Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

屋頂上的氣象先生 守望彰化天氣30年

劉珈均
・2015/09/18 ・4777字 ・閱讀時間約 9 分鐘 ・SR值 498 ・六年級

-----廣告,請繼續往下閱讀-----

銀星氣象站
呂權恩在自家屋頂上蓋的簡易觀測平台。圖/呂權恩提供。

民國66年七月底、八月初,中颱賽洛瑪(Thelma)和強颱薇拉(Vera)一北一南,相繼橫掃基隆和台北。颱風的災情景況震懾了當時年僅十歲的呂權恩,從此對變幻莫測的氣象深深著迷,一頭栽入就超過30年,他在自家房子屋頂架設儀器,成立觀測站,忠實記錄彰化數據。

他的「銀星氣象站」取得中央氣象局登記證,為民間唯一氣象站(現在則為暫停狀態),也曾是彰化雲林一帶唯一的「氣象站」(註1)。他曾因故停止觀測十年,儀器也已難以滿足量測需求,他希望能募資重建像樣的觀測站,成為推廣氣象知識的據點。

彰化和美鎮的尋常巷子裡,一棟透天厝門口掛著「銀星研究氣象站」藍色牌子,說是研究站,其實相當克難,自搬家過後,呂權恩的儀器只能分散擺在住家角落。「自記虹吸雨量儀」、風速風向儀(今年八月中被蘇迪勒颱風吹壞了)設置於鐵皮屋頂的簡易平台,「自記氣壓計」則在神明廳的櫃子上滴答作響,曬衣場空間的一方桌板擺著紀錄本,一箱箱紙本天氣圖資料堆疊在鐵櫃上,櫃裡則堆滿氣象相關書籍與資料。

IMG_2698
呂權恩的儀器分散在屋頂、頂樓空位。他面前的儀器為「自記風向風速儀」,蘇迪勒颱風打壞的風扇就擱置儀器旁。圖/劉珈均攝

每天清晨五六點,呂權恩便起床調校儀器、記錄自家數據、看看中央氣象局的資料和圖表,接著出外到工廠上班,數十年如一日,記錄和美地區的地面數據。現在多了預報中部在地天氣的服務,趁空檔在FB預告雨訊。 他認為,大家對於天氣資訊的需求相當單純,就是想知道當天是否會下雨、要如何安排行程。

-----廣告,請繼續往下閱讀-----

此次訪問開始前,他說待會可能會下大雨,不一會兒窗外果真下起傾盆大雨,呂權恩也不時滑著手機回覆網友提問(每天約有幾十人提問,在地人、國中生、附近廟宇等都是常客),或是看看雷達回波圖,預告下一波陣雨,訪問就在一陣陣雨聲中進行。

一人觀測站 氣象工作像星星一樣無法窮盡

這「一人氣象站」的誕生可以追溯到呂權恩13歲時,起初他只是用簡單符號記錄天氣陰晴,漸漸地加入溫度、風向風級、雨量等項目。當兵時呂權恩努力存錢,購置自記溫濕度儀和自計氣壓儀,一個簡單但項目完整的氣象觀測站於是成形。

呂權恩並向氣象局申請登記證,因為場地不夠正規,持續申請了六七年,氣象局在79年「破例」發放證照給呂權恩,他也按月傳回觀測數據給氣象局。將測站取名為「銀星」是因為,研究氣象是不能停歇、無止盡的工作,就像天上星星無法數清,綿久恆長。

IMG_2849
氣象局發給銀星氣象站的登記證(呂銀山為呂權恩舊名)。圖/劉珈均攝

因為家貧,呂權恩國中畢業後就出社會工作,他曾北上求職,擔任電視台撰寫氣象資訊的幕後人員,後來回鄉任職於各式工廠,工時冗長,一天只有一兩小時得以自由運用,他的氣象知識皆靠自修而來,有問題就寫信給氣象局、索取資料。

-----廣告,請繼續往下閱讀-----

早年資訊不發達,研究天氣是相當孤獨的工作,呂權恩都靠撥打氣象專線166獲取氣象資訊,遇颱風或特殊氣象時,常得緊密盯著天氣變化,跟著氣象人員一起「加班」。近年在女兒建議下,呂權恩開設了FB粉絲頁與社團「彰化天氣搶先報」,即時預報中部地區的天氣和雨況,最快幾點、最慢幾點下雨。他說,今年梅雨季的陣雨估算地準,還曾有網友對他說:「雨是你說下就下的嗎!」但也有雲進來就突然消散,預測失準的情況。

