0

0
0

文字

分享

0
0
0

葉列寧彗星消失了?

臺北天文館_96
・2011/10/28 ・1149字 ・閱讀時間約 2 分鐘 ・SR值 513 ・六年級

前陣子被末日論者封為「末日彗星」的葉列寧彗星(C/2010 X1(Elenin))(請參見天文新知2011-08-19 勿信網路謠言,C/2010 X1(Elenin)彗星對地球無任何威脅!),原本在9月底通過太陽與地球之間、無法觀測的日子之後,應該在10月初重新出現在日出前的天空,亮度約7等,東昇時間並隨之愈來愈早,觀測條件愈來愈好。但全球各彗星觀測者卻紛紛表示:找不到這顆彗星了!讓彗星觀測者們相當驚訝。

就在10/22,義大利天文學家Rolando Ligustri在彗星預測位置拍到一片約6’×40’大小的「星雲」(右方影像的偏上方);他起初以為是雜訊,但經過多幅影像疊加之後,確認它是葉列寧彗星殘骸。消息公布後,讓全球彗星觀測者大吃一驚。這未免和「常理上」該有的彗星模樣差太多了吧!

在此同時,另一組觀測者Remanzacco天文台的Ernesto Guido、Giovanni Sostero和Nick Howes也在同一晚拍到這片「彗星雲」。由於這片雲氣實在是太暗、太淡了,他們本來以為是月光或飛機飛越時的光線散射結果;但隔天晚上,他們發現那片雲還在那兒,而且按照葉列寧彗星預測的軌跡移動位置,因而證實確為葉列寧彗星的殘骸。Guido等人利用特殊方式(請見Remanzacco Observatory的天文部落格)處理觀測結果,發現這片「彗星雲」其實呈現圓錐狀,總長超過1.5度,而且面對太陽的一側厚達10角分,比背對太陽的一側還輪廓鮮明。

對於這個觀測結果,Guido等人經比對彗星資料庫,發現葉列寧彗星這個模樣和1994年撞擊木星的休梅克-李維9號彗星(Shoemaker-Levy 9)分裂後的長相很像。所以是否是彗星分裂的結果導致它「不見了」?另有彗星專家認為:或許只是彗髮消散,變得比較不明顯,而這片雲其實是殘餘的彗尾,至於彗核嘛,則是因為太暗而觀測不到(低於20等)。

-----廣告,請繼續往下閱讀-----

目前關心這顆彗星的觀測者們都打算持續追蹤觀察,希望能找出為何葉列寧彗星會變成這副模樣的原因。

資料來源:SpaceWeather

(2011.10.26更新)

美國航太總署(NASA)於本新聞刊出後,也發出一則消息指出:葉列寧彗星消逝,已可忘記它的存在(NASA Says Comet Elenin Gone and Should Be Forgotten),新聞中指出這顆彗星的彗核分裂到非常小而難以偵察的地步,分裂後的碎屑將沿著原彗星軌道持續運動,約在12,000年後,如果這些碎屑還存在的話,就會再度轉回地球附近。

-----廣告,請繼續往下閱讀-----

這顆彗星的近日點在地球與太陽之間,約0.5AU;但遠日點卻在太陽系邊緣的歐特雲(Oort Cloud)附近,幾乎是太陽到最近的恆星南門二的2/3遠了。因此,12,000年的軌道週期,對人類而言或許很久,但對這些天體而言,卻只是在太陽系中散佈一圈的時間而已。

彗星是由冰、石頭、塵埃和有機質等組成的,直徑僅約數公里到數十公里,但這些組成物質並不紮實,而是鬆鬆散散的聚在一起。因此,要讓彗核分裂並不費力,且一旦開始分裂,就再無復合之時。

資料來源:NASA Says Comet Elenin Gone and Should Be Forgotten

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 41 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
除了太陽和行星,那些太陽系間的愉快小夥伴們──《宇宙必修課》
天下文化_96
・2018/01/08 ・3635字 ・閱讀時間約 7 分鐘 ・SR值 528 ・七年級

行星外的漆黑等於空無一物嗎? 圖/Valera268268 @Pixabay

從遠處看過來,我們的太陽系彷彿空空如也。

如果你用圓球包住太陽系,這圓球大到能容下行星中最外圍的海王星軌道;那麼太陽、所有行星和它們的衛星占住的體積,只比圓球體積的 1 兆分之 1 要多一點點。

不過,太陽系也並不是真的如此空曠,行星之間的空間還有許多岩塊、小圓石、冰球、塵埃、成群的帶電粒子和多艘在遠方飛航的探測船。除此之外,太陽系空間裡,也到處都是強大的重力場和磁場。(太陽系最外圍的行星不再是冥王星了,請接受這個事實。)

