜鋪設、風機與變電站安裝施工。安裝完成後的風機,還須持續提供如同汽車定期保養的「運維工程」,預計這些風機至少可使用20年。當然,當使用年限到了之後,這些離岸風機也需除役拆除,或是視情況重建或延役[7]

3

樂觀成長的國際趨勢  

這些技術的進展與產業的成熟,伴隨著對環境的重視與經濟考量的投資。近年來,全球陸域風力或是離岸風力都有著穩定的成長。全球風能理事會(GWEC)預估,2015-2018年間全球風力發電裝置容量預計會有12-14%的年成長率[8]。離岸風力在2014年全球也有1713MW的新增裝置容量,比起2013年有著24%的成長率。這些近年興起的離岸風力,主要集中在歐洲與中國。其中排名前三名的英國、丹麥、德國,就佔了全球總量的77%[9]

4
2014-2018年,全球風力發電市場預估
5
2014各國離岸風機裝置容量排行

若想要在台灣更好地發展離岸風機,我們可以從這些名列前茅的國家,找到一些值得學習效法的特點:

英國

英國是世界上離岸風機裝置容量最多的國家。估計在2020年時,離岸風機可提供英國17%的電力供應。他的首要優勢來自於英國緊鄰北海與大西洋,是歐洲風能潛力最佳的區域,英國貿易投資署(UKTI)預計在2020-2030年間,英國的離岸風機開發潛能將超過40GW。

在政策面的支持上,2012年5月,英國政府推出了管制傳統石化能源、支持低碳能源的能源法草案[10]。經濟層面上,也由政府出面修改電力市場機制、提供財務支持、並說服銀行提高融資意願,並規劃綠色投資銀行 (Green Investment Bank)來協助離岸風機業者取得資金。然而英國並沒有製造離岸風機機組的產業,但英國本土企業利用過去強勢海權而打下的海洋工程基礎,在海事施工、海底電纜佈纜與製造、整體工程承包監製上都有雄厚的經驗與規模作為發展離岸的良好基礎[11]

6

丹麥

丹麥是世界離岸風機裝置容量排行第二的國家,早在1991年就興建了世界第一座離岸風場 Vindeby Project[12]。丹麥也預計在2020年時,風力發電可達到全國50%的電力供應,甚至在2030年時淘汰燃煤與燃油,最終在2050年時,主要利用風力發電、生質能與其他再生能源搭配來達成完全使用再生能源的目標[13]

為了達到這樣的目標,丹麥政府採用了多項措施來支持風力發展,例如政府的補貼計畫與固定電價的躉購、離岸風機的招標與相關項目特許、建立更有效率的離岸風機招標程序已降低開發成本、建立連結德國與瑞典的新電網。預計風力發電的發展趨勢,將由2011年時的3.95GW (約28%)。在2020年成長至5.45GW (約50%)的裝置容量[14]

7
2010-2050 丹麥能源消耗類別趨勢[15]
8

德國

德國在2010年4月,建置了首座離岸風場Alpha Ventus[16],是全世界第12個擁有離岸風機的國家,因近年來發展迅速,離岸風機裝置容量已躍升世界第三。但德國早在2000年通過再生能源法(Erneuerbare Energien Gesetz, EEG)時,就制定了離岸風機的固定電價收購制度(Feed-in Tariff, FIT)做為業者參與開發的誘因與保障。2002年1月,德國政府公布離岸風電發展策略(Strategy of the German Government on the use of off-shore wind energy[17]),訂定了離岸風力在2001-2030年間的發展目標,也明訂離岸風機的開發原則應同時考量經濟與投資安定性、科技發展與適法性,並以不危害漁業、航運與自然生態為前提[18]

在陸續經過2001-2003的三座離岸風力研究平台完工;2005-2010 離岸風場Alpha Ventus的籌備與建造;以及2009年EEG修法提高FIT費率。歷經10年的發展,最終使德國完成了離岸風力硬體架設、法規制定與FIT費率合理化、以及航運、漁業與自然生態監控評估等完整開發架構。

9

成功的關鍵因素是?