天氣圖與颱風警報單的故事

IMG_2818
民國70年代的天氣圖。圖/劉珈均攝

他從民國73年開始,一口氣訂了50年份的天氣圖,「兩三天寄一次,有時候也會漏掉。」呂權恩足足累積了30年份的天氣圖,後來各項資訊上網後轉由網路下載。早年天氣圖為手繪,密集的字跡、數字與曲線是氣象員每日不懈的觀測成果。逢特殊天氣時,圖上的曲線就像被擾動的漣漪,標誌著這些遠洋而來的颱風或鋒面,呂權恩翻著這些天氣圖,信手拈來背後故事。

有張雙颱衛星雲圖被呂權恩稱為鎮台之寶,南北半球各一個強烈颱風,旋轉方向相反,在衛星雲圖上幾乎對稱,宛如兩個相互牽引的星系,「雙颱本來就罕見,像這樣對稱的更是絕無僅有!」呂權恩說。當時報載,北半球的羅拉(Lola)在海面上消散,南半球的南姆(Namu)卻造成所羅門群島幾萬人無家可歸、百人以上死亡或失蹤的災情,那年正逢哈雷彗星回歸,有民眾因此穿鑿附會是「掃把星」帶來麻煩。

1083_001(1)
呂權恩稱為鎮台之寶的雙颱衛星雲圖。75年5月,北半球的羅拉(Lola)與南半球的南姆(Namu)被媒體形容為兇神惡煞的巨眼。圖/呂權恩提供

收藏裡有份泛黃的颱風警報單,那是民國52年的強颱葛樂禮(Gloria),當時台灣省氣象所(中央氣象局前身)認為颱風會北轉,不會侵台,民眾可以安心睡覺,結果颱風又轉回來,路徑變為西北颱,造成台北嚴重水患、300多人傷亡或失蹤等災情,氣象所所長鄭子政更因此下台、移送法辦。

-----廣告,請繼續往下閱讀-----

讓呂權恩印象最深刻的,莫過於民國75年八月的韋恩颱風(Wayne)。韋恩颱風是台灣氣象史上第一次由中部登陸的颱風,造成台灣中部重大災情。它的生命週期長達20天,期間它登陸台灣兩次,讓中央氣象局3度發布海上及陸上颱風警報,路徑錯綜複雜,更有一度減弱成熱帶性低氣壓後又起死回生,再度發展成颱風。

當時呂權恩每隔兩三小時便撥打氣象專線166,半夜亦然,「當時預報間隔跟資訊項目跟現在差不多,就差在形式用電話或電視。」中央氣象局發佈海上警報後,每3小時更新一報;發佈陸警後,每小時加發最新颱風位置。 他從電話聽取預報資訊,自己手繪警報單,貼在住家附近橋樑的電線杆上,也帶到公司給同事看,「看的人也不多,但我還是貼。」他笑著說。他對韋恩從濁水溪登陸那天記憶猶新,大清早他聽完預報後,直接打電話給老闆,堅決告知他當天不去上班了,不久風雨立驟,雨勢猛烈,狂風掀起路樹和屋瓦,先前視他反應過度的左鄰右舍也紛紛轉變態度。

圖片2
(左)民國52年葛樂禮颱風警報單;(右)今年天鵝颱風警報單。圖/劉珈均攝
Wayne_1986_track
韋恩路徑圖。圖/取自wiki

暫停觀測十年後 今日重啟未竟藍圖

氣象站建立後,如常運行了十幾年,不過,和美鎮鄰近海邊,在海風吹拂下,儀器日漸損壞,加上經濟拮据,有些耗材也缺乏補給,到民國90年代逐步停止部分項目,僅持續測量氣壓和雨量。後因忙於生計和家庭,觀測工作不得不暫停,這一停就是十年,至去年才恢復記錄雨量、氣壓、風速。

為什麼暫停許久後又恢復觀測,甚至嘗試募資? 有什麼好理由讓大家資助一個民間測站?

