0

0
0

文字

分享

0
0
0

研究高質量恆星的樂園

臺北天文館_96
・2011/10/07 ・774字 ・閱讀時間約 1 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

位在仙后座方向的NGC 281是個距離非常近的氣體塵埃雲,而且所在位置遠離銀河系盤面,少了銀盤大量塵埃的阻擋,因而成為天文學家研究高質量恆星(high-mass stars)的最佳目標之一。

所謂的高質量恆星是指質量在8倍太陽質量以上的恆星。這些恆星在星系中具有重要的關鍵地位,因為在它們短短一生中所釋放出的能量非常多,可能影響星系的演化。但不幸的是,由於高質量恆星通常很遠,而且常常被大量氣體塵埃遮蔽而難以觀測,所以所知甚少。NGC 281裡的星團是個特例,因為它距離地球僅約9,200光年,與銀盤的垂直距離則約1,000光年左右,遠離塵埃匯聚的銀盤,因此天文學家幾乎可以不受影響地觀察星團中的恆星形成狀況。從右上圖可觀看NGC 281與銀河盤面的相對位置關係。

Comparison of Optical and Infrared Images of NGC 281. Credit: X-ray: NASA/CXC/CfA/S.Wolk; IR: NASA/JPL/CfA/S.Wolk  左圖下方這張NGC 281影像是由錢卓的X射線資料(紫色)和史匹哲的紅外資料(紅、綠、藍等色)組合而成,總觀測時數高達27.5小時。NGC 281裡的高質量恆星吹出的強力恆星風深深影響周圍的環境,其強烈輻射也會加熱周圍氣體,將其像沸騰的水一樣「蒸發」進星際空間中。這個過程形成了許多大型氣體塵埃柱,如同左方圖片的左側景象。這些氣體塵埃柱中可能藏有新近正在形成的恆星。而高質量恆星最後終將發生超新星爆炸,將物質和能量回歸星系。

NGC 281又被暱稱為「小精靈星雲(Pacman Nebula)」,因為星雲外型長得像小精靈電腦遊戲裡的那個大嘴巴小精靈一樣。在可見光影像中(左圖上方),小精靈的「嘴巴」特徵是因塵埃氣體遮蔽光線而顯得比較深色的部分;但在史匹哲紅外影像中,這個嘴巴部分的塵埃卻顯得相當明亮,與可見光差異頗大。

-----廣告,請繼續往下閱讀-----

資料來源:Living the High Life

轉載自台北天文館之網路天文網網站

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

2
1

文字

分享

0
2
1
量子力學可以幫你判斷物體溫度?從古典物理過渡到近代的一大推手——黑體輻射
PanSci_96
・2024/03/24 ・3634字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

1894 年,美國物理學家邁克生(Albert Abraham Michelson)作為芝加哥大學物理系的創立者,在為學校的瑞爾森物理實驗室(Ryerson Physical Laboratory)落成典禮致詞時,表示:「雖然無法斷言說,未來的物理學不會比過去那些驚奇更令人驚嘆,但似乎大部分的重要基本原則都已經被穩固地建立了。」

以我們現在的後見之明,這段話聽起來固然錯得離譜,但在當時,從 17、18 到 19 世紀,在伽利略、牛頓、馬克士威等前輩的的貢獻之下,物理學已經達成了非凡的成就。

我們現在稱為古典的物理學,對於整個世界的描述幾乎是面面俱到了,事實上沒有人預料到 20 世紀將出現徹底顛覆世界物理學認知的重要理論,量子力學。

而這最一開始竟只是出自於一件不起眼的研究,關於物體發出的光。

-----廣告,請繼續往下閱讀-----

萬物皆輻射

在此我們要先理解一個觀念:所有物體無時無刻不在發出電磁波輻射,包括了你、我、你正使用的螢幕,以及我們生活中的所有物品。

至於為什麼會這樣子呢?其中一個主要原因是,物體都是由原子、分子組成,所以內部充滿了帶電粒子,例如電子。這些帶電粒子隨著溫度,時時刻刻不停地擾動著,在過程中,就會以電磁波的形式放出能量。

除了上述原因之外,物體發出的電磁波輻射,還可能有其他來源,我們就暫時省略不提。無論如何,從小到大我們都學過的,熱的傳遞方式分成傳導、對流、輻射三種,其中的輻射,就是我們現在在談的,物體以電磁波形式發出的能量。