多不勝數的固定班底:大大小小的星際碎片

行星際空間其實雜物繁多,所以我們的地球以每秒 30 公里的速率在軌道上行進時,每天都會掃起數百噸的流星體,其中尺寸多半小於沙粒。這些流星體高速衝撞地球大氣產生的熱,會造成它們的表面汽化,於是大部分直接焚毀在地球的高層大氣裡。地球脆弱的物種有賴於這層大氣保護罩,才得以繁衍演化。較大的流星體,除了表面會被燒焦,基本上會相當完整的抵達地球表面。

-----廣告,請繼續往下閱讀-----

看似漆黑無物的太陽系,實際上飛著各式物質。 圖/NASA

你或許認為經過了 46 億次的繞行太陽之旅之後,地球應該已經清掉了軌道上的所有碎片,但答案是:還沒有。不過和地球過去的遭遇比起來,現在的情況顯然大有改善。大約在太陽和行星形成 5 億年之後,有多到難以想像的碎片不停掉落到地球上,產生的撞擊熱不斷累積,導至大氣熾熱無比,地殼也完全熔融。

其中一顆非常大的碎片,導致了月亮的形成。在分析阿波羅探月計畫太空人帶回來的樣本後,發現月球的鐵和較重元素的含量意外的少,這表示火星大小的迷途原行星和地球發生擦撞後,那些從地球缺鐵的地殼和地函迸發出去;繞著地球運行的碎片,後來可能聚合成我們低密度的美麗月亮。

從地球缺鐵的地殼和地函迸發出去;繞著地球運行的碎片,後來可能聚合成我們低密度的美麗月亮。 圖/NASA

-----廣告,請繼續往下閱讀-----

除了這個特別重大的事件,嬰孩時期的地球經歷的重轟炸期並不獨特,因為太陽系的其他行星和大型天體也都經歷過。大家也都受到類似的重大破壞,不過只有缺乏大氣的月球和水星,大致保存了這個時期的撞擊紀錄。

太陽系不但受到形成時留下的廢料撞擊,在近行星際空間裡還散布著火星、月亮和地球受到高速撞擊後,從表面彈出的大大小小岩石。流星體撞擊的電腦模擬證明,撞擊區附近的表岩噴飛的速率,高到可以掙脫天體的重力束縛。我們從地球上火星隕石的發現率,可以推斷出每年約有 1 千噸的火星岩石掉到地球上;而每年或許也有大約等量的月岩掉到地球上。回想起來,我們其實用不著特地飛到月球去拿月球岩石,地球上就多得是。只不過,我們沒辦法挑精撿瘦,而且在阿波羅計畫年代,我們也不知道有這回事。

地球上就撿得到月球岩石?!但你認得出哪顆是來自月球的石頭嗎…… 圖/NASA

可能會讓物種滅絕的狠角色「小行星」

大部分太陽系的小行星分布在火星與木星間,形狀扁平的小行星主帶上。在傳統上,小行星的發現者有命名權,高興用什麼來命名都可以。通常在畫家描繪的圖示裡,小行星帶是太陽系盤面上一個散布著凌亂崎嶇岩塊的區域。

-----廣告,請繼續往下閱讀-----

小行星帶的總質量不到月球質量的 5%,月球的質量則只比地球的 1% 要多一點點而已。雖然小行星的質量不大,但它們的軌道不斷受到擾動,因此形成了一群大約數千顆特別危險的近地小行星,它們的扁平軌道會和地球軌道交錯。簡單的計算指出,它們大部分會在 1 億年內撞上地球。尺寸大於 1 公里的小行星在撞上地球時,產生的能量會高到嚴重破壞地球的生態系統,可能使大部分的陸地物種滅絕

這當然是糟透了。

小行星並不是唯一會危害地球生物的外太空天體。在海王星之外的柯伊伯帶(Kuiper Belt),帶寬大約和海王星與太陽的距離相當,其中成員包括了冥王星,是一個滿布彗星的環形區域。遠在六十多年前,荷蘭裔美國天文學家柯伊伯(Gerard Kuiper)就指出,在海王星軌道外頭的寒冷深空裡,藏著從太陽系形成時期殘存下來的冰質天體。由於這附近沒有大質量行星來吸收這些彗星,於是大部分彗星就靜靜的繞太陽運行了數十億年。

