0

0
0

文字

分享

0
0
0

海上「堵」颱風:氣象浮標即時轉播颱風關鍵資料!

劉珈均
・2015/10/02 ・3415字 ・閱讀時間約 7 分鐘 ・SR值 548 ・八年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

浮標1
台大海洋所的「海氣即時觀測浮標」。圖/取自海洋所網站

台灣每年平均會受3~4個颱風侵襲,颱風幾乎是台灣對夏天的共同記憶之一,颱風增強或減弱與海洋上層一兩百公尺厚的水溫結構相當密切,但在颱風來襲前開著研究船到海上觀測太瘋狂了,衛星遙測又只能觀測海洋表面薄薄一兩公尺,因此,台灣大學海洋研究所自力研發海上氣象浮標,記錄颱風過境時的氣象資訊。

海洋所團隊六月在鵝鑾鼻東南方海域400公里處佈置了一個「海氣即時觀測浮標」,錨碇在水深5577公尺處,蒐集氣象與水文資料,每30分鐘穩定傳輸至衛星與陸地接收站,即時顯示於台大海洋所的觀測網頁。浮標安然度過蓮花(Linfa)、昌鴻(Chan-Hom)、蘇迪勒(Soudelor)及天鵝(Goni)等颱風後,於九月初回收,預計明年再佈放一次。

專為了蒐集颱風數據,且如此高頻率的回傳氣象、海象與水下數據,「目前這可說是(世界)唯一!」海洋所所長魏慶琳說。

組圖
浮標結構與運作示意圖。水下500公尺的鋼纜掛了11個儀器,下接五千公尺長的尼龍繩則掛了5個儀器。水下儀器有「感應式傳導數據機」,不用串接電纜線,只要掛載於鋼纜便能傳數據,每分鐘記錄一筆資料、每6分鐘回傳至浮標中控系統、每30分鐘傳輸至衛星與陸地接收站。圖/魏慶琳提供、劉珈均組圖

世界各國的錨定點

「颱風是海洋和大氣交互作用。」海洋所副教授楊穎堅說,海洋上層的暖水層是預測颱風強度發展的重要數據,颱風像抽水馬達般將水往上抽,溫度大於26℃的暖水層越厚,颱風就能從中汲取越多能量。但這些熱含量資料可算是最難取得的資訊,若有即時觀測數據,便能掌握現場海洋環境,輸入數值預報模式的初始場以精進颱風預報。

世界各國的錨碇浮標多為觀測海面溫濕度、風速、風向、雨量、海表面溫度等資訊,有水下觀測的浮標集中於赤道,主要研究聖嬰現象或海洋聲學;西北太平洋為颱風好發區域,出於電力供給、水下通訊、後勤補給等技術困難,無專門觀測颱風的海氣象浮標;中央氣象局在台灣沿海佈有十幾個海上氣象浮標回傳即時海況,但觀測深度較淺,目的是監測波浪對近岸的影響。

台大海洋所的浮標主要蒐集水下溫度和鹽度資料,數據精細到小數點後第三位,並有海面氣溫、氣壓、風速、風向、日照等數據。魏慶琳說,溫度和鹽度就像海水的身分證,溫鹽圖(T-S Diagram)能描繪海水團的特性,並以此判別不同地域的海水。

海上浮標分布(2)
世界上的錨定浮標分佈點。圖/魏慶琳提供

用火車輪錨碇深海 「就像從10個101頂樓往下投空心球。」

海洋所助理教授張明輝分析過去50年西太平洋的颱風路徑圖,把海域網格化,分析颱風中心經過的熱區,因為2015年是聖嬰年,所以特別挑出過往聖嬰年的資料,再加上避開主權爭議區域、考量航程距離等條件,篩選出最後地點。

如何從海面準確地讓錨碇重物落在五千多公尺深的海底?這正是技術所在。

「海底也有高山低谷,選得不好,浮標可能就被海流拉下去了。」團隊必須事先量水深、勘查海底地形,尋找平坦之處。楊穎堅說,量測水深的方法是從船上將聲波打到海底,聲波來回時間搭配水下聲速便能算出距離;然而,海水並不是均勻液體,聲音在水下傳播速度不一,累積誤差很大,必須先放溫鹽深儀(CTD)蒐集水文資料,「花四小時只為了一筆數字──平均聲速是多少。」得到那數字就能正確算出水深。

