0

0
0

文字

分享

0
0
0

首度觀測到帶旋臂的恆星

臺北天文館_96
・2011/11/03 ・773字 ・閱讀時間約 1 分鐘 ・SR值 571 ・九年級

自400多年前望遠鏡發明至今,天文學家看過各式各樣恆星,但始終都有新發現,而最近的一項發現,更讓天文學家們嘖嘖稱奇。美國哥達德太空飛行中心(Goddard Space Flight Center)Carol Grady等人利用位在夏威夷的日本8.2米昴望遠鏡(Subaru Telescope)發現一顆特別的恆星,一顆擁有旋臂的恆星。

天文學家以前也曾看過旋臂結構,可是都是在由數億顆到數千億顆的恆星所組成的螺旋星系;而在個別恆星周圍發現旋臂結構,這倒是頭一遭。這顆編號為SAO 206462的恆星相當年輕,距離地球約400光年,位在南天的豺狼座方向。新觀測的旋臂結構其實是環繞在恆星周圍的氣體塵埃盤,或稱拱星盤(circumstellar disk),盤寬達2倍冥王星軌道,相當於224億公里,極可能是因為有新行星正在拱星盤中形成,才會構成這樣的旋臂結構。

Grady表示:先前經由電腦模擬顯示,拱星盤中的行星,其重力會擾動氣體和塵埃而產生這樣的旋臂結構。但是,直到現在,才首度證實電腦模擬的預測結果。從理論模型得知:拱星盤中只需存在單一行星,就可以讓恆星兩側各產生一條旋臂。不過,SAO 206462周圍的結構,並不符合這樣對稱的旋臂對,所以,很可能其實是有2顆行星,每顆行星在其中一條旋臂裡。

這些天文學家認為:大約在恆星誕生數百萬年之後,它們周圍的塵埃盤應該就會開始出現各式各樣有趣的形狀。天文學家已經看過環狀、草皮狀、環縫等,現在則多了螺旋狀特徵。這許多結構特徵都是行星在拱星盤中移動的結果。不過,Grady等人仍持小心謹慎的態度,認為或許還是有行星以外的其他因素可以產生這類結構,行星不是唯一的選擇,只是可能性比較高的因素罷了。因此,他們必須蒐集更多的證據,或甚至得等到偵測到行星的存在,才能完全證實行星產生旋臂的理論是否為真。

-----廣告,請繼續往下閱讀-----

資料來源:A Star with Spiral Arms[2011.10.31]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

7
3

文字

分享

1
7
3
旋轉、跳躍、冥王星他閉著眼,遊走在混亂邊緣?!
全國大學天文社聯盟
・2022/06/29 ・3745字 ・閱讀時間約 7 分鐘

  • 作者/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

在浩瀚的太陽系裡,冥王星一直是個迷人又「謎人」的存在。關於冥王星精彩的故事很多:1930年被鍥而不捨的天文台助理發現、2006年被從行星殿堂「降級」為矮行星、2014年新視野號成功飛掠並帶來無數珍貴的照片與科學資料……如今關於冥王星的新研究又帶來驚喜──或該說是驚嚇?

新視野號拍下的冥王星。圖/NASA

冥王星與海王星的「雙星共舞」

冥王星是第一顆被人類發現的「海王星外天體(Trans-Neptunian object, TNO)」。如今我們已知海王星軌道外有數百顆這類的天體,並且數量還在增加中。這類天體雖繞行著太陽,但其軌道週期之大,宛如被太陽遺忘在邊疆的散兵。有些 TNO 還長得奇形怪狀,例如妊神星(Haumea)雖然有 1/3 個冥王星的質量,但其外型不是球型,而是一顆橢球,且其長軸比短軸長了一倍!

大型的海王星外天體(TNO)體積對照圖。圖/Wikimedia Commons

上圖最左上角是冥王星系統,其中最大的衛星凱倫(Charon)甚至大到使這個雙體系統的重心在冥王星之外,因此也稱冥王星是個雙(矮行)星系統。而妊神星(Haumea)則硬生生長成恐龍蛋形狀,因其自轉一圈只花 4 小時,這樣的高自轉速度使它無法成球體。值得一提的是,已知的 TNO 體積都小於月球。

冥王星本身更是有許多有趣的現象。冥王星的軌道偏心率高,呈橢圓狀,而且軌道平面是傾斜的,跟太陽系盤面差了 17 度角(見下圖)。除此之外,冥王星跟海王星的關係可謂糾葛難分──冥王星的軌道跟海王星有些微交錯,即某些時候冥王星會轉到海王星軌道的內側,此時冥王星比海王星離太陽更近!這樣難道兩顆星不會因為太過靠近,而使彼此的軌道不穩定嗎?天文學家發現,冥王星與海王星的軌道呈和諧的共振關係,兩顆星就像在跳方塊舞,互相受彼此的重力牽連著、卻不會因距離太近而打破軌道的平衡。