就如同小行星帶一樣,部分柯伊伯帶天體的軌道極扁平,並會和其他行星軌道相交。例如冥王星和同軌道的那群冥族小天體,它們較靠近太陽時軌道區會和海王星軌道交錯。另外還有一些柯伊伯帶天體的軌道會深入太陽內圍,放肆的穿過許多行星軌道;在這群天體中,最著名的是哈雷彗星。

-----廣告,請繼續往下閱讀-----

在柯伊伯帶後方很遠的地方,大約在前往最鄰近恆星的半途上,有一個稱為歐特雲的彗星儲存庫,它呈現球形分布,名字來自首先推斷出它存在的荷蘭天文物理學家歐特(Jan Oort)。

歐特雲(Oort Clude)是長週期彗星的源頭,這類彗星的軌道週期比人類生命還要長。與柯伊伯帶彗星有別的是,歐特雲彗星可以從任何方向,以任何軌道傾角進入太陽系內圍。1990 年代最明亮的海爾─波普彗星(Comet Hale-Bopp)及百武彗星(Comet Hyakutake),都是源自歐特雲,而且在短時間內都不會再度回歸。

海爾─波普彗星。 圖/NASA

有大氣層真好:太陽風極光

太陽風與地球磁場相接想像圖。 圖/NASA @wikipedia

-----廣告,請繼續往下閱讀-----

太陽表面每秒會散失超過 1 百萬噸的質量,而形成的物質流稱為太陽風,太陽風主要的成分是帶電的高能粒子。太陽風粒子時速最高可達 1 千公里,粒子以這種高速向外泛流成群穿過太空,只有遇到行星磁場時才會轉向。

太陽風的部分粒子以螺旋軌跡掉向行星的磁北極和磁南極時,會撞擊氣體分子,激發大氣發出多彩多姿的極光。哈伯太空望遠鏡已在土星及木星的極區發現極光,而出現在地球上的北極光及南極光,時不時的提醒我們:有大氣層的保護真好。

我們通常說,地球的大氣層從地球表面向上延伸數十公里。而低軌道上的衛星,在 100 公里到 400 公里高的軌道上,大約 90 分鐘會繞地球一圈。

你雖然無法在這種高度呼吸,不過這個區域仍有不少大氣分子存在,摩擦力已足以讓衛星慢慢失去軌道能量而下墜。為了要對抗這種阻力,低軌道的衛星偶爾要重新提升軌道高度,免得掉回地球,焚毀在大氣中。

-----廣告,請繼續往下閱讀-----

大氣層邊界的另一種定義為:「地球氣體分子的壓力」和「行星際氣體分子壓力」相等之處。根據這種定義,地球大氣層的範圍有數千公里。在這個高度上方的 36,800 公里處(大約是地球與月亮距離的 1/10),是通訊衛星的國度。在這個特殊的高度,地球大氣的影響無關緊要,衛星的速率也很低,並且恰好和地球的自轉速率相同,所以衛星每天剛好繞地球一圈。相對於地面,這種衛星看似一直飄浮在正上空,是理想的訊號中繼站,能為地表不同的區域轉傳訊號。

謝謝「重力盾牌」木星,為地球擋下危險

牛頓重力定律指出,雖然你若距離行星愈遠,受到行星重力的影響也愈弱,但這個影響並不會降到零。木星用它強大的重力場,把很多原先會在太陽系內圍造成重大破壞的彗星趕開。所以對地球而言,木星就像重力盾牌,也像在保護地球的粗壯大哥,讓地球享有長達億年,相對平安和寧靜的時期。如果沒有木星提供的保護,地球生命除了很難演化成更有趣的複雜生命,也會活在可能受到致命撞擊而滅絕的危險環境中。

探索土星的卡西尼號探測船(Cassini–Huygens)。 圖/NASA

我們一直在利用行星的重力場為太空探測船提供能量。就以前往探索土星的卡西尼號探測船為例,它受到許多行星的重力協航,其中金星兩次、地球(由金星返回時)和木星各一次。探測船在多顆行星間輾轉飛航,以酷似撞球檯上撞球的路徑行進,是很常見的操作方式。如果不這樣,火箭提供的飛行速率和能量,不足以讓我們的小探測船前往目的地。

-----廣告,請繼續往下閱讀-----

眾多命名不盡的小行星

我現在對太陽系的行星際碎片有些許責任了。2000 年 11 月,由李維(David Levy)和舒梅克(Carolyn Shoemaker)發現的主帶小行星 1994KA,後來命名為「13123– 泰森(13123 Tyson)」來向我致敬。我雖然享有這個殊榮,但其實也沒有什麼好自大的,因為還有許多類似的小行星,以喬笛、哈洛特和湯瑪斯等常見的名字命名。還有一些小行星的名字叫梅林、龐德和聖誕老人。