接著再根據風向和海流流向決定船要怎麼走,並考量作業時間,船先開到上游處,再一邊行駛(五公里遠)一邊依序放下浮標、鋼纜、儀器,最後拋下錨碇重物。為何要搞得那麼複雜,船停著就好啦?楊穎堅比劃著:「船在海上停著不動是最痛苦的!會四面八方亂晃。」五千多公尺的距離實在太長了,浮標與火車輪會飄移,這些誤差距離也要事先算計。

楊穎堅形容:「這就像是從十個101頂樓往下投籃,還要投空心球!」

團隊採用的錨碇重物是──總重約2500公斤的10顆火車輪!沉重的輪子落在海底,穩住浮標和整串儀器。團隊計畫再向高雄捷運訂一批輪子,楊穎堅轉述,高捷人員曾興奮的說,原本這只能當廢鐵賣,沒想到能支持科學研究!早期他們曾用汽車引擎錨碇,不過機油會流遍甲板,油膩膩的很不方便。

六月佈放浮標的航次花了9天時間,而前期提出構想、規畫、實驗、設計等不過今年二月才開始,實驗與測試行程非常密集。過程中總有突發狀況,例如電路板突然燒掉;蓮花颱風過境時,氣象局向他們要即時資料,台大卻宣布要停電以整修電力,讓實驗室忙得人仰馬翻,從外部架設網站接收資料。

擺脫太陽能板 40顆電池就能撐一年多

颱風橫掃時的狂風暴雨壤大眾避之唯恐不及,但這海上浮標就是為了「堵」颱風。颱風過境時,海上風浪可高達十幾二十公尺,張明輝形容:「這大概像是把浮標從十幾公尺高的瀑布丟下去。」浮標被驚濤駭浪拋上拋下,承受著巨大撞擊和震動,它得以抵禦海上和颱風的嚴峻環境,端賴精密又省電的構造設計。

海象系統大致分成三個單元:氣海象資料、氣象主機、銥衛星通訊模組。技術師張宏毅在海研所工作超過30年,負責儀器設計,魏慶琳形容張宏毅是此次任務的靈魂人物,端賴他巧手設計系統,克服了海洋研究最讓人頭疼的電力問題。

「海洋研究最麻煩的就是電力!」自己設計的電路板可以免除所有不需要的部分,而為了省電,張宏毅設計了睡眠模式,一次只讓需要工作的單位醒著,其他一律休眠。「90%的電力都用在跟衛星通訊。」張宏毅說,浮標本身耗電量極少,靠40顆一號電池就能維持14個月。

作業(10)
團隊成員檢視浮標。圖/取自海洋所網站

一般海上浮標通常會裝設兩三片太陽能板供電,但太陽能板有許多缺點:受風面積大、難防鹽、水和強風,天氣不佳更可能斷電,「但壞天氣時更需要這些資料啊!」而海研所的系統耗電如此低,可免去太陽能板,整體浮標造型乾淨俐落。楊穎堅說,甚至有同行打電話詢問:「你們把太陽能板藏到哪裡了?」

浮標每30分鐘傳一次資料給銥衛星,銥衛星由66顆通訊衛星組成,通訊死角小,浮標隨時可傳輸資料(若換成其他衛星,其軌道可能一兩天才會重複經過同地點,資料只能在它經過上空時傳輸),每月傳輸費約需新台幣九萬元。規律傳輸也有「報平安」的功用,浮標並有GPS追蹤,出問題能馬上掌握,萬一有狀況就開船去追。

這樣一座浮標造價需要新台幣上千萬元,保險公司因其風險太大而不願承接──除了海上環境不佳,也有可能被有心人士破壞。魏慶琳說,「十幾年前曾發生過,我們在南海放浮標,看到GPS顯示咚咚咚跟著漁船進到越南去!」

