0

0
0

文字

分享

0
0
0

尋星啟事:「第九行星」下落不明,請你幫忙尋找

歐柏昇
・2017/04/11 ・5093字 ・閱讀時間約 10 分鐘 ・SR值 503 ・六年級

最近,科學家張貼一份協尋啟事。究竟是什麼東西,需要全世界的人們一起幫忙尋找?不是通緝犯,也不是失蹤的寵物,而是失落的「第九行星」。

藝術家想像的第九行星。圖/By Caltech/R. Hurt (IPAC)

尋找「X 行星」

早在 1905 年,羅威爾(Percival Lowell)就開始尋找海王星外的未知行星。他發覺天王星、海王星的軌道有些異常,並可用一個未知行星的拉扯來解釋。這個未知的行星,就姑且稱作「X 行星」了。

其實,由已知行星的運行軌道,來預測未知的行星,並不是什麼新鮮的事情。1846 年,勒維耶(Urbain Le Verrier)以牛頓力學計算出天王星軌道的偏差,大膽預言有個未知行星在拉扯天王星軌道。他把理論預測的數字交給柏林天文台的伽勒(Johann Gottfried Galle),據說不到一小時,一個新的行星就被找到了──這顆行星就是海王星。

發現海王星的成功經驗,給後世科學家許多啟發。羅威爾試著如法炮製,尋找「X 行星」。可惜歷史無法順利地複製,羅威爾在 1916 年逝世前,並沒有找到這顆 X 行星。不過,他留下的羅威爾天文台繼續運作,並在 1930 年找到了一顆新的「行星」,也就是冥王星。羅威爾追尋已久的 X 行星,終於由後人找到了嗎?不,可惜冥王星的質量太小了,根本沒辦法達成羅威爾從行星軌道算出來的預測值。所以,就算 X 行星存在,它絕對不是冥王星!

1993 年,天文學家以現代觀測的精確數據,重新計算行星運動的軌道,證實「X 行星」的預言是建立在不準確的觀測數據上,實際上根本不需要「X 行星」,就能解釋海王星現在的軌道。神秘的「X 行星」假說,被天文學家踢出門外了。冥王星的下場更慘了,不但不是「X 行星」,還從行星名單當中被除名了。2006 年國際天文聯合會(IAU)決議,將冥王星移除九大行星之外,成為「矮行星」。從此,太陽系的行星總數回歸到八個。

往更遙遠的地方走去

我們不必為冥王星的除名哀悼,因為事件的背後,代表更多驚奇的發現。1990 年代以來,天文學家漸漸發覺,冥王星並不孤單,它與許多小天體一起居住在海王星之外的「古柏帶」。隨著海王星外天體的逐一發現,人們才知道冥王星只是古柏帶天體的其中一個而已。人類對於太陽系邊緣的認知,往更遙遠的地方開展。

在這十幾年來,人們才開始找到冥王星的「鄰居」──或可說是讓它被除名的「兇手」。其中有一個海王星外天體非常特別,名字叫作賽德娜(Sedna),是在 2003 年由麥可.布朗(Mike Brown)、查德.特魯希略(Chad Trujillo)和大衛.拉比諾維茨(David L. Rabinowitz)找到。賽德娜可能與冥王星一樣是矮行星,但離我們相當遙遠。冥王星與太陽最近的距離是 30 天文單位(1 天文單位的意思是「地球與太陽的距離」),目前找到的其他海王星外天體也大致在 30 至 50 天文單位的古柏帶範圍內。然而,賽德娜與太陽最近的距離卻是 76 天文單位,在非常外圈的橢圓軌道繞太陽公轉,令人懷疑是否還能算在古柏帶之內。許多天文學家認為,賽德娜有可能與太陽系更外層的「歐特雲」有所聯繫。

