0

0
0

文字

分享

0
0
0

尋星啟事:「第九行星」下落不明,請你幫忙尋找

歐柏昇
・2017/04/11 ・5093字 ・閱讀時間約 10 分鐘 ・SR值 503 ・六年級

最近,科學家張貼一份協尋啟事。究竟是什麼東西,需要全世界的人們一起幫忙尋找?不是通緝犯,也不是失蹤的寵物,而是失落的「第九行星」。

藝術家想像的第九行星。圖/By Caltech/R. Hurt (IPAC)

尋找「X 行星」

早在 1905 年,羅威爾(Percival Lowell)就開始尋找海王星外的未知行星。他發覺天王星、海王星的軌道有些異常,並可用一個未知行星的拉扯來解釋。這個未知的行星,就姑且稱作「X 行星」了。

其實,由已知行星的運行軌道,來預測未知的行星,並不是什麼新鮮的事情。1846 年,勒維耶(Urbain Le Verrier)以牛頓力學計算出天王星軌道的偏差,大膽預言有個未知行星在拉扯天王星軌道。他把理論預測的數字交給柏林天文台的伽勒(Johann Gottfried Galle),據說不到一小時,一個新的行星就被找到了──這顆行星就是海王星。

發現海王星的成功經驗,給後世科學家許多啟發。羅威爾試著如法炮製,尋找「X 行星」。可惜歷史無法順利地複製,羅威爾在 1916 年逝世前,並沒有找到這顆 X 行星。不過,他留下的羅威爾天文台繼續運作,並在 1930 年找到了一顆新的「行星」,也就是冥王星。羅威爾追尋已久的 X 行星,終於由後人找到了嗎?不,可惜冥王星的質量太小了,根本沒辦法達成羅威爾從行星軌道算出來的預測值。所以,就算 X 行星存在,它絕對不是冥王星!

-----廣告,請繼續往下閱讀-----

1993 年,天文學家以現代觀測的精確數據,重新計算行星運動的軌道,證實「X 行星」的預言是建立在不準確的觀測數據上,實際上根本不需要「X 行星」,就能解釋海王星現在的軌道。神秘的「X 行星」假說,被天文學家踢出門外了。冥王星的下場更慘了,不但不是「X 行星」,還從行星名單當中被除名了。2006 年國際天文聯合會(IAU)決議,將冥王星移除九大行星之外,成為「矮行星」。從此,太陽系的行星總數回歸到八個。

往更遙遠的地方走去

我們不必為冥王星的除名哀悼,因為事件的背後,代表更多驚奇的發現。1990 年代以來,天文學家漸漸發覺,冥王星並不孤單,它與許多小天體一起居住在海王星之外的「古柏帶」。隨著海王星外天體的逐一發現,人們才知道冥王星只是古柏帶天體的其中一個而已。人類對於太陽系邊緣的認知,往更遙遠的地方開展。

在這十幾年來,人們才開始找到冥王星的「鄰居」──或可說是讓它被除名的「兇手」。其中有一個海王星外天體非常特別,名字叫作賽德娜(Sedna),是在 2003 年由麥可.布朗(Mike Brown)、查德.特魯希略(Chad Trujillo)和大衛.拉比諾維茨(David L. Rabinowitz)找到。賽德娜可能與冥王星一樣是矮行星,但離我們相當遙遠。冥王星與太陽最近的距離是 30 天文單位(1 天文單位的意思是「地球與太陽的距離」),目前找到的其他海王星外天體也大致在 30 至 50 天文單位的古柏帶範圍內。然而,賽德娜與太陽最近的距離卻是 76 天文單位,在非常外圈的橢圓軌道繞太陽公轉,令人懷疑是否還能算在古柏帶之內。許多天文學家認為,賽德娜有可能與太陽系更外層的「歐特雲」有所聯繫。