-----廣告,請繼續往下閱讀-----

他回答:「就興趣啊!」他不想放棄繼續研究天氣的可能性,並戲稱:「我沒有背景,只有背影。」因此報著開放心情嘗試群眾募資這新穎方式。他說,現在申請參訪氣象局或測站有一定難度,他想成立一個開放性、教育性質的氣象站。

他比劃著,描述理想中的氣象站要設在空曠場地,佔地十幾坪,白色圓塔頂樓擺儀器、太陽能發電和風力發電機,下面樓層則有觀測室和展覽室,戶外有觀測坪。氣象站會提供資料服務,並對外開放,讓一般人或學生有親民的氣象站可以參訪。

不過,現實因素是一大挑戰,這願景需要新台幣百萬以上的經費才能實現,若「折衷」在屋頂上蓋個堅固的觀測平台,也需要二三十萬。 他去年兩度於flyingV募資網提案,只募到兩萬元,「只能有多少錢,做多少事。」他說,觀測儀器都要幾萬元起跳,專用記錄紙、記錄筆等耗材也需要經費。為了省錢,自計氣壓計的記錄紙原為一天用,他調整氣壓計的發條,讓一張記錄紙可以記錄一周的資訊。

呂權恩的成果曾寫成《台灣的天氣》一書、編進彰化縣的鄉土教材,和美鎮誌、消防員、建築商也曾向他請教在地天氣資訊。「氣象資訊是很在地的東西。」他說,以前沒有儀器的時代,人們口耳相傳經驗,累積為地方諺語,科學數據則能有根據地累積,讓往後回顧、研究時有所依循。

-----廣告,請繼續往下閱讀-----
IMG_2712
爬上兩道鐵梯才能上屋頂的簡易觀測站。圖/劉珈均攝
圖片1
(左上)自記氣壓計;(左下)今年蘇迪勒颱風的氣壓記錄,呂權恩說這是他量測過最低的氣壓;(右)自記風速風向儀是他僅存不多的儀器之一。圖/劉珈均攝

氣象局組長:「喔我記得那位小朋友的故事!」

早年呂權恩常連絡預報中心,詢問問題或分享自身觀測成果,氣象局第二組組長李育棋在氣象局服務30幾年,剛入氣象局時就在預報中心服務,聽記者詢問銀星氣象站,他說:「喔我記得那位小朋友的故事!」李育棋說,早年通訊不發達,加上處於戒嚴時期,氣象資料有國防敏感性,一般人不易取得,經內部查詢,當時氣象局發證照給銀星氣象站其實鼓勵研究的性質居多,並未嚴格查驗儀器或數據。(P.S.聊了一下,組長才發現自己和呂權恩不過相差十歲)

「弄一個完善的百葉箱就需要四五十萬了。」李育棋說:「建立一個嚴謹的氣象站起碼大概需要新台幣兩百萬。」加上後續維運、保養等也需要資金,一般民間或私人單位無力負擔運作一個測站的成本。

氣象法修正後,有限度放寬民間參與預報(註2),測站也由許可制改為報備制。李育棋說,在許可制時期,除了氣象局,只有各縣市水利署、農田水利會等單位會為了農業研究目的而成立測站、向氣象局登記;現今有些校園等「教育單位」會設立測站,目前尚未有民間或私人所有的測站。在這層意義上,銀星的確是「民間」唯一氣象站。

氣象局不會干涉同好之間交流知識、科普教育,或是環境評估等為特定用途而進行的氣象觀測,不過,氣象資料運用有其界線,若要拿私自測量的數據當作憑據甚至預報,就涉及專業和法規問題。

-----廣告,請繼續往下閱讀-----

要公開發佈氣象消息,或成為氣象局採納數據的「專用站」,須經一套嚴謹的申請與審核流程,氣象局會勘查場地、校驗儀器、審核觀測數據和儀器保養等,「作好環境控制,才能確保那些數據是在相同標準下產生和可信度。」若審核通過,氣象局才會採納該測站的數據,收錄進資料庫,作為日後預報或研究參考。 1086_001

圖片3
民國70年代的手繪天氣圖,一張約為月曆般大,手繪而成。圖/陳亭瑋攝。
圖片7
民國80年代天氣圖改為粉色(左為內頁,右為封面),對折後約A4大小,開始使用電腦打字。圖/陳亭瑋攝

 

註:

  1. 依據「專用觀測站認可辦法」,氣象觀測站依用途和觀測項目分成13個種類。早年彰化和雲林一帶只有「雨量站」和「農業氣象站」,沒有全面觀測氣象資訊的站點。
  2. 氣象法於民國73年制定,92年及104年修正。第一次修正時,許可其他機關、學校、團體或個人可以發布氣象或海象預報,但禁止災害性天氣預報;第二次修正再放寬,除了不得發佈災害性天氣中的颱風、豪雨,其他如大雨、雷電、乾旱、濃霧、寒潮、冰雹、龍捲風、強風、低溫、海水倒灌等,都可開放發佈,但須同時註明中央氣象局的資訊。

參考資料:颱風資料庫氣象法修正QA中央氣象局知識特輯Scimu「屋頂上的氣象先生」募資案

-----廣告,請繼續往下閱讀-----
文章難易度
劉珈均
35 篇文章 ・ 1 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
說好的颱風呢?!氣象預報不準?要準確預測天氣有多難?
PanSci_96
・2023/09/12 ・4646字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

小心啊,打雷囉,下雨收衣服啊!

氣象報告說好是晴天的,怎麼一踏出門就開始下雨了?

昨天都說要直撲的颱風,怎麼又彎出去了?

多麼希望天氣預報能做到百分之百正確,只要出門前問一下手機,就能確定今天是出大太陽還是午後雷陣雨,是幾點幾分在哪裡?又或是最重要的,颱風到底會不會來?

-----廣告,請繼續往下閱讀-----

但你知道,現在的氣象預報,已經動用全球最強的超級電腦們了嗎?既然如此,我們現在的氣象預報能力到底有多準?我們什麼時候能徹底掌握這顆蔚藍星球上發生的所有天氣現象?

天氣預報有多困難?

雖然我們常常嫌說氣象預報不準、颱風路徑不準、預測失靈等等。但我們現在的實力如何呢?

目前美國國家海洋暨大氣總署的數據分析,對西太平洋颱風的 24 小時預測,誤差平均值約 50 英哩,也就是一天內的路徑誤差,大約是 80 公里。其他國家的氣象局,24 小時的誤差也約在 50 到 120 公里之間。台灣呢?根據中央氣象局到 2010 年的統計,誤差大約在 100 公里內。也就是臺灣對颱風的預測,沒有落後其他先進單位。

現在只要打開手機隨便開個 APP,就能問到今天的天氣概況,甚至是小區域或是短時間區間內的天氣預報。但在過去沒有電腦的時代,要預測天氣根本可以不可能(諸葛孔明:哪泥?)。

-----廣告,請繼續往下閱讀-----

近代且稱得上科學的天氣預測可追溯回 1854 年,那個只能靠人工觀測的年代,英國氣象學家為了保護漁民出海的安危,利用電報傳遞來蒐集各地居民的觀察,並進行風暴預報。後來演變成天氣預報後,卻因為有時預報不準,預報員承受了輿論與國會批判的巨大壓力,最後甚至鬱鬱離世。

19 世紀的氣象學家為了保護漁民出海的安危,會利用電報蒐集各地居民的觀察進行風暴預報。圖/Giphy

在電腦還在用打洞卡進行運算的年代,一台電腦比一個房間還大。氣象局要預測天氣,甚至判斷颱風動向,得要依賴專家對天氣系統、氣候型態的認知。因此在模擬預測非主流的年代,我們可以看到氣象局在進行預測時,會拿著一個圓盤,依據量測到的大氣壓力、風速等氣象值,進行專家分析。

當時全球的氣象系統,則是透過全球約一千個氣象站,共同在 UTC 時間(舊稱格林威治時間)的零零時施放高空探測氣球,透過聯合國的「World Weather Watch」計畫來共享天氣資料,用以分析。關於氣象氣球,我們之前也介紹過,歡迎看看這集喔。

也就是說,以前的颱風預測就是專家依靠自身的學理與經驗,來預測颱風的動向,但是,大氣系統極其複雜,先不說大氣系統受到擾動就會有所變化,行星風系、科氏力、地形、氣壓系統這些系統間互相影響,都會造成預測上的失準,更遑論模擬整個大氣系統需要的電腦資源,是非常巨大的。

-----廣告,請繼續往下閱讀-----

那麼,有了現代電腦科技加持的我們,又距離全知還有多遠呢?是不是只要有夠強的超級電腦,我們就能無所不知呢?