雖然各國自然環境、經濟規模與政治形態不盡然相同。但從這些離岸風力發展領先的經驗中,大致可以歸納出幾點成功的關鍵因素,我們也可以從這幾點因素來整理我國在發展離岸風機時應特別關注的面向:

1. 良好風場品質

興建風力發電首要條件當然是良好的風場,例如英國就坐擁了歐洲風能潛力最佳的區域。而對於台灣來說,因有夏季西南氣流與冬季東北季風的影響,在竹南到彰濱,以及恆春和澎湖沿海與海域均是良好的建置點,特別例如澎湖地區年平均風速更高達9.7m/s以上。「4C Offshore」統計世界各地23年來平均風速,發現在全世界排名前20的風況觀測地中,就有12個位於台灣,其中一個位在台中沿海,剩下11個均位於台灣海峽內[19]

然而,與歐洲國家相比,我國在風機設置上,需特別考量颱風、地震、以及高溫高濕這幾項不穩定因素。例如適合發展離岸風力的台灣海峽,有一定機率是颱風侵襲的主要路徑[20]。因此在風機結構強度、葉片與支撐基礎等,都需要特別針對本地環境來格外設計與調整。此外,台灣氣候變遷科學報告亦指出,近六十年來,台灣多數區域的強風日數有明顯減少趨勢,若減少趨勢[21]未有改變,將會影響風力發電的效益。

2. 風機技術研發與產業發展

風機技術的掌握與產業的建立,也有助於離岸風力的開發,甚至是成為重要的外銷項目。以全世界的風機製造商來說,德商西門子(Siemens)在2014年就囊括了歐洲86%的離岸風機製造[22]。我國因起步較晚,在風機相關技術研發與零組件製造工業仍未有足夠規模。但因風力發電需特別考量在地環境特徵,若以此為研發重點來推動關鍵零組件國產或設計,就能降低進口風機因「水土不服」而故障失能的憾事。在持續推動下更能提升風電產業自給率、降低成本並提供綠能產業的就業甚至外銷機會。

3. 基礎技術與海事工程經驗

離岸風機的海域開發技術門檻高,需相當倚重海事工程的技術與設備。就英國來說,雖然缺乏本土風機製造商,但既有海事工程與海底佈纜的強大技術,是英國得以發展離岸風力的關鍵因素之一。然而各區域的海洋環境並不相同,施工品質與效率需仰賴在地團隊的經驗與設備投資。但是國內市場目前僅有小型船機,海底打樁機的能量也都不足,可吊重1000噸、吊高100公尺 以上的大型吊船也缺乏引進或新建[23]。這部分仍須仰賴政府或海事工程業者投入資金才得以符合需求。甚至是未來在引進大型風機時,還需要考慮動輒五十公尺以上風機葉片的陸路運輸方式。

10
丹麥風力開發業者在運輸長達83.5m的風機葉片[24]

4. 政策支援、經濟誘因、合理FIT費率

再生能源由於初期投入成本較高,離岸風力這樣的新興技術也有比較高的風險與變數,更需仰賴政策的支持,以及政府對於合理電價收購的保障。我國自2012年起也提出了「千架海陸風力機」的開發計畫,在再生能源發展條例中也有躉購費率的制定[25]。有研究建議在設計離岸風力躉購費率時,除補貼以縮短與其他能源的價格競爭差距,也應考量是否應該額外給予風險補助[26]。然政策與經濟層面有更多複雜面向需考量,這可能還需要更多資料與討論來設計出更合理的政策。

5. 環境影響評估與政策溝通

離岸風力的發展,也勢必會造成一定程度的環境破壞。因此開發前期的環境評估、施工期間的監督,以及遇到衝突時的緩解措施和價值判斷取捨更顯重要。德國政府以「離岸風電發展策略」的制訂來確立漁業和環境保護的優先。為緩解對漁業的影響,技術上也有學者提出結合海上養殖的多功能離岸風力來減低離岸風機對漁業的損失[27];在政策上,彰化「福海離岸風力發電計畫」也以提供當地居民工作機會與回饋金的補償來緩解衝突與影響[28]。 