到了 2012 年,特魯希略與史考特.雪柏(Scott Sheppard)發現一顆新的天體,打破了賽德娜的紀錄。這顆稱為2012VP113 的星球,離太陽最近的距離竟然高達 80 天文單位。這個新發現,代表賽德娜不是單一的特例,還有其他天體位在這麼遙遠的地方。問題來了,它們怎麼會出現在離太陽這麼遙遠的地方?現在的位置可能不是誕生地,因為那裡缺乏氣體和塵埃,很難形成較大的星球。科學家猜測,它們誕生之初可能受到某些重力影響,有可能是與其他原行星拉扯,也有可能是外來的恆星從附近通過而改變它們的軌道。

-----廣告,請繼續往下閱讀-----

許多證據指向「第九行星」可能存在

賽德娜與 2012VP113 提供了更多有趣的線索,改變我們對太陽系的認識。特魯希略與雪柏利用它們的運行軌道推論,可能有個比地球重、比海王星輕的天體,位於離太陽 250 天文單位的軌道上。康斯坦丁.巴提金(Konstantin Batygin)和麥可.布朗在 2016 年 1 月發表新的研究,利用賽德娜、2012VP113 以及另外四個較遙遠的古柏帶天體的運行軌道,得出一個驚人的結論──「第九行星」可能存在,它的質量大約是地球的 10 倍,與太陽最近的距離約 200天文單位,繞太陽公轉的週期是 1 萬至 2 萬年。

天文學家其實沒有直接看到「第九行星」。到底有什麼可靠的證據,說明「第九行星」存在呢?賽德娜、2012VP113與其他幾個「極端海王星外天體」,共同具備某些奇怪的特性。首先,它們離太陽最近的時候,位置都剛好在黃道面上[註1]。且它們通過黃道面的方向,都是由南向北。再者,它們運行軌道的長軸都在同方向,好像某東西推過去的。從下圖可以清楚看到,這幾個「極端海王星外天體」軌道的長軸(也就是離太陽遙遠的一端)都在圖中的左邊[註2]。這可能不是巧合,而是巨大的「第九行星」重力拉扯而形成的現象。此外,「第九行星」會造成許多古柏帶天體的軌道嚴重傾斜──這些奇異的天體也的確存在。麥可.布朗說,如果他在什麼都不知道的情況下看到這篇論文,一定會覺得太瘋狂了,但是看完這些證據和統計,很難有其他結論了!

  • 註 1:太陽系內主要的行星,幾乎都在同一平面上繞太陽公轉,這個平面就稱為「黃道面」。賽德娜與地球、火星等行星不同,並不是隨時都在黃道面上,但離太陽最近時剛好在黃道面上。
  • 註 2:2016 年學者發表了一個長軸指向右邊的極端海王星外天體,因此不能說每一個都指向左邊。
在 2016 年初之後開啟了「第九行星」的討論。太陽系內目前知道的六個最遠的古柏帶天體(軌道在海王星外),全都神秘地排列在同一方向。以三度空間來看,它們幾乎以相同的角度偏離太陽系平面。巴提金和布朗說明,我們需要一顆 10 倍地球質量的行星,位在遙遠的偏心軌道,且與其他六個天體不連成一線,才能保持圖中這種組合。圖/By R. Hurt/IPAC/Caltech

「第九行星」的假說,似乎還能解釋許多長久以來的謎團。2016 年 10 月,在美國加州舉行的行星科學會議上,巴提金和布朗的合作者,加州理工學院的研究生伊莉莎白.貝利(Elizabeth Bailey)提出對於「太陽傾斜」的研究。早在 1800 年代,人們就知道太陽不尋常的傾斜,但是這件事不常被討論,因為沒人有任何線索知道它是什麼造成的。所謂「太陽傾斜」,意思是太陽從黃道面偏斜了大約 6 度,至今還沒有人能成功解釋。

貝莉的研究將太陽傾斜的罪魁禍首指向「第九行星」,如果存在一個巨大而遙遠的行星,可能增加了太陽系的搖擺,使得太陽些微地傾斜。貝莉說:「因為第九行星質量很大,而且軌道比其他行星更傾斜,太陽系只好慢慢地扭曲,不再排列得那麼整齊了。」巴提金說:「它持續使我們感到驚奇。每次我們仔細看,就發現第九行星又能解釋一些太陽系長久以來的謎團。」