到了 2012 年,特魯希略與史考特.雪柏(Scott Sheppard)發現一顆新的天體,打破了賽德娜的紀錄。這顆稱為2012VP113 的星球,離太陽最近的距離竟然高達 80 天文單位。這個新發現,代表賽德娜不是單一的特例,還有其他天體位在這麼遙遠的地方。問題來了,它們怎麼會出現在離太陽這麼遙遠的地方?現在的位置可能不是誕生地,因為那裡缺乏氣體和塵埃,很難形成較大的星球。科學家猜測,它們誕生之初可能受到某些重力影響,有可能是與其他原行星拉扯,也有可能是外來的恆星從附近通過而改變它們的軌道。

許多證據指向「第九行星」可能存在

賽德娜與 2012VP113 提供了更多有趣的線索,改變我們對太陽系的認識。特魯希略與雪柏利用它們的運行軌道推論,可能有個比地球重、比海王星輕的天體,位於離太陽 250 天文單位的軌道上。康斯坦丁.巴提金(Konstantin Batygin)和麥可.布朗在 2016 年 1 月發表新的研究,利用賽德娜、2012VP113 以及另外四個較遙遠的古柏帶天體的運行軌道,得出一個驚人的結論──「第九行星」可能存在,它的質量大約是地球的 10 倍,與太陽最近的距離約 200天文單位,繞太陽公轉的週期是 1 萬至 2 萬年。

天文學家其實沒有直接看到「第九行星」。到底有什麼可靠的證據,說明「第九行星」存在呢?賽德娜、2012VP113與其他幾個「極端海王星外天體」,共同具備某些奇怪的特性。首先,它們離太陽最近的時候,位置都剛好在黃道面上[註1]。且它們通過黃道面的方向,都是由南向北。再者,它們運行軌道的長軸都在同方向,好像某東西推過去的。從下圖可以清楚看到,這幾個「極端海王星外天體」軌道的長軸(也就是離太陽遙遠的一端)都在圖中的左邊[註2]。這可能不是巧合,而是巨大的「第九行星」重力拉扯而形成的現象。此外,「第九行星」會造成許多古柏帶天體的軌道嚴重傾斜──這些奇異的天體也的確存在。麥可.布朗說,如果他在什麼都不知道的情況下看到這篇論文,一定會覺得太瘋狂了,但是看完這些證據和統計,很難有其他結論了!

  • 註 1:太陽系內主要的行星,幾乎都在同一平面上繞太陽公轉,這個平面就稱為「黃道面」。賽德娜與地球、火星等行星不同,並不是隨時都在黃道面上,但離太陽最近時剛好在黃道面上。
  • 註 2:2016 年學者發表了一個長軸指向右邊的極端海王星外天體,因此不能說每一個都指向左邊。
在 2016 年初之後開啟了「第九行星」的討論。太陽系內目前知道的六個最遠的古柏帶天體(軌道在海王星外),全都神秘地排列在同一方向。以三度空間來看,它們幾乎以相同的角度偏離太陽系平面。巴提金和布朗說明,我們需要一顆 10 倍地球質量的行星,位在遙遠的偏心軌道,且與其他六個天體不連成一線,才能保持圖中這種組合。圖/By R. Hurt/IPAC/Caltech

「第九行星」的假說,似乎還能解釋許多長久以來的謎團。2016 年 10 月,在美國加州舉行的行星科學會議上,巴提金和布朗的合作者,加州理工學院的研究生伊莉莎白.貝利(Elizabeth Bailey)提出對於「太陽傾斜」的研究。早在 1800 年代,人們就知道太陽不尋常的傾斜,但是這件事不常被討論,因為沒人有任何線索知道它是什麼造成的。所謂「太陽傾斜」,意思是太陽從黃道面偏斜了大約 6 度,至今還沒有人能成功解釋。

貝莉的研究將太陽傾斜的罪魁禍首指向「第九行星」,如果存在一個巨大而遙遠的行星,可能增加了太陽系的搖擺,使得太陽些微地傾斜。貝莉說:「因為第九行星質量很大,而且軌道比其他行星更傾斜,太陽系只好慢慢地扭曲,不再排列得那麼整齊了。」巴提金說:「它持續使我們感到驚奇。每次我們仔細看,就發現第九行星又能解釋一些太陽系長久以來的謎團。」