若未來要能好好發揮澎湖的優質風能,也有近年來爭議未停的「台澎海底電纜」事件待決。例如有民眾與政治人物主張電纜鋪設會破壞海洋生態[29][30],也有人認為電纜會有漏電與電磁波傷害[31]。雖然部分爭議來自於資訊的落差,但也有部分爭議來自環保與開發的兩難。然而,若要將澎湖的離岸風力送回本島使用,我們也勢必要在未來幾年內,妥善處理好海底電纜的工程設計與政策溝通。

11

不遠的未來

盤點目前我國對於離岸風力的開發步驟,自2012年公布「千架海陸風力機計畫」起,目前已選定了苗栗竹南外海一座,彰化芳苑外海兩座的淺海區域(水深20m以內)示範風場。預計2015年三座示範風場完成海上氣象觀測塔,2016年三座示範風場各完成兩部示範機組,2020年時三座示範風場完成商轉,共提供320MW的裝置容量。

利用在示範風場的建設期間累積技術經驗,在2020-2030年間,逐步往水深較深處開發,目標在2030年時興建600架,裝置容量共3GW的離岸風力。在持續支持和投入下,必然會帶來一波可觀的學術研究需求與產業發展趨勢。期許在不久的將來,在茫茫大海中佇立於飄搖風雨間的白色巨塔,將是遏止氣候變遷危害與提高我國能源自主率的守護高牆。

更多相關請參考:離岸風電知識網

延伸閱讀

參考資料

文章難易度
鳥苷三磷酸 (PanSci Promo)_96
163 篇文章 ・ 273 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

8
0

文字

分享

1
8
0
發電量增加 25 倍卻還是不夠用!再生能源是人類未來的救星嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/18 ・1730字 ・閱讀時間約 3 分鐘

我們的能源從哪裡來、往哪裡去?

全球每年對能源的需求量相當巨大,若用「瓩時」──即一度電這樣的度量單位──來表示會出現天文數字,因此改用「太瓦時」(TWh)來表示,太瓦時等於 10 億瓩時。

在一八〇〇年,全球約有 10 億人口,當時對能源的需求約為 6000 太瓦時;而且幾乎全部來自傳統的生質能源。到了二〇一七年,全球人口達到 76 億,發電量增加了 25 倍(156000 太瓦時)。

在 2017 年的全球能源使用比例中,煤炭、石油和天然氣等化石燃料占了大約 80 %左右。圖/ Pixabay

下圖顯示在二〇一七年全球主要能源消耗總量的百分比,其中近 8 成為化石燃料。其他再生能源包括風能、太陽能和地熱能,其中成長最快的是風場和太陽光電場。生質能源則主要來自傳統生質能源。

2017 年的能源消耗總量,顯示出不同能源的百分占比。圖/BP Statistical Review of World Energy, 2018; World Energy Council, Bioenergy, 2016

大約有 1/3 的全球能源消耗在將化石燃料轉化為電力精煉燃料上。

剩下的稱為最終能源需求(final energy demand),是指用戶消耗掉的能源:每年約 10 萬太瓦時。

大約有 10% 是來自開發中國家傳統生質能的熱,22% 來自電力,38% 用於供熱(主要來自化石燃料) 30% 在交通運輸。熱能和電能主要都是用於工業和建築。汽油和柴油幾乎提供了所有用於運輸的燃料。

怎麼做比較不浪費?能量轉換效率大比拚!

我們看到供熱與供電一樣重要。兩者都可以用瓩時為單位,也就是一度電來測量,雖然電可以完全轉化為熱量,例如電烤箱,但只有一小部分以熱能形式存在的能量可以轉化為電能,其他的必然會散失到周圍環境裡

在火力發電廠中,存在於化石燃料中的化學能會在燃燒後轉化為熱能。這會將水加熱,產生蒸汽,蒸汽膨脹推動渦輪的葉片,轉動發電機。只有一部分熱量被轉化成電力;其餘的熱量在蒸汽冷凝,完成循環時,就轉移到環境中,成了殘熱。