即時顯示系統
颱風經過時,海洋水溫結構與溫濕度、氣壓變化過程(精采動態圖請點這裡)。圖/截圖自海洋所網站

為已逝學者圓夢 盼未來擴張觀測陣列

魏慶琳曾多次提到,這是為已逝的老友唐存勇圓夢,唐存勇是海洋所前副所長,推動成立中華民國海洋學會,他於美國就讀博士時的鑽研主題便是利用赤道的海上浮標研究聖嬰現象,為台灣建構一個海象氣象觀測網的構想最初便由唐存勇提出。這些是自家門口的資訊,交由外國研究不太方便,且各國災防等也需要這些數據,台灣若更清楚地掌握海洋,不僅有助防災,也能提升國際學術地位。

今年佈放浮標的試驗性質居多,九月初回收檢視後,預計明年再佈放一次,並新增海流資料和遠距遙控設定等功能,探測營養鹽、葉綠素濃度等海洋化學、生物面向也是未來的潛力研究。「明年希望能夠在兩個點放兩串浮標。」魏慶琳說:「理想狀況就是像赤道地區的浮標一樣形成一個面,布置成陣列。」不過,一串浮標就要上千萬,需要一定經費支持,研究才能長久進行。

「我們算是系統裡的小螺絲。」楊穎堅說,要正確預報颱風還需要很多螺絲,不可能靠汪洋中一串氣象浮標就大幅增進預報準確度。觀測數據首先在於了解所處環境,精進科學探索,才能逐步修正科學理論、回饋電腦數值模式預報。

颱風路徑
(左)西北太平洋過去50年的颱風路徑熱區(右)由上而下,經過浮標周圍的颱風依序為蓮花與昌鴻、蘇迪勒、天鵝。圖/魏慶琳提供、截圖自海洋所網站
成員2
六月佈放浮標的成員,左二為該航次領隊楊穎堅。圖/取自海洋所網站
文章難易度
劉珈均
35 篇文章 ・ 0 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。

0

16
3

文字

分享

0
16
3
隱藏在大氣裡的神祕訊息!用氣象衛星監測火山爆發產生的氣象波動與環境汙染
Ciao True_96
・2022/01/30 ・4193字 ・閱讀時間約 8 分鐘

國民法官生存指南:用足夠的智識面對法庭裡的一切。

  • 作者/邱麒豪(國立中央大學大氣物理研究所博士候選人)、劉千義(中央研究院環境變遷研究中心副研究員)

咦!地球彼端的火山爆發和我們有什麼關係?

距離臺灣八千多公里的東加王國發生了前所未有的火山爆發,當太平洋周遭國家開始擔心海底火山噴發引起海嘯的同時,卻有更多不為人知的事情正悄然發生。到底火山噴發的同時除了引發海嘯還造成什麼樣影響呢?讓我們一同來瞭解!


看不見也摸不著的氣象波動——大氣重力波

大氣的重力波現象並不罕見,通常是垂直方向上的氣塊受到擾動,在浮力(作為恢復力)與重力的雙重影響下而在水平面上形成振盪式的波動。

常見的氣流流經山峰並在背風處產生圓盤狀的雲系(莢狀高積雲),以及晴朗穩定天氣下出現的波狀高積雲即為大氣重力波在自然這張畫布下最好的圖繪。而火山爆發,同樣有機會引起大氣重力波。

西元 2022 年 1 月 15 日,臺灣時間下午 12 時 20 分(事發當地時間下午 5 時 20 分)左右,位於西南太平洋島國——東加王國首都努瓜婁發(Nuku’alofa)北方65公里的洪加湯加-洪加哈派(Hunga Tonga-Hunga Ha’apai)海底火山大規模爆發,伴隨而來的地震與引起的海嘯引發世界的關注。

這場可能是 21 世紀以來最大規模的火山噴發,其一連串的後續效應不僅被地震儀及海象儀器記錄下來,當天下午 8 時左右,臺灣的氣象站也陸續觀測到海底火山噴發造成的氣壓變化,根據觀測資料顯示,這次的海底火山噴發事件在臺灣造成的氣壓變化量約 1 至 2 百帕(hPa),這大約是日常標準大氣壓力的千分之一至千分之二的變動(圖一)。