那麼,這些輻射能量有什麼樣的特徵呢?為了搞清楚這件事,我們必須先找個適當的範本來研究。

-----廣告,請繼續往下閱讀-----

理想上最好的選擇是,這個範本必須能夠吸收所有外在環境照射在上面的光線,只會發出因自身溫度而產生的電磁輻射。這樣子的話,我們去測量它發出的電磁波,就不會受到反射的電磁波干擾,而能確保電磁波是來自它自己本身。

這樣子的理想物體,稱為黑體;畢竟,黑色物體之所以是黑的,就是因為它能夠吸收外在環境光線,且不太會反射。而在我們日常生活中,最接近理想的黑體,就是一點也不黑、還超亮的太陽!這是因為我們很大程度可以肯定,太陽發出來的光,幾乎都是源於它自身,而非反射自外在環境的光線。

或者我們把一個空腔打洞後,從洞口發出的電磁波,也會近似於黑體輻射,因為所有入射洞口的光都會進入空腔,而不被反射。煉鐵用的鼓風爐,就類似這樣子的結構。

到目前為止,一切聽起來都只是物理學上一個平凡的研究題目。奇怪的是,在對電磁學已經擁有完整瞭解的 19 世紀後半到 20 世紀初,科學家儘管已經藉由實驗得到了觀測數據,但要用以往的物理理論正確推導出黑體的電磁波輻射,卻遇到困難。正是由此開始,古典物理學出現了破口。

-----廣告,請繼續往下閱讀-----

黑體輻射

由黑體發出的輻射,以現在理論所知,長得像這個樣子。縱軸代表黑體輻射出來的能量功率,橫軸代表黑體輻射出來的電磁波波長。

在理想狀況下,黑體輻射只跟黑體的溫度有關,而跟黑體的形狀和材質無關。

以溫度分別處在絕對溫標 3000K、4000K 和 5000K 的黑體輻射為例,我們可以看到,隨著黑體的溫度越高,輻射出來的能量功率也越大;同時,輻射功率最高的波段,也朝短波長、高頻率的方向靠近。

為了解釋這個曲線,物理學家們開始運用「當時」畢生所學來找出函數方程式,分成了兩派:

-----廣告,請繼續往下閱讀-----

一派是 1896 年,由德國物理學家維因(Wilhelm Carl Werner Otto Fritz Franz Wien),由熱力學出發推導出的黑體輻射公式,另一派,在 1900 與 1905 年,英國物理學家瑞立(John William Strutt, 3rd Baron Rayleigh)和金斯(James Jeans),則是藉由電磁學概念,也推導出了他們的黑體輻射公式,稱為瑞立-金斯定律。

你看,若是同時擺上這兩個推導公式,會發現他們都各自對了一半?

維因近似 Wien approximation 只在高頻率的波段才精確。而瑞立-金斯定律只對低頻率波段比較精確,更預測輻射的強度會隨著電磁波頻率的提升而趨近無限大,等等,無限大?――這顯然不合理,因為現實中的黑體並不會放出無限大的能量。

顯然這兩個解釋都不夠精確。

-----廣告,請繼續往下閱讀-----

就這樣,在 1894 年邁克生才說,物理學可能沒有更令人驚嘆的東西了,結果沒幾年,古典物理學築起的輝煌成就,被黑體輻射遮掩了部分光芒,而且沒人知道,這是怎麼一回事。

普朗克的黑體輻射公式

就在古典物理學面臨進退維谷局面的時候,那個男人出現了——德國物理學家普朗克(Max Planck)。

1878年學生時代的普朗克。圖/wikimedia

普朗克於 1900 年就推導出了他的黑體輻射公式,比上述瑞立和金斯最終在 1905 年提出的結果要更早,史稱普朗克定律(Planck’s law)。普朗克假想,在黑體中,存在許多帶電且不斷振盪、稱為「振子」的虛擬單元,並假設它們的能量只能是某個基本單位能量的整數倍。

這個基本單位能量寫成 E=hν,和電磁輻射的頻率 ν 成正比,比例常數 h 則稱為普朗克常數。換言之,黑體輻射出來的能量,以hν為基本單位、是一個個可數的「量」加起來的,也就是能量被「量子化」了。