這兩顆星的和諧軌道共振有兩個要素:首先,冥王星跟海王星的軌道週期呈現近乎 3:2 的比例,且當冥王星在近日點時,海王星大約在與其軌道長軸呈垂直的位置。更精確地說,冥王星的近日點位置是會浮動的,在天體力學中稱為冥王星近日點的天平動(Libration,指的是天體軌道角度的週期性震盪)。

若由上往下看太陽系盤面,冥王星的近日點天平動會與海王星軌道保持上述的關係,因而不會與海王星太過接近。另一個要素則是軌道傾角方向的天平動。由於先前提到的軌道傾斜,冥王星的近日點能保持在遠高於海王星軌道平面的位置,因此更加確保兩顆星不會相遇

-----廣告,請繼續往下閱讀-----

上圖為冥王星軌道與八大行星軌道對照圖。截圖自The Sky Map | 3D Solar System Simulator
有興趣的讀者可以上這個網站,搜尋 Pluto 並勾選 animate ,調整合適的時距,便可以隨心所欲從任意角度觀察冥王星與八大行星的軌道運動。只是 3D 模擬運算量大,網站頗容易當哈哈……

你以為天體運行繞一圈就結束了嗎?讓影片畫給你看

其實天體力學的軌道計算非常的複雜。連結是神人用 Python 寫的開源模擬所繪製的影片。前半段影片顯示的是冥王星與海王星的軌道共振狀態,冥王星以紅色標示,海王星以藍色標示,坐標系則隨著海王星一起公轉;後半段影片展示一個無軌道共振的系統作為對照,冥王星質量的天體以綠色表示。

影片中,左上圖是從上往下看太陽系盤面,可以看見海王星的位置其實有微小的變化,這是因為海王星的軌道並非正圓;而冥王星的軌跡則顯示出上下兩個對稱的弧線,這是近日點的位置,可以發現平均下來近日點跟太陽的連線,的確跟海王星位置跟太陽的連線是垂直的,還可以觀察到近日點天平動的幅度。

下方兩張圖則是從側面看太陽系(平行於太陽系盤面看過去),可以看出兩側高凸的近日點位置的確遠高出黃道面(z=0)。這個模擬的時長為 2 萬年,冥王星約繞行太陽 80 圈,可以看見其軌跡是有跡可循的;相對的,影片後半沒有軌道共振的對照組,其近日點在這兩萬年內不斷地漂泊,繞行軌跡也相當混亂無序。

上述的模擬只考慮了太陽、海王星與冥王星的三體運動(雖然已經極為複雜了),那麼其他已知的氣體行星,會不會對冥王星軌道造成微小的擾動呢?欸嘿, N-body simulation 出場了!(筆者表示害怕)

-----廣告,請繼續往下閱讀-----
天體間精巧的運行,就像宇宙中迷人的舞步。 圖/envato

天體力學下的平衡

美國亞利桑那大學的天文學家 Malhotra 與日本國立天文台的 Ito 研究員,在他們的模擬中考慮了太陽以及所有氣體巨行星──木星、土星、天王星與海王星──對冥王星的重力作用,並且把模擬時長拉長到50億年(上述 Python 模擬的 16 萬倍),也就是預期太陽剩餘的壽命。他們想嘗試回答,在太陽穩定照亮世間的漫漫時光裡,像冥王星這樣軌道如此精巧的天體,究竟是否能長久和海王星跳著方塊舞呢?

在模擬中,他們分別測試了不同的行星組合,以判斷各巨行星對冥王星軌道的影響。一如過去所知,模擬結果顯示了海王星的重力主導了冥王星近日點在平行太陽系盤面方向的天平動,也就是保持著 3/2 的和諧共振。然而,對於軌道傾角方向的天平動,海王星並未握有太大實權。拉長時間來看,冥王星近日點的天平動無論在平行盤面、軌道傾角兩個方向上,對巨行星們的一舉一動都頗為敏感。巨行星們的重力作用會使冥王星軌道產生微擾(Perturbation),使冥王星軌道產生天平動,只要天平動限縮在穩定的範圍內,就不用擔心冥王星會被耍得團團轉。

令人驚訝的是,根據模擬結果,他們發現在平行盤面的方向上,天王星竟在破壞冥王星的軌道穩定!不過別擔心,這個軌道穩定破壞者正被木星和土星給鎮壓著──在不含天王星的模型中,冥王星平行盤面的天平動和實際情況相去不遠,然而在移除木星和土星、只考慮天王星及海王星的模型裡,冥王星軌道只能在千萬年之內保持穩定。然而在軌道傾角方向上,天王星又有其貢獻,因為只有在考慮所有巨行星的模型裡,此方向的天平動才是與現實相符且長久穩定的