這份熱電轉化的比例可透過提升高壓蒸汽的溫度來增加,但受限於高溫下鍋爐管線的耐受度。

在一座現代化的火力發電廠中,一般熱能轉化為電能的效率約為 40%。若是在較高溫的複循環燃氣發電機組(combined cycle gas turbine,CCGT)裝置中,這個比例可提高到 60%。

同樣地,在內燃機中也只有一小部分的熱量可以轉化為車子的運動能量(動能);汽油車的一般平均效率為 25%,柴油車則是 30%,而柴油卡車和公車的效率約為 40%。

另一方面,電動馬達的效率約為 90%,因此電氣化運輸將顯著減少能源消耗。這是提高效率和再生能源之間協同作用的一個範例,這將有助於提供世界所需的能源。

火力發電沒辦法 100% 轉換熱能變成電能,約有 60% 的損失。圖/envato

再生能源的過去跟未來

在十九世紀末,水力發電的再生資源幫助啟動了電網的發展,在二〇一八年時約占全世界發電量的 16%。而在再生能源──風能、太陽能、地熱能和生質能源──的投資上,相對要晚得多,是在二十世紀的最後幾十年才開始。

起初的成長緩慢,因為這些再生能源沒有成本競爭力還需要補貼。但隨著產量增加,成本下降,它們的貢獻開始增加。這些其他再生能源發電的占比已從二〇一〇年的 3.5% 上升到二〇一八年的 9.7%,包括水力發電在內,再生能源的總貢獻量為 26%。

不過,就全球能源的占比,而不是僅只是考慮用戶消耗的電力來看,再生能源僅占約 18%,而傳統生質能則提供約 10% 的能量。隨著太陽能和風能的成本在許多國家變得比化石燃料更便宜,它們在總發電量中的占比有望在未來幾十年顯著增加。

這世界花了很長的時間才意識到這一事實,從現在開始,再生能源勢必將成為主要的能源來源。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

所有討論 1
日出出版
11 篇文章 ・ 5 位粉絲

0

6
1

文字

分享

0
6
1
產業新「風」向:臺灣的離岸風電願景——專訪達德能源王雲怡董事長
科技大觀園_96
・2022/01/14 ・3921字 ・閱讀時間約 8 分鐘

達德能源董事長王雲怡,以其投入綠能產業 20 年的豐富經驗,為我們解析新能源的產業特性及發展趨勢。圖/呂元弘 攝

據國際風力發電顧問公司 4C Offshore 的評比,全球排名前 50 名的優良風場,就有 17 處在臺灣,皆位於臺灣西部沿岸,集中於桃竹苗至臺中外海一帶。換言之,臺灣具備了發展離岸風電的絕佳地理條件。

因此,在臺灣西部濱海及澎湖地區,不管是陸域或海上,都可看到偌大而醒目的白色「巨型風車」矗立著,已經成為我們相當熟悉的風景;這數百座的風力發電機持續運轉,見證了臺灣從傳統能源往再生能源轉型的歷程,也推動著臺灣綠色能源的蓬勃發展。

談到綠能風電,德商 wpd 達德能源(2016 年併購英華威)是在台積極推展綠能的關鍵推手之一,2006 年在苗栗建置首座風力發電設施後,從此開啟國內風力發電的風潮。我們特別專訪達德能源董事長王雲怡,以其投入綠能產業 20 年的豐富經驗,為我們解析新能源的產業特性及發展趨勢,以及臺灣在綠色能源的產業契機,另外也針對有意投入綠能產業的年輕學子提出建議。

經濟部能源局公告,臺灣西部沿岸有 36 處離岸風電潛力場址。圖/風力發電單一服務窗口

離岸風電的優勢:風場興建非常快速

「風力發電的原理很簡單,小時候大家一定都玩過風車,」王雲怡解釋說,利用葉片的轉動來驅動發動機,能量會轉換成機械能,再透過齒輪調速器將齒輪的速度提升,進而帶動發電機,經過升壓變壓器將電壓提升後,即可將電流併入台電電網供應電力。

至於陸域風電及離岸風電的差別,就在於前者的風機安裝在陸地上,後者則安裝在海上,會打樁到海底約 45~65 公尺深。由於臺灣陸域可供開發之優良風場已漸趨飽和,海上風場條件更佳,仍有不少離岸風電潛能可供開發,因此成為近來政府推動再生能源最重要之項目之一。