目前發現的小行星,數量已將近數十萬顆,可能很快就會對我們命名的能力產生挑戰。不管這種時日是否會來臨,我覺得相當欣慰的是,以我命名的那個宇宙碎片在行星間遊蕩時,並非孤苦無依,而是有一大堆以真人和虛構人物為名的其他天體為伴。

此刻讓我更高興的是,我的小行星並沒有直衝地球而來。

 

 

本文摘錄自《宇宙必修課:給大忙人的天文物理學入門攻略》,天下文化出版。

 

 

 

 

 

天下文化_96
139 篇文章 ・ 621 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

2
2

文字

分享

1
2
2
第九行星到底存不存在?--《物理雙月刊》
物理雙月刊_96
・2017/09/23 ・2722字 ・閱讀時間約 5 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

  • 文/陳英同|中研院天文所博士後研究員

肉眼、望遠鏡、推理:這就是整個太陽系了嗎?

人類用肉眼觀察行星。圖/Pixabay

遠古以來,人類在深夜裏仰望天穹, 結合神話故事,想像出一百多個星座。就在這樣充滿故事但是顯少改變的夜空中,有幾個星點被古代天文學家發現了規律的週期運動,這就是我們現在所知道的太陽系行星,並且以最有名的幾個希臘神來命名,例如:阿波羅(Apollo)-太陽、維那斯(Venus)-金星、朱比特(Jupiter)-木星等等。

不過畢竟肉眼的能力有限,頂多只能看到視星等五等多的天王星(不過天王星不是肉眼發現的,是利用望遠鏡偶然發現的)。在中古世紀,人們覺得這七顆行星應該就是太陽系中所有的行星了(不過確定他們是繞著地球還是太陽轉,又是另一個很長的故事了)。

在1846年,數學及天文望遠鏡發展了一段很長時間後,天文觀測精確度以及計算能力都剛好滿足時,天文學家發現最外圍的天王星似乎在天空中有著不規則的運動,而且剛好可以假設一顆還未發現行星的重力擾動來解釋,也因此而發現了海王星。

-----廣告,請繼續往下閱讀-----

海王星,發現!source:Wikimedia

有了這個成功的例子,天文學家開始利用相同的方法去找尋是否海王星外是否還有未發現的行星。在1930年終於發現了冥王星,這也是唯一美國人發現的行星(雖然我們現在知道冥王星被降級成「矮行星」,再也不是太陽系的行星了······)。

冥王星。source:Wikimedia

在這之後,人們「又開始覺得」這應該就是整個太陽系的模樣了,但是理論天文學家就不這麼覺得了。荷蘭天文學家揚.歐特(Jan Oort)首先在 1932 年左右首先提出長週期彗星的來源,應該是一個距離 20000 au (天文單位,地球到太陽的距離)的球狀雲團 ,也就是歐特雲。

-----廣告,請繼續往下閱讀-----

庫柏(Gerard Peter Kuiper)跟艾吉沃斯(Kenneth E Edgeworth)在 1950年代時,提出了海王星外應該有個太陽系形成時,所殘留下來的原始行星盤的假說。費南德茲(Julio Fernández)與中央大學的葉永烜老師在 1987 年進一步用數值計算模擬推論出位於 35 到 50 au 應該要存在一個彗星帶或是行星盤,才能解釋短週期彗星的成因。有了這些理論的基礎,1992 年麻省理工學院的朱維特(David Jewitt)終於找到在發現冥王星 60 多年之後的第二顆庫柏帶天體1992QB1,並且開啟了海王星外天體的大航海時代。

在古柏帶已知天體,數據源自小行星中心。 在主帶天體顏色為綠色,而分散的天體為橙色。四個外側行星是藍色的。海王星幾顆已知的特洛伊為黃色,而木星的為粉色。分散在木星軌道和古柏帶之間的天體被稱作半人馬小行星。圖中單位為天文單位。底部明顯的缺口是由於很難把他們從銀河背景中分辨出來。 source:wikipedia

在 2006 年,任職於加州理工學院的布朗(Michael Brown),利用第一代的大視場天文數位相機,發現了絕大部分的比較亮或是比較大的庫柏帶天體,包含表面有水冰光譜的妊神星(Haumea)家族、推測是內歐特雲的賽德娜(Sedna, 小行星 90377),以及跟冥王星大小差不多的鬩神星(Eris)。鬩神星的發現也間接了否定了冥王星行星的定位,西方媒體也戲稱布朗是冥王星殺手。

在接下來的十年中,觀測天文學家利用更大的望遠鏡、更新更廣的電子相機,找到了超過二千個庫柏帶天體。由於離太陽越遠,太陽系原始物質的空間密度會越來越低,在近二十年的觀測裡,也並沒有發現其他會影響庫柏帶天體的天體。這時,大家又開始覺得,真正的太陽系應該就是這樣了:庫柏帶跟歐特雲中間應該沒有什麼大東西存在了。

-----廣告,請繼續往下閱讀-----

第九行星,下一個就是你:但是你在哪裡?