因此,在維護冥王星精密的軌道平衡上,四大行星可謂缺一不可。更令人驚奇的是,在漫長的 50 億年模擬中,冥王星的天平動雖被限縮在一個安全穩定的範圍內,但這個穩定範圍其實非常的狹窄!若冥王星稍有不慎,掉到了安全範圍之外,其軌道將變得無序而渾沌,便不再跟海王星跳著和諧的方塊舞了。

-----廣告,請繼續往下閱讀-----
天體只要一脫離重力穩定帶,便有可能就此離開太陽系這個大舞池。 圖/envato

太陽系就是個大舞池

看到這裡,你是否震撼於冥王星的軌道之精密,簡直像是被刻意調整過的呢?就如同生物演化的優勝劣汰,過去太陽系也曾盛大進行著重力之舞淘汰賽,只要一有天體踏出重力穩定帶,便可能被逐出舞池、或者惹上其他天體的麻煩。

今日現存的太陽系成員都是重力之舞的佼佼者,它們因緣際會來到為數不多的重力穩定帶,尋得屬於自己的舞步,悠然繞旋至今。然而在過去,它們可都曾有過波瀾壯闊的瞬間──或許是與其他天體擦身而過、或許是被逼到穩定帶的邊陲……透過精細演算太陽系天體的移動,天文學家得以窺探這場重力之舞淘汰賽的精彩回顧,甚至可能發現被淘汰天體所遺留的蛛絲馬跡。

如今在太陽系這浩瀚的舞台上,行星、衛星、彗星、 TNO 等天體組成舞團,相互配合著對方的舞步,漫遊於其中。它們已是訓練有素的舞者,所演出的每一支舞都令人為之震撼,值得反覆品味、研究,就連遠在五十億公里外的冥王星,都使天文學家為之神往。究竟從冥王星複雜而精美的舞步中,還能挖掘出什麼有趣的新發現呢?讓我們拭目以待!

宇宙的奧秘,吸引著人們不斷地探索。 圖/envato

註:關於冥王星的故事,非常推薦閱讀精采的《冥王星任務》(時報出版)一書,由新視野號主持人共同執筆寫下,高潮迭起、充滿笑與淚,會讓你一看就停不下來!

-----廣告,請繼續往下閱讀-----

參考資料:

paper本體https://www.pnas.org/doi/epdf/10.1073/pnas.2118692119

科普新聞 https://www.space.com/pluto-orbit-influences-from-giant-planets

冥王星軌道開源模擬 https://iopscience.iop.org/article/10.3847/2515-5172/ac3086, https://github.com/renumalhotra/2021-Pluto-Neptune-Resonant-Dynamics-Visualized-in-4D

-----廣告,請繼續往下閱讀-----
所有討論 1

0

1
1

文字

分享

0
1
1
意外發生!我們與新視野號太空船失聯了——《冥王星任務》引言(上)
時報出版_96
・2019/05/28 ・2237字 ・閱讀時間約 4 分鐘 ・SR值 516 ・六年級

-----廣告,請繼續往下閱讀-----

關鍵時刻,意外發生

二○一五年七月四日,星期六的下午,航太總署的「新視野號」冥王星任務負責人艾倫.史登人在距離新視野號計畫任務控制中心不遠處的辦公室裡。他星期六也沒休息,但工作到一半,電話鈴聲突然響起。他不會不知道這天美國國慶放假,但對他來講,這天真正的意義是「飛掠冥王星前十天」。新視野號,這個他投入了前後十四年的飛行器任務,如今只剩十天就要達成目標,將要與人類探索過最遙遠的系內行星面對面。

圖/pixabay

那天下午,一如往常埋首公務的艾倫,正忙著籌畫飛越冥王星的各項事務。進入任務的最後衝刺階段,他已經習慣睡少工作多,但那天他又特別比平常更早起,半夜就進到了任務指揮中心。他趕這麼早,是為了把大量的電腦指示上傳給飛行器,這些都是新視野號即將飛掠冥王星時不可或缺的導航資料。這一大包待傳的指令資料,代表的是近十年的努力心血。而那天早晨,已經以無線電波送出這些指令,現正以光速在追趕新視野號。至於冥王星,新視野號不斷接近當中。

看了一眼響著的手機,艾倫對來電的人是葛倫.方騰(Glen Fountain)有點吃驚。葛倫長年擔任新視野號任務的計畫經理。艾倫對葛倫此時來電,心生一股寒意,因為他知道住附近的葛倫今天休假在家。葛倫不是應該為了即將到來的重頭戲養精蓄銳嗎?他這時打電話是所為何來?