王雲怡表示,跟傳統電廠不同,風場的興建非常快速,把基樁打好後,將連接風機的柱子綁鋼筋、灌上水泥,然後把塔筒、機艙、葉片逐一放上去組裝起來即可,一隻風機的施工期間大約只要 4 至 5 週。

圖/第二期能源國家型科技計畫

風電維運的挑戰——發電機組得「抗震抗颱」

雖然基本原理很簡單,但風電相關設備必須面臨風吹、日曬、雨淋,甚至國外還會下雪,必須設計出足以對抗大自然環境的規格,尤其臺灣每年都有不少颱風及地震,有些民眾會好奇,是否會對風機造成損害?

王雲怡說,「臺灣有非常嚴謹的地震建築規範,只要做好地質土壤分析再進行設計,耐震都沒有問題;至於颱風威脅,風機只要遇到中颱等級(風速約每秒 25 公尺)就會停機,最大則可承受每秒 70 公尺的風速,目前為止臺灣還沒出現過這麼強烈的颱風。」她強調:「我們從 2006 年興建的第一座風場至今,經歷過很多颱風及地震,到現在都屹立不搖,顯見耐震及耐颱的技術完全沒有問題。」

臺灣推動離岸風電比較大的挑戰在於,風場興建時對氣候及海象的要求很高,而臺灣海峽一帶的東北季風很強,考慮到風速、波浪、海流等條件,可以進行海上作業的天氣窗口(weather window)時間沒那麼長,只能在 3 至 10 月進行安裝;而陸域風電的土木工程比較不受影響,但進行吊裝作業時同樣需要考慮風速問題,通常也會避開東北季風盛行的冬季。

離岸風機會遭遇的外力載重,包括風、波浪、海流、地震、颱風等等。

政策與觀念水到渠成!綠電接受度大增

投入新能源產業達 20 年,王雲怡深刻感受到各界對再生能源的認知與態度的巨大轉變。過去臺灣只有傳統的火力發電、核電這類集中式大型電廠,主管機關較缺乏再生能源知識,當時她跟主管機關報告時,告知風力發電一度電的成本只要 2.5 元,長官非常驚訝,因為他們還停留在一度 5 元的認知。

「臺灣 98% 都是採用進口燃料,吃掉我們非常多的國內生產毛額(Gross Domestic Product;GDP),長年維持低電價都是靠政策補貼,嚴重扭曲電價結構,因此臺灣各部門的能源效率指數也居世界末段班,排名最浪費能源的第十七名。」王雲怡指出臺灣傳統能源使用模式的缺點。

所幸透過各界對政策及觀念的大力推動,達德能源等開發商也積極提供歐洲及世界的發展經驗,獲得政府參考採納、並具體落實為再生能源政策,改變了臺灣能源市場及結構。2017 年 1 月《電業法》修正通過後,開啟綠電交易自由化的新紀元,從發電、售電到用戶這條路終於打通,打破國營電力事業壟斷的局面。

另一個關鍵政策是,臺灣引進德國推廣再生能源的 Feed-In Tariff(FIT)制度——對綠電保證整批躉購,有效鼓勵開發商投入建置風場,投資者也樂於參與其中。相較於傳統由政府補助企業購買設備、但無法保證設備被完善維護,2000 年開始德國首創的躉購制度讓開發商自行投資,由政府以躉購費率保證收購綠電 20 年,相關制度展現絕佳的成效,已獲得世界超過 70 個國家採用。

政策目標明確,風電國家隊指日可待

2016 年政府確立能源轉型的主軸,明確訂出 2025 年再生能源佔發電比例提升到 20%,為再生能源注入一劑強心針。王雲怡強調:「我們擁有發展太陽能、風電、地熱、海洋能的優異條件;以風力發電為例,臺灣西部的風力品質很好,而這一帶剛好是臺灣人口密度高的地區,這是老天賜予我們的禮物!」