【圖一】中央氣象局 222 個自動氣象站氣壓擾動動畫。
圖/中央氣象局第二組;資料來源:中央氣象局

若將地面氣壓資料的解析度提高到每分鐘,並將中央氣象局109個局屬測站由東南向西北排列,繪製成臺灣高密度測站氣壓擾動的二維時間序列圖(圖二),火山噴發由東南向西北傳遞的能量作用於大氣中最先於臺灣東南方的蘭嶼測站測量到,時間上和最晚被觀測到的馬祖測站相差約 25 分鐘。其次,火山噴發造成的大氣波動除了氣壓變化最為劇烈的主波外,尚有前導波與數次的餘波產生。

【圖二】中央氣象局 109 個局屬測站氣壓擾動二維時間序列圖。
圖/黃椿喜博士;資料來源:中央氣象局

綜觀全球的大眼睛——從氣象衛星看見大氣重力波

從上圖可以觀察到,這些波動的週期約為 10 到 15 分鐘,不容易從 10 分鐘的觀測資料中發現。目前在西太平洋與東太平洋地區監測的地球同步衛星向日葵八號(Himawari-8)與 GOES-17,可分別提供 2.5 分鐘與 1 分鐘高解析度的衛星觀測,對於高頻的大氣波動將有比過往更好的解析能力。

不只是地面氣象觀測站,位於地球上空 3 萬 6 千公里的地球同步衛星同樣也捕捉到火山噴發的證據。日本氣象衛星 Himawari-8 觀測到火山噴發後產生的陣陣漣漪(圖三),以火山噴發口為中心產生的漣漪即為大氣的重力波現象。

【圖三】火山噴發造成雲頂高度變化的重力波振盪。
圖/邱麒豪;資料來源:Himawari-8

東加王國所在的區域不僅位於向日葵八號的觀測網內,也涵蓋在美國的地球同步衛星 GOES-17 監測之中。下圖(圖四)為 GOES-17 氣象衛星紅外線水氣頻道每 10 分鐘的亮度溫度差,藉由對流層中層的水氣頻道雲圖可以明顯看到火山爆發產生的內重力波由火山口為圓心向外傳遞。

【圖四】火山噴發造成的重力波振盪。
圖/CIMSS / UW-Madison;資料來源:GOES-17

火山噴發引起快速上升的氣流與火山灰造成的重力波現象在學理上是可行的,但在觀測上實屬少見,特別是海底火山能將大量的火山灰與氣體穿過海洋快速釋放至大氣中,並造成如此壯觀的大氣波動並不是件容易的事。

這場大氣波動產生的雲系高度深,範圍廣,觀測到的雲頂紅外線亮度溫度達 -105.18ºC 可能打破了自 20 世紀末有雲頂溫度的監測以降,最低溫的紀錄(圖五)。

【圖五】火山噴發產生的重力波雲,雲頂亮度溫度達 -105.18ºC。
圖/CIMSS / UW-Madison;資料來源:GOES-17

除了上述的兩顆地球同步衛星,搭載於美國國家航空暨太空總署(NASA)之 Aqua 衛星上的大氣紅外探空儀(Atmospheric Infrared Sounder,AIRS)也同時發現了此一現象(圖六)。德國尤利希超級運算中心的大氣科學家——霍夫曼博士(Dr. Lars Hoffmann)說:「AIRS 自 2002 年 5 月開始觀測以來,從未在過往的火山噴發個案中發現過類似的情況」,這也意味著這次的海底火山噴發事件是前所未有的劇烈。

【圖六】AIRS/Terra 觀測到數量極為龐大的同心圓狀重力波雲。
圖/Dr. Lars Hoffmann;資料來源:AIRS/Terra

英國牛津大學物理系大氣、海洋與行星物理組的氣候科學家 Scott Osprey 博士也表示:「這次噴發可能會干擾熱帶地區風向週期性的逆轉,長遠看來或許會造成歐洲地區天氣型態的改變,必須非常小心地關注它造成的變化」,可見整個地球系統都可能因為這次的火山爆發造成巨大的影響。

雲圖之外——衛星於汙染物探勘之應用

衛星不僅僅能夠監測雲層的移動與大氣中的水氣分佈,近年來較為廣泛的應用是使用衛星針對大氣中的汙染因子做大範圍的遙測。舉凡工業污染排放之氣溶膠、交通源排放之二氧化氮,以及生質燃燒產生之煙塵與黑碳微粒,均可藉由衛星的觀測進而推估汙染程度,並搭配氣象模式的模擬進行短期的預警。