-----廣告,請繼續往下閱讀-----

無論如何,艾倫先接起了電話。「葛倫,怎麼了嗎?」

「我們跟太空船失聯了。」

艾倫回說:「我跟你約任務指揮中心,五分鐘後見。」說完艾倫掛上電話,在辦公桌前坐了幾秒鐘,驚魂未定的他搖了搖頭,直覺不可置信。計畫以外的失聯,是所有飛行器的大忌,對整整九年的航行都沒失聯過的新視野號來說,更是大忌中的大忌。眼看十天後就要飛抵冥王星,現在失聯會不會太要人命?

圖/wikimedia

-----廣告,請繼續往下閱讀-----

他抓起隨身的東西,把頭伸進走廊盡頭、他原本要主持的會議中交代說:「我們跟太空船失聯了。」聽他這麼說,同仁們震撼地望著他。「我現在去任務指揮中心一趟,去多久很難講,但今天大概不會回來了。」他頂著馬里蘭州的酷暑步行去取車,然後在約翰霍普金斯大學應用物理實驗室(Johns Hopkins University Applied Physics Laboratory)的校園裡開了半英里(約一點六公里),來到了新視野號的指揮重地。這裡,是馬里蘭州的勞瑞爾市。

最漫長的一段車程

這短短幾分鐘的車程,不啻是艾倫一輩子感覺最漫長的幾分鐘。他對團隊處理危機有絕對的信心:他們演習過不知道多少種突發狀況,這個危機或許別人無法處理,但新視野號團隊絕對沒有問題。但話說回來,他還是不免擔心起自己最不樂見的情形。

他不免想起了航太總署那命運多舛的火星觀察者號(Mars Observer)。一九九二年發射的火星觀察者號,也曾在它要抵達火星的三天前失聯。地球上使盡渾身解數想要重建通訊,但都沒有成功。航太總署後來判斷火星觀察者號的燃料艙破裂,進而導致整艘太空船陷入無法挽回的災難。用白話說就是,船在太空中炸了。

艾倫心想:「萬一真的失去新視野號,這個橫跨十四年的計畫,超過兩千五百位同仁的心血付出,就付諸流水了。我們對冥王星的了解絲毫沒有增進,而新視野號則會成為夢想破滅的代名詞。日後凡提到某件事功虧一簣,新視野號的形象就會浮現眾人眼前。」

-----廣告,請繼續往下閱讀-----

嘗試連線

艾倫一抵達偌大、幾乎沒有對外窗的辦公大樓,也就是任務指揮中心的所在地,他首先停好車,把負面的念頭統統轟出腦袋,然後便進門開始幹活。新視野號的任務指揮中心,完全符合一般人對於太空飛行器控制中心的想像。只要你看過《阿波羅十三號》或其他的太空電影,你就知道那是一幅什麼樣的光景:發著光的巨型投影銀幕牆,是室內最搶眼的陳設,至於橫在銀幕牆前的控制台,則是一排接著一排、正常大小的電腦螢幕。

新視野號於 2015 年 7 月 14 日掠過冥王星時的飛行路徑。圖/wikipedia

在前往過去曾是太陽系第九顆行星的漫漫九年裡,新視野號的無線電是一種生命線般的存在。因為有了這條連結,團隊才得以聯繫飛船、控制飛船,另外要讀取飛船的狀態、接收飛船得到的觀測數據,也都得經由這條連線。隨著新視野號朝太陽系的外圍愈飛愈遠,通訊的時間延誤也愈來愈久。到了這最後關頭,地球與新視野的通聯已經要九小時才能一來一回,這是用光速行進需要的時間。

為了保持與地球的聯繫,新視野號跟所有長程無人太空船一樣,都倚賴一種幾乎不為人所知、當然也得不到稱頌的行星探險神器:航太總署的「深空網路」(Deep Space Network)。這是一個由三組巨型碟型天線集成、三位一體的無線電網,三處天線集成分別位於美國加州金石、西班牙馬德里,以及南半球澳洲的坎培拉。這三處的碟型天線完美無瑕地進行接力,擔下與飛船通訊的重責大任。因為地球會每二十四小時自轉一周,因此這三處選址才刻意散布在世界三大洲。不論飛船位於深邃太空的任何角落,總有一處天線可以對準訊號的來源。

-----廣告,請繼續往下閱讀-----

但如今……深空網路聯繫不上他們極其珍貴的資產,新視野號。

——本文摘自《冥王星任務:NASA新視野號與太陽系盡頭之旅》,2019 年 4 月,時報出版

時報出版_96
174 篇文章 ・ 35 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。