亞利桑那大學的天文學家雷努.馬霍特拉(Renu Malhotra)等人,還有另一個證據說明未知行星的存在。他們分析公轉週期非常長的「極端海王星外天體」,發覺這些天體曾經與某個未知行星發生共振。經過計算,未知天體繞太陽公轉的週期大約 17000 年,且一個 10 倍地球質量的行星可以合理解釋這種共振現象。

以上許多證據,都指出太陽系內的「第九行星」可能存在。問題是,找到「第九行星」有什麼意義?是因為冥王星除名後,「九大行星」被迫改成「八大行星」,如果找到第九顆就可以改回大家習慣的稱呼嗎?當然不是這麼無聊的理由!事實上,如果找到「第九行星」,可能徹底改寫我們所知的太陽系演化史。竟然在這麼遙遠的地方,可以存在一顆巨大的行星,它的身世來歷真是耐人尋味了。

更有趣的是,這幾年天文學家在太陽系外找到了許多重於地球、輕於天王星與海王星的行星,也就是被稱為「超級地球」的行星。奇怪的是太陽系的八大行星當中,並不存在這種行星。假如「第九行星」存在,且如預期是 10 倍地球質量,那就填補了這個空缺。儘管關於「第九行星」的爭論還沸沸揚揚,我們對於太陽系的探索又前進一步。

一起上網尋找失落的行星吧!

我們似乎又回到 1846 年尋找海王星的那個情境,理論預測一個未知的行星存在,等待人們去找尋。巴提金也說,的確有點重現歷史的意味。不過,經過一百多年,科技突飛猛進,當年一小時找到海王星,現在應該可以一分鐘找到「第九行星」吧?實際上並非如此,現在天文學家還在煩惱著要怎麼把它找出來呢!因為它離我們太遠了,也離太陽太遠了,不像鄰近的行星,反射了太陽光就輕易被我們看見。太陽系遠比你想像中大得多,人類根本還無法掌握太陽系邊緣那個非常昏暗卻充滿驚奇的世界。

理論預測之後,天文學家很努力在望遠鏡拍攝到的眾多影像中,尋找「第九行星」的下落。雪柏說,這就像玩遊戲一樣,你不知道哪張照片會有超級地球在裡面。尋找的訣竅,就在於看它移動得多慢。如果找到移動夠慢的天體,代表它離我們夠遠,這才有趣,要不然就只是一般的古柏帶天體。

然而,這個工作就是大海撈針。一個人只有兩隻眼睛,光是幾個天文學家,想要找到新的行星,實在太困難了。那是不是能利用電腦幫忙尋找呢?可惜,在這方面,人眼還是比電腦銳利多了。天文影像當中,有許多非真實天體造成的光點,電腦經常會受騙,但人眼很容易辨認出來那是假的。

天文學家決定嘗試一個新的方法:利用全世界的眾多人的眼睛,一起幫忙尋找「第九行星」。網際網路把全世界的人們串聯在一起,天文學家只要設計一個容易操作的小工具,將天文影像放上網,大家就可以到網站上幫忙尋找了。

於是,天文學家就設計了這個網站「Backyard Worlds: Planet 9」。點選「classify」,就可以進去尋找失落的行星了。網頁顯示的天文影像,是由廣域紅外線巡天探測衛星(WISE)拍攝,這是紅外光影像,可以偵測行星自己發出的光。如果「第九行星」的特性符合預期,應該會出現在某一組照片的某一個角落。或許你就是那個幸運兒,現在「抽到」的這組照片,就是具有「第九行星」的那張!當然,看越多張照片,找到的機會就越大了。