下圖(圖七)為 NASA 的 Suomi-NPP 衛星觀測到的氣膠垂直剖面分佈與雲頂高度,可以清楚看到伴隨火山噴發的氣膠粒子衝破對流層進入平流層,高度可達 30 公里。這些氣膠粒子在平流層中不易沉降至地表,長期下來可能會對氣候造成重大影響。舉例而言,氣膠依照光學特性的不同可粗略分為散射能力較強與吸收能力較強的兩大群體,散射能力較強的氣膠進到平流層中將造成更多的太陽短波輻射被反射回外太空,進而降低地球平均溫度(氣膠直接效應);反之吸收能力好的氣膠則是會讓地球溫度上升。

【圖七】Suomi-NPP 探測到火山噴發的氣膠粒子可衝破對流層進入平流層。
圖/Dr. Ghassan Taha;資料來源:Suomi-NPP

而對流層中的氣膠對氣候的影響更為複雜,會進一步改變雲的微物理狀態,在特定條件下吸濕性高的氣膠容易成為雲的凝結核,若大氣中的水氣含量不變,這些新形成的雲凝結核有可能與大氣中既有的雲滴競爭原先的水氣,進而致使雲滴數目增加且雲滴平均的粒徑降低,進而散射截面積增加,反射更多太陽光而達到降溫的效果。但也因為雲滴粒徑變小後,變得不利於雲滴粒子間的碰撞合併過程而形成為雨滴,使得地表降水減少與雲的生命週期增加,此謂氣膠間接效應。

不管是氣膠的直接效應或是間接效應都非常複雜,會受到氣膠種類、氣膠數量、氣膠粒徑分佈、大氣條件等影響,也正因為充滿了各種不確定性,氣膠的氣候效應預測非常困難,目前還需要更多的觀測,特別是用大範圍的衛星觀測加以驗證與評估。

火山噴發除了氣膠粒子的污染以外,對環境造成的另一個衝擊是大量的氣體被釋放到大氣中。常見的火山氣體有:水氣(H2O)、二氧化碳(CO2)、二氧化硫(SO2)、硫化氫(H2S)與氮氧化物(NOx)等。

以二氧化硫為例,評估大氣中微量氣體多寡的單位為杜布森(Dubson, DU),指的是一大氣壓的空氣柱中,該氣體分子累積起來的厚度(垂直積分)多寡。若將氣柱中的二氧化硫全部累積在一起相當於 10 微米厚,稱為 1 DU 的二氧化硫。SO2 氣候平均值約略低為 0.5 DU,歐洲氣象衛星開發組織(EUMETSAT)的 MetOP-B 與 MetOP-C 觀測到的峰值高達 50 DU 以上,高於氣候平均值 100 倍。(圖八)

【圖八】MetOP-B 與 MetOP-C 發現火山噴發的二氧化硫濃度超過氣候平均值 100 倍。
圖/Dr. Simon Carn;資料來源:MetOP-B & MetOP-C

氣象與環境衛星遙測之展望

近年隨著科技的發展與遙測技術的精進,氣象衛星能提供的不僅僅是精美的天氣雲圖,還有許多從雲圖看不出來的科學議題可加以探討。這些科學議題不單只存在於象牙塔內,更多且更重要的是生活上的應用。社會大眾關心的是:下午的聚會會不會下雨?明天空氣汙染有多糟?或是下禮拜一晚上會多冷?

衛星掩星觀測技術的發展(如:福衛三號、福衛七號、Sentinel-6 等)補足了廣大洋面探空資料的缺失以及人力施放的不足,蒐集偏折角資訊與折射率變化推估出的大氣垂直溫溼度剖面,藉由數值預報模式的資料同化系統改善天氣預報的誤差

汙染物濃度的監測也可以藉由衛星的觀測進行評估,不論是民眾在乎的近地表懸浮微粒濃度抑或是工業燃燒造成的空氣汙染,皆可藉由衛星的探測第一手掌握(如文章提到的 MetOP-B、MetOP-C 以及 Sentinel-5P)。

降雨來自天空中的雲,若能對雨的前驅物—雲有更深的瞭解,降雨的推估也能做得更準確。以我們所處的東亞地區而言,像是以 Himawari-8 觀測而開發的雲微物理科學資料,或是國際上整合多重衛星觀測的日本 GSMaP 、美國 NASA IMERG 等衛星推估的地面降水資料就是很好的例子