-----廣告,請繼續往下閱讀-----

亞利桑那大學的天文學家雷努.馬霍特拉(Renu Malhotra)等人,還有另一個證據說明未知行星的存在。他們分析公轉週期非常長的「極端海王星外天體」,發覺這些天體曾經與某個未知行星發生共振。經過計算,未知天體繞太陽公轉的週期大約 17000 年,且一個 10 倍地球質量的行星可以合理解釋這種共振現象。

以上許多證據,都指出太陽系內的「第九行星」可能存在。問題是,找到「第九行星」有什麼意義?是因為冥王星除名後,「九大行星」被迫改成「八大行星」,如果找到第九顆就可以改回大家習慣的稱呼嗎?當然不是這麼無聊的理由!事實上,如果找到「第九行星」,可能徹底改寫我們所知的太陽系演化史。竟然在這麼遙遠的地方,可以存在一顆巨大的行星,它的身世來歷真是耐人尋味了。

更有趣的是,這幾年天文學家在太陽系外找到了許多重於地球、輕於天王星與海王星的行星,也就是被稱為「超級地球」的行星。奇怪的是太陽系的八大行星當中,並不存在這種行星。假如「第九行星」存在,且如預期是 10 倍地球質量,那就填補了這個空缺。儘管關於「第九行星」的爭論還沸沸揚揚,我們對於太陽系的探索又前進一步。

一起上網尋找失落的行星吧!

我們似乎又回到 1846 年尋找海王星的那個情境,理論預測一個未知的行星存在,等待人們去找尋。巴提金也說,的確有點重現歷史的意味。不過,經過一百多年,科技突飛猛進,當年一小時找到海王星,現在應該可以一分鐘找到「第九行星」吧?實際上並非如此,現在天文學家還在煩惱著要怎麼把它找出來呢!因為它離我們太遠了,也離太陽太遠了,不像鄰近的行星,反射了太陽光就輕易被我們看見。太陽系遠比你想像中大得多,人類根本還無法掌握太陽系邊緣那個非常昏暗卻充滿驚奇的世界。

-----廣告,請繼續往下閱讀-----

理論預測之後,天文學家很努力在望遠鏡拍攝到的眾多影像中,尋找「第九行星」的下落。雪柏說,這就像玩遊戲一樣,你不知道哪張照片會有超級地球在裡面。尋找的訣竅,就在於看它移動得多慢。如果找到移動夠慢的天體,代表它離我們夠遠,這才有趣,要不然就只是一般的古柏帶天體。

然而,這個工作就是大海撈針。一個人只有兩隻眼睛,光是幾個天文學家,想要找到新的行星,實在太困難了。那是不是能利用電腦幫忙尋找呢?可惜,在這方面,人眼還是比電腦銳利多了。天文影像當中,有許多非真實天體造成的光點,電腦經常會受騙,但人眼很容易辨認出來那是假的。

天文學家決定嘗試一個新的方法:利用全世界的眾多人的眼睛,一起幫忙尋找「第九行星」。網際網路把全世界的人們串聯在一起,天文學家只要設計一個容易操作的小工具,將天文影像放上網,大家就可以到網站上幫忙尋找了。

於是,天文學家就設計了這個網站「Backyard Worlds: Planet 9」。點選「classify」,就可以進去尋找失落的行星了。網頁顯示的天文影像,是由廣域紅外線巡天探測衛星(WISE)拍攝,這是紅外光影像,可以偵測行星自己發出的光。如果「第九行星」的特性符合預期,應該會出現在某一組照片的某一個角落。或許你就是那個幸運兒,現在「抽到」的這組照片,就是具有「第九行星」的那張!當然,看越多張照片,找到的機會就越大了。