自從賽德娜發現後十年,行星動力學一直無法很好的解釋它的來源與存在。由於它離海王星實在非常的遠,離海王星軌道最近的距離比海王星軌道還多一倍 (76 au v.s. 30 au),動力學模擬的結果也證明在46億年內(太陽系的年齡) 它都不會改變它的軌道,那它是如何跑到到那個位置的呢?

一般相信這個與世獨立的存在需要一些外力,例如漂流的恆星通過太陽系外、或是太陽形生成於星團中,而後才離開星團。但這些理論大多只能說是假設,缺少觀測上的支持。但是在這十年間,天文學家陸續找到數顆與賽德納很像的天體,並且發現這些天體的軌道傾角與近日點的位置有特別的趨勢(見圖1、2),但由於數量過少,這個領域的研究方向一直還未確定。就在去年的二月,加州理工學院的巴特金(Konstantin Batygin)與布朗敲響了第九行星理論的第一聲響,發表了一顆十倍地球質量行星位於 250 au 的理論模型。而這個模型剛好可以適當的解釋遠近日點的天體為何都偏向同一邊(見圖)以及傾角分佈,以及他們如何生成的。

圖1. 內歐特雲天體的近日點大都面向上方。圖/作者提供

行星科學界最重要的定期會議之一是美國天文學會下的 DPS (Division for Planetary Sciences)會議,在裡面接受報告的論文都是最新、最有影響力的研究結果,許多科學媒體也會參與會議,然後立即發出新聞稿。在這個會議中,巴特金受邀發表大會演講,接在他之後的數個論文報告,也都提出一些觀測上跟理論上的一些支持的論點,包含:

-----廣告,請繼續往下閱讀-----
  1. 雪柏(Scott Sheppard)又找到數顆遠近日點的天體
  2. 太陽自轉軸的偏差能用第九行星來解釋
  3. 這些遠近日點的天體剛好在這顆推論行星的軌道共振點上。

當然,除了正方的結果,也出現了不少反方的研究,其中最重要的二個結果就是:

(1) 這顆行星的存在將會把現在所見的庫柏帶外的結構摧毀,

(2) 銀河盤面並沒有巡天資料,所以觀測上有明顯的偏差。

現在這個狀況,舉一個眾所皆知的例子,就像UFO到底是外星人太空船,亦或只是地球上的飛行器或者各種光影的組成而已?先不討論照片合成或是誤認,正方反方都能提出不少「說法」或是「間接證據」,但是現況就是我們並沒有確切的證據來證明UFO是外星飛船。

觀測天文學家與理論天文家存在一種微妙的關係:既競爭又合作。理論天文學家可以利用一些假設來預測現在技術看不到的東西或現象,觀測天文學家則是不斷用最新的科學技術去發現、或是證明假設是否正確。一但當科學技術進步到能觀測到應該要觀測的天體時,眾多理論在這時就是大審判的時候了。

目前許多國際研究團隊包含卡內基天文台、加州理工學院及日本國立天文台,都如火如荼地進行尋找第九行星的觀測工作,尤其是位於夏威夷的 Subaru 望遠鏡,由於它是目前口徑最大(八公尺)的大視場望遠鏡,所以擔任起許多重要的觀測工作。所以第九行星到底存不存在?相信這個問題在不久的將來就會真相大白了。

-----廣告,請繼續往下閱讀-----

圖2:作者發現的內歐特雲天體-2010-GB174。圖/作者提供

本文摘自《物理雙月刊》39 卷 8 月號 ,更多文章請見物理雙月刊網站

所有討論 1
物理雙月刊_96
54 篇文章 ・ 15 位粉絲
《物理雙月刊》為中華民國物理學會旗下之免費物理科普電子雜誌。透過國內物理各領域專家、學者的筆,為我們的讀者帶來許多有趣、重要以及貼近生活的物理知識,並帶領讀者一探這些物理知識的來龍去脈。透過文字、圖片、影片的呈現帶領讀者走進物理的世界,探尋物理之美。《物理雙月刊》努力的首要目標為吸引台灣群眾的閱讀興趣,進而邁向國際化,成為華人世界中重要的物理科普雜誌。