當然,科學的發展並不是單純為民生服務,但在發展科學的同時能兼顧民眾的福祉相信也是社會大眾所樂見的。

延伸閱讀

  1. Liu, C.-Y., C.-H. Chiu, P.-H. Lin, and M. Min (2020), Comparison of Cloud‐Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde, J. Geophys. Res., Vol 125.
  2. Lin, C.-A., Y.-C. Chen, C.-Y. Liu, W.-T. Chen, J. H. Seinfeld, C.-K. Chou (2019), Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sens., Vol 11, 1738.
  3. Explosive eruption of the Hunga Tonga volcano” in CIMSS Satellite Blog.
  4. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere” in nature’s news article.
  5. 中央氣象局預報中心副主任黃椿喜博士臉書
  6. 報天氣-中央氣象局」臉書粉絲專頁
Ciao True_96
1 篇文章 ・ 3 位粉絲
主修大氣科學,參加天文社。 年輕的外表下住著古老的靈魂,喜歡看老電影,也喜歡拿著底片相機記錄生活中的點點滴滴。 是個科學工作者但對藝術、音樂、歷史與文化也稍有涉略,畢竟「什麼都略懂一點,生活就多采一些!」

2

4
3

文字

分享

2
4
3
精準預測氣象的「掩星技術」,讓你知道颱風放不放假!
科技大觀園_96
・2021/11/16 ・2380字 ・閱讀時間約 4 分鐘

新颱風生成後,大家最關心的就是颱風的路徑、帶來的風雨大不大,以及——到底放不放颱風假?要能預測和評估颱風的走向影響,可靠的氣象觀測資料是不可或缺的。這就不得不提,在我們頭頂上認真執行觀測任務的人造衛星,以及它們身懷測知氣象變化的絕技!

每次颱風來襲,大家都關心會不會放颱風假。圖/pixabay

貢獻全球氣象資料,福爾摩沙衛星功不可沒

過去福爾摩沙衛星三號(福三)執勤十年,為全世界多個氣象中心與研究單位提供無以計數的資料,可謂台灣在國際氣象上的外交大使,於減少天氣預報誤差的貢獻度上,更曾被評為全球前五。福三榮退後,接棒的福爾摩沙衛星七號(福七)也在今年二月完成任務軌道的全部部署。福三和福七都不只有一枚衛星,而是由各 6 枚衛星組成的衛星星系(constellation)。每一枚衛星就像在不同位置巡守、收集氣象情報並互相通報的將士,使得觀測範圍可以覆蓋地球各個區域,提供即時而完整的三維觀測數據。

福衛七號結構示意圖。圖/國家太空中心

但福七與行經南北極的「繞極衛星」福三不同的是,它在南北緯 50 度間軌道繞行,主攻台灣、赤道與中低緯度颱風盛行區的觀測。因此福七可以提供密集度更高、更多的溫度、壓力、水氣等氣象資料。國家太空中心推估,它可提升氣象預報準度 10% ——以颱風為例,可以讓 72 小時的路徑誤差改善 10%,協助我們更精準地評估氣象變化與預防災害。

每日可提供 4000 點大氣垂直剖線資料、大幅提升全球氣象預報準確度的福七,究竟是怎麽辦到的?答案就是掩星技術 (Radio Occultation) 。

掩星技術,讓衛星成為太空中最精準的溫度計!

在天文學上,「掩星」指的是一個天體,在另一個天體與觀測者之間通過,產生的遮蔽現象。但英文中的「Occultation」,也可以指前景中的物體,阻擋遮蔽背景中任何物體的情形。而所謂的「掩星技術」,就是利用電磁波訊號在經過大氣層時,會因穿透不同溫度、壓力或濕度的空氣層,被「遮蔽」而產生轉向、變慢、減弱等的特性,來反演出地球上空之溫度、氣壓和濕度。