-----廣告,請繼續往下閱讀-----
Backyard Worlds: Planet 9」 網站首頁

每組照片都有不同時間拍攝的幾張,請你當作動畫來看。我們要觀察的重點就是是否有天體在移動。移動的天體,有可能是「第九行星」,也可能是一種稱為「棕矮星」的天體,它們是形成失敗的恆星,有可能出現在太陽系外圍,天文學家也很有興趣尋找。如何判斷天體在移動呢?我們需要找兩種型態的天體,一種是「雙極(dipole)」,原本亮左邊,後來亮右邊,其實是移動速度慢的天體。另一種是「移動物(mover)」,很明顯在影像中移動,這些是移動速度較快的天體。這兩種特徵,都是天文學家有興趣尋找的天體,請你都利用「標記工具」,在圖片上標記出來。若有這兩種型態的天體,在動畫中的每張照片都需要標記,才方便追蹤它的移動。如果沒有任何雙極或者移動物,請你直接按「完成」。

左圖是「雙極」特徵的天體,右圖是「移動物」特徵的天體,此二種為「Backyard Worlds: Planet 9」計畫欲尋找的目標,請參與者協助將它們標記出來。圖/「Backyard Worlds: Planet 9」網站
Backyard Worlds: Planet 9」網站介面說明

不過請特別注意,有些容易混淆的光源,不要選進去了。首先,鋒芒四射的光源其實是恆星(如下圖左),不需列入,別把它和「雙極」搞混了。此外,有些光源並非真正來自天體(如下圖右),就像鬼影一樣,肉眼通常能辨識出來,也請你不要選到它們了。頁面右邊的「Field Guide」有更多例子,可以點進去參考。

左圖為恆星,右圖為非天體造成的造光源,兩者皆「不是」需要標記出的天體。圖/「Backyard Worlds: Planet 9」網站

了解遊戲規則之後,趕快上網幫忙尋找「第九行星」吧!人類對宇宙的探索愈加深刻,卻發覺我們自己居住的太陽系比想像中來得複雜,值得深入發掘的面向還有很多。在網路串連全世界的時代,天文學家號召全世界大眾一起幫忙。這就是「網路公民天文學」的概念,人人都能作為天文學家,到我們的家園──太陽系的邊緣探險,在無數的影像中尋找寶藏。不論是否真的找到「第九行星」,這些「鍵盤天文學家」對於古柏帶天體與棕矮星的搜尋,將有不少貢獻。其實,在Zooniverse這個網站上,還有很多其他的公民天文學計畫,歡迎你一起上網探索宇宙!

  • 「Backyard Worlds」公民天文學網站的介紹影片:

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
歐柏昇
13 篇文章 ・ 6 位粉絲
台大物理與歷史系雙主修畢業,台大物理碩士。現為台大物理系、中研院天文所博士生,全國大學天文社聯盟理事長。盼望從天文與人文之間追尋更清澈的世界觀,在浩瀚宇宙中思考文明,讓科學走向人群。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

7
3

文字

分享

1
7
3
旋轉、跳躍、冥王星他閉著眼,遊走在混亂邊緣?!
全國大學天文社聯盟
・2022/06/29 ・3745字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

在浩瀚的太陽系裡,冥王星一直是個迷人又「謎人」的存在。關於冥王星精彩的故事很多:1930年被鍥而不捨的天文台助理發現、2006年被從行星殿堂「降級」為矮行星、2014年新視野號成功飛掠並帶來無數珍貴的照片與科學資料……如今關於冥王星的新研究又帶來驚喜──或該說是驚嚇?

新視野號拍下的冥王星。圖/NASA

冥王星與海王星的「雙星共舞」

冥王星是第一顆被人類發現的「海王星外天體(Trans-Neptunian object, TNO)」。如今我們已知海王星軌道外有數百顆這類的天體,並且數量還在增加中。這類天體雖繞行著太陽,但其軌道週期之大,宛如被太陽遺忘在邊疆的散兵。有些 TNO 還長得奇形怪狀,例如妊神星(Haumea)雖然有 1/3 個冥王星的質量,但其外型不是球型,而是一顆橢球,且其長軸比短軸長了一倍!