Backyard Worlds: Planet 9」 網站首頁

每組照片都有不同時間拍攝的幾張,請你當作動畫來看。我們要觀察的重點就是是否有天體在移動。移動的天體,有可能是「第九行星」,也可能是一種稱為「棕矮星」的天體,它們是形成失敗的恆星,有可能出現在太陽系外圍,天文學家也很有興趣尋找。如何判斷天體在移動呢?我們需要找兩種型態的天體,一種是「雙極(dipole)」,原本亮左邊,後來亮右邊,其實是移動速度慢的天體。另一種是「移動物(mover)」,很明顯在影像中移動,這些是移動速度較快的天體。這兩種特徵,都是天文學家有興趣尋找的天體,請你都利用「標記工具」,在圖片上標記出來。若有這兩種型態的天體,在動畫中的每張照片都需要標記,才方便追蹤它的移動。如果沒有任何雙極或者移動物,請你直接按「完成」。

左圖是「雙極」特徵的天體,右圖是「移動物」特徵的天體,此二種為「Backyard Worlds: Planet 9」計畫欲尋找的目標,請參與者協助將它們標記出來。圖/「Backyard Worlds: Planet 9」網站
Backyard Worlds: Planet 9」網站介面說明

不過請特別注意,有些容易混淆的光源,不要選進去了。首先,鋒芒四射的光源其實是恆星(如下圖左),不需列入,別把它和「雙極」搞混了。此外,有些光源並非真正來自天體(如下圖右),就像鬼影一樣,肉眼通常能辨識出來,也請你不要選到它們了。頁面右邊的「Field Guide」有更多例子,可以點進去參考。

左圖為恆星,右圖為非天體造成的造光源,兩者皆「不是」需要標記出的天體。圖/「Backyard Worlds: Planet 9」網站

了解遊戲規則之後,趕快上網幫忙尋找「第九行星」吧!人類對宇宙的探索愈加深刻,卻發覺我們自己居住的太陽系比想像中來得複雜,值得深入發掘的面向還有很多。在網路串連全世界的時代,天文學家號召全世界大眾一起幫忙。這就是「網路公民天文學」的概念,人人都能作為天文學家,到我們的家園──太陽系的邊緣探險,在無數的影像中尋找寶藏。不論是否真的找到「第九行星」,這些「鍵盤天文學家」對於古柏帶天體與棕矮星的搜尋,將有不少貢獻。其實,在Zooniverse這個網站上,還有很多其他的公民天文學計畫,歡迎你一起上網探索宇宙!

  • 「Backyard Worlds」公民天文學網站的介紹影片:

參考資料:


數感宇宙探索課程,現正募資中!

文章難易度
歐柏昇
13 篇文章 ・ 3 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。


0

26
4

文字

分享

0
26
4

極目遠眺的意義:天文學家為何追尋第一代星系

Tiger Hsiao_96
・2022/05/15 ・3764字 ・閱讀時間約 7 分鐘
  • 文/蕭予揚 清大天文所碩士生,將於約翰・霍普金斯大學攻讀天文博士
      林彥興 清大天文所碩士生,EASY 天文地科團隊總編

近日,來自東京大學和倫敦大學學院的科學家 播金優一(Yuichi Harikane) 在天文物理期刊《The Astrophysical Journal》發表了一篇論文,宣稱他們可能找到目前最遠的星系(名為 HD-1,紅移值 z 約為13),打破了原本最遠(GNz-11,z 約為 11)的紀錄。

天文學家為什麼執著要找最遠的星系呢?
是單純為了破紀錄而破、抑或是蘊藏了什麼科學涵義?
天文學家們又是怎麼尋找、並且推論這些星系多遠的呢?

HD1 的影像。圖/Harikane et al.

時間推回到二十世紀初,當時的科學家們對宇宙大小到底是恆定或是膨脹爭論不休,其中,愛因斯坦(Albert Einstein)便是支持「宇宙穩恆態理論」的知名科學家。而支持膨脹宇宙的科學家們,一直到西元 1929 年,愛德溫.哈伯(Edwin Hubble)透過測量其他星系,發現了宇宙在膨脹,才為膨脹宇宙(也就是日後人們所說的「大爆炸理論 The Big Bang Theory」)注入了一劑強心針。

接下來的各種證據,如宇宙微波背景輻射、宇宙中元素的比例等,讓天文學家們越來越確信宇宙的年齡是有限的,並開始利用紙筆與超級電腦,來推測最早、也就是第一代星系及恆星的樣貌,並嘗試用望遠鏡,來尋找早期星系是否和我們預測的相符。

科學家是如何知道距離的呢?