有了電腦科技加持,我們的預報更準了嗎?

當然,有更強的電腦,我們就能算得更快。才不會出現花了三天計算,卻只能算出一個小時後天氣預報的窘況。但除了更強悍的超級電腦,也要更先進的預測模型與方法。現在的氣候氣象模擬,會先給一個初始值,像是溫度、壓力、初始風場等等,接著就讓這個數學模型開始跑。

接著我們會得到一個答案,這還不是我們真正要的解,而是一種逼近真實的解,我們還必須告訴模型,我容許的誤差值是多少。什麼意思呢?因為複雜模型算出來的數值不會是整數,而是拖著一堆小數點的複雜數字。我們則要選擇取用數值小數點後 8 位還是後 12 位等等,端看我們的電腦能處理到多少位,以及我們想算多快。時間久了,誤差的累積也越多,預測就有可能失準。沒錯,這就是著名的蝴蝶效應,美國數學暨氣象學家 Edward Norton Lorenz 過去的演講題目「蝴蝶在巴西揮動了翅膀,會不會在德州造成了龍捲風?」就是在講這件事。

回到颱風預報,大家有沒有發現,我們看到的颱風路徑圖,颱風的圈怎麼一定會越變越大,難道颱風就像戶愚呂一樣會從 30% 變成 100% 力量狀態嗎?

-----廣告,請繼續往下閱讀-----
輕颱鴛鴦的颱風路徑潛勢圖。圖/中央氣象局

其實那不是颱風的暴風圈大小,而是颱風的路徑預測範圍,也就是常聽到的颱風路徑潛勢圖,​是未來 1 至 3 天的颱風可能位置,颱風中心可能走的區域​顯示為潛勢圖中的紅圈,機率為 70%,所以圈圈越大,代表不確定性越大。​

1990 年後,中央氣象局開始使用高速電腦,並且使用美國國家大氣研究中心 (NCAR) 為首開發的 Weather Research and Forecasting 模型做數值運算,利用系集式方法,藉由不同的物理模式或參數改變,模擬出如同「蝴蝶效應」的結果,運算出多種颱風的可能行進路線。預測時間拉長後,誤差累積也更多,行進路徑的可能性當然也會越廣。

「真鍋模型」用物理建模模擬更真實的地球氣候!

大氣模擬不是只要有電腦就能做,其背後的物理複雜度,也是一大考驗。因此,發展與地球物理相關的研究變得非常重要。

2021 年的諾貝爾物理學獎,就是頒給發展氣候模型的真鍋淑郎。他所開發的地表模式,在這六十年間,從一個沒考慮地表植物的簡單模型,經各家發展,變成現在更為複雜、更為真實的模型。其中的參數涵蓋過去沒有的植物反應、地下水流動、氮碳化合反應等等,增強了氣候氣象模型的真實性。

-----廣告,請繼續往下閱讀-----
2021 年的諾貝爾物理學獎得主真鍋淑郎。圖/wikimedia

當然,越複雜的模型、越短的時間區間、越高的空間精細度,需要更強大的超級電腦,還有更精準的觀測數據,才能預測接下來半日至五日的氣象情況。

世界上前百大的超級電腦,都已被用來做大氣科學模擬。各大氣象中心通常也配有自己的超級電腦,才能做出每日預測。那麼,除了等待更加強大的超級電腦問世,我們還有什麼辦法可以提升預報的準度呢?

天氣預報到底要怎樣才能做得準?

有了電腦,人類可以紀錄一切得到的數據;有了衛星,人類則可以觀察整個地球,對地球科學領域的人來說,可以拿這些現實資訊來校正模擬或預測時的誤差,利用數學方法將觀測到的單點資料,乃至衛星資料,融合至一整個數值模型之中,將各種資料加以比對,進一步提升精準度,這種方法叫做「資料同化 (Data Assimilation)」。例如日本曾使用當時日本最強的超級電腦「京」,做過空間解析度 100 公尺的水平距離「局部」超高解析氣象預測,除了用上最強的電腦,也利用了衛星資料做資料同化。除了日本以外,歐洲中程氣象預測中心 (ECMWF),或是美國大氣暨海洋研究中心 (NOAA),也都早在使用這些技術。