大型的海王星外天體(TNO)體積對照圖。圖/Wikimedia Commons

上圖最左上角是冥王星系統,其中最大的衛星凱倫(Charon)甚至大到使這個雙體系統的重心在冥王星之外,因此也稱冥王星是個雙(矮行)星系統。而妊神星(Haumea)則硬生生長成恐龍蛋形狀,因其自轉一圈只花 4 小時,這樣的高自轉速度使它無法成球體。值得一提的是,已知的 TNO 體積都小於月球。

冥王星本身更是有許多有趣的現象。冥王星的軌道偏心率高,呈橢圓狀,而且軌道平面是傾斜的,跟太陽系盤面差了 17 度角(見下圖)。除此之外,冥王星跟海王星的關係可謂糾葛難分──冥王星的軌道跟海王星有些微交錯,即某些時候冥王星會轉到海王星軌道的內側,此時冥王星比海王星離太陽更近!這樣難道兩顆星不會因為太過靠近,而使彼此的軌道不穩定嗎?天文學家發現,冥王星與海王星的軌道呈和諧的共振關係,兩顆星就像在跳方塊舞,互相受彼此的重力牽連著、卻不會因距離太近而打破軌道的平衡。

這兩顆星的和諧軌道共振有兩個要素:首先,冥王星跟海王星的軌道週期呈現近乎 3:2 的比例,且當冥王星在近日點時,海王星大約在與其軌道長軸呈垂直的位置。更精確地說,冥王星的近日點位置是會浮動的,在天體力學中稱為冥王星近日點的天平動(Libration,指的是天體軌道角度的週期性震盪)。

若由上往下看太陽系盤面,冥王星的近日點天平動會與海王星軌道保持上述的關係,因而不會與海王星太過接近。另一個要素則是軌道傾角方向的天平動。由於先前提到的軌道傾斜,冥王星的近日點能保持在遠高於海王星軌道平面的位置,因此更加確保兩顆星不會相遇

-----廣告,請繼續往下閱讀-----

上圖為冥王星軌道與八大行星軌道對照圖。截圖自The Sky Map | 3D Solar System Simulator
有興趣的讀者可以上這個網站,搜尋 Pluto 並勾選 animate ,調整合適的時距,便可以隨心所欲從任意角度觀察冥王星與八大行星的軌道運動。只是 3D 模擬運算量大,網站頗容易當哈哈……

你以為天體運行繞一圈就結束了嗎?讓影片畫給你看

其實天體力學的軌道計算非常的複雜。連結是神人用 Python 寫的開源模擬所繪製的影片。前半段影片顯示的是冥王星與海王星的軌道共振狀態,冥王星以紅色標示,海王星以藍色標示,坐標系則隨著海王星一起公轉;後半段影片展示一個無軌道共振的系統作為對照,冥王星質量的天體以綠色表示。

影片中,左上圖是從上往下看太陽系盤面,可以看見海王星的位置其實有微小的變化,這是因為海王星的軌道並非正圓;而冥王星的軌跡則顯示出上下兩個對稱的弧線,這是近日點的位置,可以發現平均下來近日點跟太陽的連線,的確跟海王星位置跟太陽的連線是垂直的,還可以觀察到近日點天平動的幅度。

下方兩張圖則是從側面看太陽系(平行於太陽系盤面看過去),可以看出兩側高凸的近日點位置的確遠高出黃道面(z=0)。這個模擬的時長為 2 萬年,冥王星約繞行太陽 80 圈,可以看見其軌跡是有跡可循的;相對的,影片後半沒有軌道共振的對照組,其近日點在這兩萬年內不斷地漂泊,繞行軌跡也相當混亂無序。

上述的模擬只考慮了太陽、海王星與冥王星的三體運動(雖然已經極為複雜了),那麼其他已知的氣體行星,會不會對冥王星軌道造成微小的擾動呢?欸嘿, N-body simulation 出場了!(筆者表示害怕)