衛星與衛星之間,本來因為地球的阻隔看不到彼此,但可以接受來自彼此的電磁波訊號。福七的主要酬載儀器——全球衛星導航系統無線電訊號接收儀」(TGRS),可以接受美國全球定位系統(GPS) 和俄羅斯全球導航衛星系統(GLONASS)全球定位衛星通過大氣與電離層的折射訊號。接著,通過計算電波訊號的偏折程度,就可以反演出大氣與電離層中的溫度、水氣、壓力、電子密度等數據。

掩星技術在 1995 年才開始投入應用,而從 2006 年的福三,到如今福七計劃中積累的研究經驗,使台灣成為這項新穎技術領域的佼佼者。掩星技術所得到的資料具備高準確度和解析度,也擁有不需要大量接收訊號的衛星,就可以得到大範圍數據、降低成本的優勢,不僅可以用作氣象預報,更能幫助我們監控和增進對氣候變遷的瞭解。

衛星加上同位素的助攻,可以使天氣預報更精準

另一方面,除了改善觀測一般氣象資料如溫度、濕度、大氣壓力等參數的準確度,在氣象觀測中新增測定不一樣的參數——如大氣水分子的同位素,也可以讓我們的天氣預報更精準!

過去礙於資料的取得有限,同位素分析在氣象觀測與預報中常被忽略。但近年來人造衛星技術的發展,為氣象科學推開新的一扇窗。來自歐洲太空總署、搭載光譜分析儀的衛星 IASI ( Infrared Atmospheric Sounding Interferometer ),讓東京大學的研究團隊,可以利用其所搜集到的大氣水氣資訊,在氣象預報的模型中,第一次嘗試納入同位素資訊的考量來做分析。

我們都知道,擁有相同質子數、不同中子數的氫與氧元素之同位素,會讓個別水分子的重量變得更重或輕一些。水分子同位素對氣相和液相轉換相當敏感,與一般的水分子 H2O 相比,較重的水分子如 H2HO 或H218O 會更傾向於凝結成水珠,或更難蒸發。因此蒸發與降雨過程等大氣運動,便會影響不同同位素水氣分子的分佈。追蹤它們的行跡,能增進我們對氣象系統的瞭解。

研究團隊以 2013 年在日本發生的低壓事件作為參照,發現納入同位素的數據之後,氣象模型能更好地模擬這次事件的整體氣壓情形。而在全球的尺度,尤其是中緯度及北半球地區,融合同位素資訊後,氣象預報如氣溫及濕度預測的準確度,也都有所提高。雖然這只是初步的探究,但科學家期許,未來進一步完善氣象觀測衛星對同位素資料的收集,能使人類更往精準氣象預測的目標邁進。

人造衛星就像是科學家的千里眼,能觀測千里之外的風雲變化。發展衛星技術,不僅能讓我們更精準預測氣象,在全球化的現代,也能在國際上發揮「Taiwan Can Help」及互助的精神;各國對航太技術的投入與數據資源共享,更是科研工作與人類社會的一大福音。

福爾摩沙衛星拍攝的美麗福爾摩沙島。圖/國家太空中心

參考文獻

所有討論 2
科技大觀園_96
82 篇文章 ・ 1109 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

4
3

文字

分享

0
4
3
沒有颱風的七月!颱風為何銷聲匿跡?——《科學月刊》
科學月刊_96
・2020/09/11 ・1882字 ・閱讀時間約 3 分鐘 ・SR值 515 ・六年級

國民法官生存指南:用足夠的智識面對法庭裡的一切。

〈本文選自《科學月刊》2020年9月號〉

  • 賈新興/臺灣大學大氣科學系博士,前中央氣象局長期預報課課長,現職為天氣風險管理公司總監。

夏季是颱風出現的季節,往年的 7 月平均會有 3~4 個颱風生成。但今(2020)年 7 月卻罕見地無颱風生成,主要原因是季風槽受太平洋高壓,以及較大的垂直風切所導致。

夏天是颱風的好發季節。圖:Pexels

颱風消失了?生成條件大盤點

每年的 7 月是颱風開始活躍的月份,平均而言,7 月都有 3~4 個颱風生成,從 1951 年以來的颱風生成資料顯示,歷年 7 月最少都有 1 個颱風生成,最多則有 8 個颱風生成,分別是 1971 年 7 月和 2017 年 7 月。