天文學家並沒有一把長達「一百多萬光年」的尺,那他們是如何尋找,並且知道這些早期星系距離我們有多遠呢?讓我們把兩個問題分開,先來探討在宇宙學尺度下的距離是怎麼得到的。

由於我們知道宇宙在膨脹,而這些遠離我們的星系所發出的光,也會因為類似都卜勒效應的影響,有著紅移的現象。而越遠的星系遠離我們的速度越快,它們紅移值也就越大;而從實驗室中,我們知道每種元素都會發出特定的譜線,藉由測量到星系光譜中特定譜線的實際位置,並與那條譜線所該在的位置比較,就能夠計算這些星系的紅移值了。

而結合紅移值和其他測量到的宇宙學參數(例如哈伯常數),就可以從星系的紅移值計算出物理上的距離,比如大家常會看到的「光年」。

星系的紅移(Redshift)與它跟地球的距離(Distance)可以互相換算。圖/林彥興

那既然這樣,我們只要測量所有星系的光譜,不就能知道最遠的星系是哪一個了嗎?可惜事情並沒有這麼簡單。

一來,很多星系(尤其是越遠的星系)都很黯淡,難以測量光譜,二來,測量光譜實際上是又貴又耗時的。所以,以「尋找」的為目的,做單一波段的搜索通常是比較實際的作法。但若是使用單一波段,不就代表我們沒有光譜,這樣不就又不知道距離了?

Well yes, but actually no。大家應該都聽過盲人摸象的故事,透過觀測越多的波段,我們就越能描繪出實際上的光譜,再根據現有的理論模型,我們就可以利用光譜擬合來推論出這些星系的紅移值。

那要如何鎖定這些早期的星系?

天文學家總不可能對每個能測量到的星系都做很多波段的觀測,並且大費周章的利用理論模型去擬合他們。很多特定的望遠鏡(例如 ALMA、JWST)是要寫觀測計畫書和其他天文學家競爭觀測時間的,總要給出一個有力的理由,才能讓你的觀測計劃脫穎而出。

但還沒有資料之前,天文學家要怎麼知道哪個星系是最遠的?這便產生了一個「沒有工作要怎麼有工作經驗」的迴圈。怎麼辦呢?天文學家就是要想辦法,在已經觀測的深空資料庫中去尋找最遠的星系。

哈伯太空望遠鏡拍攝的「哈伯極深空 Hubble Extreme Deep Field」影像。藉由比較圖片中不同紅移的星系的性質,天文學家就能重建出過去百億年來星系的形成與演化歷史。圖/NASA; ESA; G. Illingworth, D. Magee, and P. Oesch, University of California, Santa Cruz; R. Bouwens, Leiden University; and the HUDF09 Team

而要怎麼在龐大的資料庫中尋找遙遠的星系呢?讓我們再次簡單回顧歷史。量子物理在十九世紀末至二十世紀初逐漸開始發展時,瑞士物理學家約翰.巴耳末(Johann Balmer)研究激發態的氫原子所放出的光譜,發現在可見光波段,氫原子只會發射一系列特定波長的譜線。隨後美國物理學家西奧多.萊曼(Theodore Lyman)也接著發現,氫原子從受激態回到基態時,會放出一系列位於紫外線波段的譜線,這些特定的譜線也被稱為萊曼系。

氫原子的各個譜線家族,由上而下分別是位於紫外線的萊曼系,位於可見光的巴耳末系,以及位於紅外線的帕森系。圖/Szdori, OrangeDog

而用來尋找早期星系的第一種方法,也是最主要的搜索方法,就與萊曼系關係密切。天文學家發現,宇宙中有一種名為「萊曼斷裂星系(Lyman-break galaxies; LBGs)」的星系,這種星系的光譜有一個很明顯的特徵,便是在特定的波長以下就幾乎觀測不到,原因是波長更短的光(更高的能量)都被星際物質(Interstellar medium; ISM)和星系際物質(Intergalactic medium; IGM)的中性氫的萊曼線系給吸收了。