-----廣告,請繼續往下閱讀-----
天體間精巧的運行,就像宇宙中迷人的舞步。 圖/envato

天體力學下的平衡

美國亞利桑那大學的天文學家 Malhotra 與日本國立天文台的 Ito 研究員,在他們的模擬中考慮了太陽以及所有氣體巨行星──木星、土星、天王星與海王星──對冥王星的重力作用,並且把模擬時長拉長到50億年(上述 Python 模擬的 16 萬倍),也就是預期太陽剩餘的壽命。他們想嘗試回答,在太陽穩定照亮世間的漫漫時光裡,像冥王星這樣軌道如此精巧的天體,究竟是否能長久和海王星跳著方塊舞呢?

在模擬中,他們分別測試了不同的行星組合,以判斷各巨行星對冥王星軌道的影響。一如過去所知,模擬結果顯示了海王星的重力主導了冥王星近日點在平行太陽系盤面方向的天平動,也就是保持著 3/2 的和諧共振。然而,對於軌道傾角方向的天平動,海王星並未握有太大實權。拉長時間來看,冥王星近日點的天平動無論在平行盤面、軌道傾角兩個方向上,對巨行星們的一舉一動都頗為敏感。巨行星們的重力作用會使冥王星軌道產生微擾(Perturbation),使冥王星軌道產生天平動,只要天平動限縮在穩定的範圍內,就不用擔心冥王星會被耍得團團轉。

令人驚訝的是,根據模擬結果,他們發現在平行盤面的方向上,天王星竟在破壞冥王星的軌道穩定!不過別擔心,這個軌道穩定破壞者正被木星和土星給鎮壓著──在不含天王星的模型中,冥王星平行盤面的天平動和實際情況相去不遠,然而在移除木星和土星、只考慮天王星及海王星的模型裡,冥王星軌道只能在千萬年之內保持穩定。然而在軌道傾角方向上,天王星又有其貢獻,因為只有在考慮所有巨行星的模型裡,此方向的天平動才是與現實相符且長久穩定的

因此,在維護冥王星精密的軌道平衡上,四大行星可謂缺一不可。更令人驚奇的是,在漫長的 50 億年模擬中,冥王星的天平動雖被限縮在一個安全穩定的範圍內,但這個穩定範圍其實非常的狹窄!若冥王星稍有不慎,掉到了安全範圍之外,其軌道將變得無序而渾沌,便不再跟海王星跳著和諧的方塊舞了。

-----廣告,請繼續往下閱讀-----
天體只要一脫離重力穩定帶,便有可能就此離開太陽系這個大舞池。 圖/envato

太陽系就是個大舞池

看到這裡,你是否震撼於冥王星的軌道之精密,簡直像是被刻意調整過的呢?就如同生物演化的優勝劣汰,過去太陽系也曾盛大進行著重力之舞淘汰賽,只要一有天體踏出重力穩定帶,便可能被逐出舞池、或者惹上其他天體的麻煩。

今日現存的太陽系成員都是重力之舞的佼佼者,它們因緣際會來到為數不多的重力穩定帶,尋得屬於自己的舞步,悠然繞旋至今。然而在過去,它們可都曾有過波瀾壯闊的瞬間──或許是與其他天體擦身而過、或許是被逼到穩定帶的邊陲……透過精細演算太陽系天體的移動,天文學家得以窺探這場重力之舞淘汰賽的精彩回顧,甚至可能發現被淘汰天體所遺留的蛛絲馬跡。

如今在太陽系這浩瀚的舞台上,行星、衛星、彗星、 TNO 等天體組成舞團,相互配合著對方的舞步,漫遊於其中。它們已是訓練有素的舞者,所演出的每一支舞都令人為之震撼,值得反覆品味、研究,就連遠在五十億公里外的冥王星,都使天文學家為之神往。究竟從冥王星複雜而精美的舞步中,還能挖掘出什麼有趣的新發現呢?讓我們拭目以待!