然而今年的 7 月,整個西北太平洋海域卻靜悄悄的,沒有半個颱風生成,到底是發生了什麼事,讓 7 月颱風銷聲匿跡了呢?就讓我們一一檢視颱風生成的條件。

生成條件一:溫暖的洋面

颱風生成在海面上,廣大的洋面能提供足夠水氣,當水氣蒸發釋放潛熱時,就可以讓颱風有足夠的能量成長。

一般來說,當海水溫度超過 26°C 時,才會產生足夠的水氣。而西北太平洋地區,每月氣候平均的海溫都在 27°C 以上,其中 2 月的平均海水溫度也有 27°C(圖一)。

圖為東經120度~160度,與北緯5度~20度之間的區域,即西北太平洋區域平均每月海溫值。通常海水溫度高於26℃時可以產生足夠的水氣,而往年7月的平均海溫都超過27℃,是颱風形成的重要條件之一。

因此,西北太平洋溫暖的海域,時時刻刻都有足夠的水氣提供颱風生成所需的能量。從西北太平洋區域今年 7 月平均的海水溫度分布圖發現,整個西北太平洋的海溫至少都超過 29°C(圖二)。

溫暖的洋面,雖然提供了足夠的能量,但為什麼颱風仍舊長不出來呢?讓我們再檢視其它颱風生成的動力條件!

條件二:活躍的季風槽

颱風是個逆時針旋轉的低壓中心。夏季時,當北半球的西南季風,和太平洋高壓所帶來的東風或東北風相遇,兩者所造成的輻合作用,會使低氣壓的漩渦繼續加深,讓風速增強。

當低氣壓的近地面最大風速到達或超過每小時 62 公里或每秒 17.2 公尺時,我們就將它稱為颱風。這個伴隨西南季風和太平洋高壓南側的東風或東北風相遇的地方,通常稱作季風槽,或是俗稱颱風生長的故鄉。

從 7 月大氣低空風場的氣候平均圖,可以看到西南季風和太平洋高壓南側的東風形成的季風槽,從東經 120 度往東南方向延伸至東經 160 度。比較今年 7 月的大氣低空風場(圖三)可以發現,整個季風槽不見了,原來應該是季風槽所在的區域,一整個都被太平洋高壓的東風所佔據了。

而太平洋高壓是個穩定且下沉的空氣,但颱風是個垂直發展的低氣壓,因此,偏強的太平洋高壓讓今年的西南季風無法深入至西北太平洋區域,剷平了颱風的家,也就讓颱風長不起來了。

條件三:垂直風切不能太大

另外,颱風垂直發展的高度至少可以達到對流層頂的高度,因此當高空風和低空風的風向差異太大時,也就是一般我們所說的垂直風切太大時,就無法讓水氣凝結所釋放出的潛熱更有效地提供颱風發展,造成颱風的垂直發展不好,颱風就不容易生成。

根據7月氣候上的垂直風切分布顯示,在西北太平洋區域的風切平均介於 -10~5之間。但今年 7 月的垂直風切,則介於 -10~10 之間,明顯比氣候平均值高,因此不利於颱風的垂直發展。

都是高壓和垂直風切惹的禍!

從以上颱風的生成條件來看,今年 7 月雖然有足夠的水氣提供的能量來源,但要讓颱風旋轉起來的季風槽,因為太平洋高壓太強,使得季風槽無法向東推進到西北太平洋區域;偏強的太平洋高壓帶來穩定的下沉空氣,連帶的也讓垂直風切太大,颱風更是長不起來!

今年 7 月的太平洋高壓太強,不但讓颱風長不起來,連帶的也是造成臺北創下自 1897 年以來的最高溫紀錄 39.7°C 的原因之一!至於為什麼今年的太平洋高壓如此強大,就是另一篇故事了。

圖二(上):以往的7月氣候平均海溫分布和大氣 850 百帕(hPa)流線圖,圖中粗黑線為季風槽,此在正常的氣候條件下是有利於颱風生成的。圖三(下):今年7月平均海溫分布和大氣850百帕流線圖。讀者可以發現,今年的海溫分布雖較以往高,有利於颱風出現,但原先的季風槽位置卻被太平洋高壓所佔據,造成颱風無法生成。

〈本文選自《科學月刊》2020年9月號〉

科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

科學月刊_96
232 篇文章 ・ 2398 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。