臺灣這幾年升空的福衛系列衛星,和將要升空的獵風者等氣象衛星,也將在未來幫助氣象學家取得更精準的資料,藉由「資料同化」來協助模擬,達到更精準的預測分析。

-----廣告,請繼續往下閱讀-----

如果想要進一步提升預報準度呢?不用擔心,我們還有好幾個招式。

人海戰術!用更多的天氣模型來統計出機率的「概率性模擬」

首先,如果覺得一個模型不夠準,那就來 100 個吧!這是什麼意思?當我們只用一種物理模型來做預測時,我們總是會追求「準」,這種「準確」模型做的模擬預測,稱為「決定性模擬」,需要的是精確的參數、公式,與數值方法。就跟遇上完美的夢中情人共度完美的約會一樣,雖然值得追求,但你可能會先變成控制狂,而且失敗機率極高。

「準確」的模型就跟遇上完美情人共度完美約會一樣,雖然值得追求,但失敗機率極高。圖/Giphy

不如換個角度,改做「概率性模擬」,利用系集模擬,模擬出一大堆可能的交往對象,啊不對,是天氣模型,再根據一定數量的模擬結果,我們就可以統計出一個概率,來分析颱風路徑或是降雨機率,讓成功配對成功預測的機率更高。

製造一個虛擬地球模擬氣象?

再來,在物理層面上,目前各國正摩拳擦掌準備進行等同「數位攣生 (Digital Twin) 」的高階模擬,簡單來說,就是造出一個數位虛擬地球,來進行 1 公里水平長度網格的全球「超高」解析度模擬計算。等等,前面不是說日本可以算到 100 公尺的水平距離,為什麼 1 公里叫做超高解析度?

-----廣告,請繼續往下閱讀-----

因為 500 公尺到 1 公里的網格大小也是地表模式的物理適用最小單位,在這樣的解析度下,科學家相信,可以減少數值模型中被簡化的地方,產生更真實的模擬結果。

電腦要怎麼負荷這麼大的計算量?交給電腦科學家!

當然,這樣的計算非常挑戰,除了需要大量的電腦資源,還需要有穩定的超級電腦,以及幾個 Petabyte,也就是 10 的 15 次方個位元組的儲存設備來存放產出的資料。

不用為了天氣捐贈你的 D 槽,就交給電腦科學家接棒上場吧。從 CPU、GPU 間的通訊、使用 GPU 來做計算加速或是作為主要運算元件、到改寫符合新架構的軟體程式、以及資料壓縮與讀寫 (I/O)。同時還要加上「資料同化」時所需的衛星或是全球量測資料。明明是做氣象預報,卻需要等同發展 AI 的電腦科技做輔助,任務十分龐大。對這部分有興趣的朋友可以參考我們之前的這一集喔!

結語

這一切的挑戰,是為了追求更精確的計算結果,也是為了推估大魔王:氣候變遷所造成的影響必須獲得的實力。想要計算幾年,甚至百年後的氣候狀態,氣象與氣候學家就非得克服上面所提到的問題才行。

一百年來,氣候氣象預測已從專家推估,變成了利用龐大電腦系統,耗費百萬瓦的能量來進行運算。所有更強大、更精準的氣象運算,都是為了減少人類的經濟與生命損失。

對於伴隨氣候變遷到來的極端天氣,人類對於這些變化的認知還是有所不足。2021 年的德國洪水,帶走了數十條人命,但是身為歐洲氣象中心的 ECMWF,當時也只能用叢集式系統算出 1% 的豪大雨概率,甚至這個模擬出的豪大雨也並沒有達到實際量測值。

我們期待我們對氣候了解和應對的速度,能追上氣候變遷的腳步,也由衷希望,有更多人才投入地球科學領域,幫助大家更了解我們所處的這顆藍色星球。

也想問問大家,你覺得目前的氣象預報表現得如何?你覺得它夠準嗎?

  1. 夭壽準,我出門都會看預報,說下雨就是會下雨。
  2. 有待加強,預報當參考,自己的經驗才是最準的。
  3. 等科學家開發出天候棒吧,那才是我要的準。更多想法,分享給我們吧

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
1

文字

分享

0
4
1
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3388字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

-----廣告,請繼續往下閱讀-----

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

-----廣告,請繼續往下閱讀-----

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

-----廣告,請繼續往下閱讀-----

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

-----廣告,請繼續往下閱讀-----

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
-----廣告,請繼續往下閱讀-----