宇宙的奧秘,吸引著人們不斷地探索。 圖/envato

註:關於冥王星的故事,非常推薦閱讀精采的《冥王星任務》(時報出版)一書,由新視野號主持人共同執筆寫下,高潮迭起、充滿笑與淚,會讓你一看就停不下來!

-----廣告,請繼續往下閱讀-----

參考資料:

paper本體https://www.pnas.org/doi/epdf/10.1073/pnas.2118692119

科普新聞 https://www.space.com/pluto-orbit-influences-from-giant-planets

冥王星軌道開源模擬 https://iopscience.iop.org/article/10.3847/2515-5172/ac3086, https://github.com/renumalhotra/2021-Pluto-Neptune-Resonant-Dynamics-Visualized-in-4D

-----廣告,請繼續往下閱讀-----
所有討論 1

0

0
0

文字

分享

0
0
0
停班停課遠距工作,這波疫情如何影響全球的科學研究?
瑋絜
・2020/03/25 ・2491字 ・閱讀時間約 5 分鐘 ・SR值 546 ・八年級

隨著 COVID-19(俗名:武漢肺炎)疫情在全球各地升溫,許多大學、研究機構都採取停課措施,以避免校園成為病毒傳播的溫床。在疫情的陰影之下,校內學生和教職員除了上課受到影響,諸多進行中的科學研究計畫也被迫停擺,導致各領域的研究發展都受到重挫。

許多研究人員表示,他們過去不曾經歷過如此大規模的研究工作受到中斷,疫情造成的損失更是難以數計;《Science》的主編 Holden Thorp 也說,如果實驗所需物品的供應和研究進度持續停滯,「我們將失去很多科學知識。」

研究人員在家工作,生物醫學研究停擺

上週,哈佛大學文理學院向教職員工生發布通知,要求大家在 3 月 18 日前逐步減少研究活動,接下來的 6 到 8 週則暫停前往實驗室。愛荷華大學、塔夫茨大學等學校也祭出類似措施,以防堵肺炎疫情擴散。

基於防疫考量,許多實驗室的例行性討論都改在線上進行。圖/pxfuel

-----廣告,請繼續往下閱讀-----

考量到公共衛生與研究人員的健康,大部分的實驗室也都遵守學校及研究單位的規定,讓實驗室人員在家閱讀文獻、分析資料,例行性的實驗室會議也改為線上討論。

然而,生物醫學研究並非在家中書房內或是沙發上就可以完成,缺乏特殊裝備、儀器及實驗動物,研究幾乎完全停擺。哈佛研究員 Richard Lee 就表示,他所在的實驗室正在進行一項為期 4 至 6 個月的老鼠實驗,關閉實驗室意味著他們過去幾個月付出的時間和心血將付諸東流;此外,該實驗室正在進行的老人免疫系統 DNA 研究也暫時中止,復工之時遙遙無期。

大腸桿菌當然也不是可以在家培養的東西。

密西根州立大學的 Richard Lenski 自 1988 年起,致力於觀察微生物生長、演化的情形,至今已培養超過 73,000 代的大腸桿菌。為抵擋這波來勢洶洶的肺炎疫情,Richard Lenski 決定將大腸桿菌冷凍保存,中斷 32 年來從未停歇的實驗。

-----廣告,請繼續往下閱讀-----

然而並非所有科學研究都能在家中完成,仍是有些研究內容仰賴實驗室的設備。圖/piqsels

為了降低損失,約翰霍普金斯大學則將校內正在進行的臨床研究實驗依據急迫性和重要性分為三等級:

  • 第一等級:為「非做不可 ( essential ) 」,包含和 COVID-19 有關的試驗,以及停止試驗將對患者生命有即刻威脅性的臨床研究,此類研究可以如常進行,也可以繼續招募新的受試者。
  • 第二等級:包含多項癌症試驗,研究者可在減少人與人面對面接觸的情況下繼續工作。
  • 第三等級:多為長期追蹤的世代研究,研究者僅能透過 e-mail 或是電話方式與受試者聯繫。

實驗動物缺乏照顧只能自生自滅?