「但開發商看的不是風能品質,而是政策支持度!」王雲怡坦言,只要政策目標明確,並提供適當的誘因與機制來創造市場,不僅國內外的開發商會積極投資,企業也會主動採用再生能源,創造正向循環;尤其現在許多國家或國際大廠都要求出口要取得「再生能源憑證」,企業都搶著購買,臺灣的再生能源前景值得期待。

令她振奮的是,現在各單位都注意到綠能,科技業、金融業、投資業也積極佈局,無論從市場經濟或社會責任的角度來說,各界對綠色能源的接受度愈來愈高。

值得一提的是,綠能不僅扮演守護環境、潔淨能源的角色,也是推動產業創新的火車頭之一。經濟部為了推動風電設備國產化,明確規範開發商應採用 50% 以上的國產化設備,未來更希望能夠組成國家隊,一起爭取海外市場的龐大商機。

2016 年政府確立能源轉型的主軸,明確訂出 2025 年再生能源佔發電比例提升到 20%,為再生能源注入一劑強心針。圖/達能能源提供

臺灣風電 20 年,最難的不是工程——是溝通

王雲怡投入臺灣風電產業 20 餘年,一路走來最感到困難之處,並非海外技術轉移或施工上的難題,而在於如何說服政府單位及民眾,接受新興的再生能源觀念。王雲怡舉例:「當初在蓋示範風場前,得先舉辦公聽會,讓當地民眾理解風場與民眾的利害關係,例如可能產生的噪音、風場造成當地景觀驟變,甚至是土地使用等問題。」

但「溝通」兩字寫起容易做起來難!由於達德能源無法取得里民個資,光是要委請里長組織大部分里民到場就相當耗時耗力,遇到里民參加意願低迷時,還得租用選舉用的廣播小貨車,在當地廣為宣傳,懇請鄉親來參與公聽會。

王雲怡表示,溝通工作一度讓她疲於奔命,但所幸投入大量時間心力溝通後,風場建設如今已步上正軌,總算是甘之如飴;她表示,投入風電產業 20 年,最讓她感到成就感的除了《電業法》修正,為風電在臺扎根打下基礎外,就是讓大部分的民眾認識何為「風電」,成為臺灣人能所接受的再生能源選項。

想卡位綠能產業?語言能力很關鍵

「石化燃料已是末路,綠能則是未來趨勢,」王雲怡認為綠色能源還有很多進步空間,未來一定會愈來愈便宜,而且還有地熱、海洋能源等新技術不斷發展,不僅有很好的前景,而且可以獲得社會認同及價值,是年輕人可以貢獻一輩子的產業。

至於投入綠能產業應具備何種特質與技能?王雲怡強調:「新能源是全新產業,一開始一定會遇到很多困難,必須要有一定的受挫能力及抗壓性,另外要有足夠的創造力;在專業領域方面,只要具備土木、機械、造船或理工背景,其他專業都可透過在職訓練培養,最重要的是要跟全世界人才溝通,必須具備較佳的英文能力。」

隨著地球永續的議題受到大家重視,現在對新能源有興趣的年輕學子愈來愈多。王雲怡認為,開發商清一色是外商,會引進最先進的標準與要求,提供友善的工作環境與紮實的訓練,雖然有時在海上工作比較辛苦,但相信可以帶來很高的成就感與自我肯定,是很符合時代潮流的職涯選擇。

參考資料

科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

4

5
2

文字

分享

4
5
2
「恆水創電」聯手比利時 Turbulent 研發超低落差機組——力拼「微水力發電」扎根台灣!
PanSci_96
・2021/12/09 ・1788字 ・閱讀時間約 3 分鐘

  • 本文依據 恆水創電 110 年 12 月 9 日新聞稿 改寫

文/郭椀濘、李先泰

為了地球的永續發展,台灣已將 2050 年淨零碳排列為重要政策目標,行政院也擬於2022年初提出路徑草案,檢討整體能源政策;為了實現淨零碳排目標,能源新創企業「恆水創電」9日與比利時台北辦事處共同舉辦記者會,發表與比利時水輪機製造商 TURBULENT 共同研發的超低落差機組「Turbulent S」,該機組針對台灣水利環境設計,只要 1.28m 超低落差即可發電,有助於微水力發電在台扎根。