而萊曼線系中波長最短的譜線(常稱為萊曼極限)約在 91.2 奈米,最長的萊曼 α 譜線則約在 121.6 奈米。只要透過兩個波長足夠接近的波段去尋找「在長波長有觀測到、但在短波段沒觀測到的天體」(稱為 drop-out),就可以粗略的估計星系的紅移。

舉例來說,如果我們要找紅移值為 9 的萊曼斷裂星系,只需要稍微長於和短於 1216 奈米的兩個波段,看看有沒有星系出現在長波段的影像中,但在短波段的影像中卻沒有出現,就有可能是在紅移值為 9 的萊曼斷裂星系。如果要找越遠的萊曼斷裂星系,只需要換波長較長的波段即可。

近日打破紀錄的最遠星系,也是透過 H-band drop-out(在波長 H 波段沒有觀測到,而較長的波段有)所找出的。

光譜drop-out的例子。圖/Harikane et al (2022)

上圖為近日打破紀錄的最遠星系 HD1 的 H-band drop-out,可以看到長波段:4.5、3.6 微米以及 Ks 波段都有偵測到,但在 H 波段(以及更短波長)的影像就消失不見了。藍色的光譜 z 值為 13.3 的萊曼斷裂模型,灰色的光譜則為可能的低紅移汙染,z=3.9 的巴耳末斷裂模型。

當然,這只能幫助科學家初步的篩選,而且此種方法會受到一些其他非早期星系的汙染。

舉例來說,上文提到氫原子除了萊曼系以外,還有回到第一激發態的巴耳末系。若只是單純地透過 drop-out,因為巴耳末系本身的譜線就比萊曼系來得紅,所以也有可能找到的是紅移值較小的巴耳末斷裂;此外,非常紅且充滿塵埃的星系也會在光譜上出現類似「驟降」的特徵。

當然,更多波段以及光譜的觀測,都有助於釐清這些可能的汙染。而除了上述的方法以外,萊曼 α 發射體(Lyman-alpha emitters; LAEs)、伽瑪射線暴的宿主星系、重力透鏡效應等,也是尋找遙遠星系的重要方法哦!

那麼,找出這些早期星系有什麼科學意義?

現代宇宙學理論認為,宇宙在早期曾經經歷過兩次相變。第一次是宇宙從炙熱的游離態降溫回到中性的氣態,被稱為宇宙的復合時期(Epoch of Recombination),也是大家熟悉的宇宙微波背景的起源;第二次(也是最後一次)的相變,宇宙中的中性氫變成了游離化的氫離子,這個相變的過程被稱為再電離時期(Epoch of Reionization; EoR)。

而目前認為,第二次這個電離的原因,是第一代恆星和第一代星系所發出的強紫外線光,把周圍的中性氫游離成氫離子。藉由尋找越來越多的早期星系,我們就能透過這些早期星系來描繪宇宙再電離時期的歷史,而這又能夠進一步驗證現代宇宙學理論是否正確。不僅如此,研究這些早期星系,可以讓我們對於星系演化的歷史更往前推,或是研究早期星系的超大質量黑洞,是如何長到這麼大等等的議題。

未來展望

在 2021 年底順利升空的詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope; JWST),其中一個主要的科學目標就是研究早期宇宙。如這篇文章一開始提到的「新的最遠的星系(HD-1)」,又如前一陣子發現的「最遠恆星 Earendel」,以及同一團隊的另一個紅移約 11 的星系,都在第一輪 JWST 的觀測計畫之中。

期待幾個月後 JWST 公布的第一批科學照片,能大幅革新我們對早期宇宙的認識。

參考資料(論文們)

延伸閱讀(科普文章)


數感宇宙探索課程,現正募資中!

Tiger Hsiao_96
9 篇文章 ・ 7 位粉絲
現為清大天文所碩二學生,即將赴美於約翰霍普金斯大學攻讀天文博士。