實驗室關閉的另一大隱憂,是實驗動物的照顧問題。哈佛大學演化生物學家 Hopi Hoekstra 的實驗室中,飼養了許多用於觀察動物行為的老鼠,而這些特殊樣本都是研究團隊辛苦從野外蒐集回來的。若疫情持續延燒,將導致動物照護人力短缺,最壞的情況下,研究團隊可能需要撲殺實驗室內一半的動物。

由於照護人力短缺,實驗動物恐怕在疫情中受到影響。圖/needpix

-----廣告,請繼續往下閱讀-----

不過,約翰霍普金斯大學及耶魯大學的動物資源中心主管受訪時表示,事情並沒有大家想像的那麼悲觀。他們讓動物照護人員採輪班制,減少彼此間的接觸,以降低整個團隊工作停擺的機會,且研究機構內有多個動物照護團隊,若不幸有工作人員染病或需隔離,可以由其他團隊人員替補,因此不用擔心實驗室內的動物無法得到必要的照顧。

約翰霍普金斯大學研究動物資源中心副主任 Eric Hutchinson 認為,即使疫情真的到了無法控制的地步,大部分的實驗動物都可以在僅供給食物和水、不清洗籠子的情況下,安穩存活 14 天。耶魯大學動物資源中心副主任 Peter Smith 則說,若真的不幸有一半的動物照護人員停工,他們仍可以進行基本的動物保健。

上至天文下至地理,各領域學者皆成受災戶

當然,除了生物醫學領域的科學研究之外,其他領域的科學研究也因為實驗室停工、全球各地的入境管制、經濟衝擊等改變而受到或大或小的影響。

受到疫情的影響,各領域的研究計畫被迫暫停。圖/pxhere

-----廣告,請繼續往下閱讀-----

密西根大學物理學者 David Gerdes 見全球疫情嚴峻,因而取消了 4 月前往智利天文台觀測的計畫。不巧的是,NASA 的新視野號 ( New Horizons ) 目前正以每小時 3.6 萬英里的速度經過古柏帶 ( Kuiper belt ) 的中心,因此正是近距離觀察古柏帶物體的絕佳時機,若放棄了這次的觀測,未來 10 年內可能再也盼不到這麼好的機會。

而流行病學家 CamilaGonzález-Beiras 原本在巴布亞紐幾內亞內進行熱帶肉芽腫 ( yaws ) 抗生素研究,然而,武漢肺炎疫情在全球擴散之後,當地的衛生官員被調派至機場執行檢疫工作,資助此研究計畫的世界衛生組織及當地衛生單位也將經費挪至防疫用,以西班牙籍工作人員為主的工作團隊更因班機取消而無法前往巴布亞紐幾內亞。因此,此項攸關當地人民健康的研究被迫暫時停止。

就連美國國家航空暨太空總署 ( NASA ) 的 2024 年登月計畫也難逃武漢肺炎的攪局,位於紐澳良市的火箭裝配廠由於當地疫情升溫而關閉,原定 3 月 20 日進行的太空發射系統 ( Space Launch System ) 及獵戶座太空船 ( Orion ) 測試工作皆取消。這表示已經延宕多年的登月時程將再度推遲,NASA 重返月球的日子仍不明朗。

多數研究者只得 work from home,直到疫情獲得平息。圖/pixabay

-----廣告,請繼續往下閱讀-----

雖然心血結晶可能在這波疫情之中成為泡影,但大部分的研究者為了將資源留給公共衛生,並照顧自己與研究夥伴的健康,多選擇乖乖待在家中,進行實驗數據的推算與分析,或是編寫未來的研究計畫。同時,他們也在心裡祈禱著疫情獲得平息,早日重返他們熱愛的科學研究與熟悉的實驗室。

參考資料

瑋絜
5 篇文章 ・ 0 位粉絲
高中時為了要學自然科學還是社會科學煩惱了很久,最終選了一個介於兩者之間的科系就讀。敬畏文字,期待有一天能用其力量把世界變得更溫柔、善良一點。