比利時台北辦事處處長文浩德 Frédéric VERHEYDEN 致詞指出,比利時綠能產業擁有許多領先技術,為潔淨能源的先驅,是台灣發展能源最理想的合作夥伴,與台灣離岸風電領域已有深入合作,十分樂見 TURBULENT 與恆水創電在嶄新領域攜手共進,「台比合作將發展美好且綠化的台灣,為全球的淨零願景貢獻心力。」

恆水創電股份有限公司創辦人兼執行長鄒飛逯表示,推動「水利建設內建發電」是恆水創電的企業使命。他強調,台灣具有得天獨厚的水力發電條件,不但水力豐沛,地勢更是山高水急。然而,在河川渠道中卻有許多緩解水流力道的消能設施(如消波塊),以小水力發電的觀點來看相當可惜。

比利時水輪機製造商TURBULENT於智利架設的機組。圖/恆水創電提供

鄒飛逯指出,若運用發電機組取代消能設施,用水流動能發電,就能使消能設施創造能量,既可兼顧設施安全,又能創造最乾淨的綠能,堪稱一舉數得,而這也是恆水創電的初衷。鄒飛逯強調:「思維轉個彎,水利基礎建設就是小電廠,每一滴水都能發好幾次電!」

針對 TURBULENT 機組的技術優勢,鄒飛逯指出,TURBULENT 垂直渦流水輪機的特色是韌性極強且應用場域廣泛。強韌的葉片讓機組不怕垃圾及泥沙堵塞(以Turbulent S為例,可容納直徑 25cm 的物體通過),一體成型的設計亦可抗震;若遇到強風豪雨導致河川水位暴漲,也有對應的斷電機制,讓發電機組自動跳離電網,在條件嚴苛的場域中仍可穩定運作。

鄒飛逯也說,TURBULENT 的機組體積小且易於施作,可與水利設施合為一體,多元發展性高。更關鍵的是,機組的設計也讓河道中的生物能無害通過葉片,可兼顧生態友善:「頂多讓通過的生物感到暈眩,但不會造成傷害。」

資料來源/恆水創電

而為徹底運用台灣的水力潛能,恆水創電與TURBULENT整合雙方專業,經過兩年場域資料蒐集及田野調查,為台灣水力環境量身設計 Turbulent S超低落差小水力發電機組,為台灣打造最佳化機組。

Turbulent S可應用於台灣多數水力環境中,因其有效落差高度僅1.28m,所需流量為2cms (每秒2立方米),無論在灌溉溝渠跌水工、自然河川、淨水與汙水處理廠、給排水、水保設施等場域,都有極大發揮空間,讓鄒飛逯喊出「一落差一機組,一渠道一電廠」的綠能願景。

Turbulent S 的機組構面圖。圖/恆水創電提供

為推動台灣小水力產業發展,恆水創電與TURBULENT已簽訂合作備忘錄,授權Turbulent S機組國產化,比照風電模式在台灣落地生產。

恆水創電總經理廖弘毅指出,Turbulent S國產化不僅有助提升產業技術,更可確保長期料件供應與技術服務。「作為生命週期20至30年的基礎建設,國產化將能確保小水力發電在台灣長久發展、穩定維運;」廖弘毅總結,「這將是小水力發電在台灣遍地開花的重要一步!」

今日恆水創電也正式與台灣小水力綠能產業聯盟簽約入會,強調日後將會有緊密合作。對此聯盟洪正中理事長表示:「小水力發電是最環保再生能源,為對環境最友善的發電方式,小水力為台灣再生能源第三棒,聯盟與恆水創電公司將會持續為再生能源努力。」

恆水創電9日與台灣小水力綠能產業聯盟簽約入會;左為恆水創電執行長鄒飛逯、右為台灣小水力綠能產業聯盟理事長洪正中。圖/李先泰攝

2021.12.12 PM 0:24 更新:原版本文中之「水頭」為英文 Hydraulic Head 之意,為單位重量液體通過泵所獲得的能量,單位為公尺(m)。為便於理解,改為「落差」。

所有討論 4
PanSci_96
1035 篇文章 ・ 1351 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。