-----廣告,請繼續往下閱讀-----

根據以上假設,再加上不同能量的「振子」像是遵循熱力學中的粒子分佈,普朗克成功推導出吻合黑體輻射實驗觀測的公式。

普朗克的方程式,同時包含了維因近似和瑞立-金斯定律的優點,不管在低頻率還是高頻率的波段,都非常精確。如果我們比較在地球大氣層頂端觀測到的太陽輻射光譜,可以發現觀測數據和普朗克的公式吻合得非常好。

其實有趣的是普朗克根本不認為這是物理現象,他認為,他假設的能量量子化,只是數學上用來推導的手段,而沒有察覺他在物理上的深遠涵意。但無論如何,普朗克成功解決了黑體輻射的難題,並得到符合觀測的方程式。直到現在,我們依然使用著普朗克的方程式來描述黑體輻射。不只如此,在現實生活中,有許多的應用,都由此而來。

正因為不同溫度的物體,會發出不同特徵的電磁波,反過來想,藉由測量物體發出的電磁波,我們就能得知該物體的溫度。在疫情期間,我們可以看到某些場合會放置螢幕,上面呈現類似這樣子的畫面。

-----廣告,請繼續往下閱讀-----

事實上,這些儀器測量的,是特定波長的紅外線。紅外線屬於不可見光,也是室溫物體所發出的電磁輻射中,功率最大的波段。只要分析我們身體發出的紅外線,就能在一定程度上判斷我們的體溫。當然,一來我們都不是完美的黑體,二來環境因素也可能產生干擾,所以還是會有些許誤差。

藉由黑體輻射的研究,我們還可以將黑體的溫度與發出的可見光顏色標準化。

在畫面中,有彩虹背景的部分,代表可見光的範圍,當黑體的溫度越高,發出的電磁輻射,在可見光部分越偏冷色系。當我們在購買燈泡的時候,會在包裝上看到色溫標示,就是由此而來。所以,如果你想要溫暖一點的光線,就要購買色溫較低,約兩、三千 K 左右的燈泡。

結語

事實上,在黑體輻射研究最蓬勃發展的 19 世紀後半,正值第二次工業革命,當時鋼鐵的鍛冶技術出現許多重大進步。

德國鐵血宰相俾斯麥曾經說,當代的重大問題要用鐵和血來解決。

就傳統而言,煉鋼要靠工匠用肉眼,從鋼鐵的顏色來判斷溫度,但若能更精確地判斷溫度,無疑會有很大幫助。

德國作為鋼鐵業發達國家,在黑體輻射的研究上,曾做出許多貢獻,這一方面固然可能是學術的求知慾使然,但另一方面,也可以說跟社會的需求與脈動是完全吻合的。
總而言之,普朗克藉由引進能量量子化的概念,成功用數學式描述了黑體輻射;這件事成為後來量子力學發展的起點。儘管普朗克本人沒有察覺能量量子化背後的深意,但有另一位勇者在數年後繼承了普朗克的想法,並做出意味深長的詮釋,那就是下一個故事的主角――愛因斯坦的事了。

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

0
0

文字

分享

0
0
0
秋季星空中一抹光亮:北落師門殘屑盤的觀測史——《科學月刊》
科學月刊_96
・2024/01/19 ・4118字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 謝承安/ EASY 天文地科團隊成員,因喜愛動畫《戀愛中的小行星》開始研究小行星,現就讀臺大物理系。
  • 林彥興/清大天文所碩士, EASY 天文地科團隊總編輯,努力在陰溝中仰望繁星。
  • Take Home Message
    • 殘屑盤是恆星周遭的盤狀結構,由於北落師門殘屑盤離地球僅 25 光年,數十年來天文學家時常會藉由觀測它以了解殘屑盤的特性。
    • 去(2023)年韋伯望遠鏡的觀測結果與過去不同,顯示北落師門殘屑盤其實分成多個部分,更讓他們相信北落師門中有多個行星環繞。
    • 韋伯望遠鏡提供的影像還揭露許多來源未知的構造及現象,例如內側殘屑盤與內側裂縫等,都有待繼續探索。

北落師門(Fomalhaut)又稱南魚座 α 星,是秋季星空中著名的亮星之一。去年 5 月,以美國亞利桑那大學(University of Arizona)天文學家加斯帕(András Gáspár)為首的研究團隊在《自然天文學》(Nature Astronomy)期刊上發表,他們藉由詹姆士.韋伯太空望遠鏡(James Webb Space Telescope, JWST,簡稱韋伯望遠鏡),在北落師門周圍殘屑盤(debris disk)中首次發現了「系外小行星帶」的存在。韋伯望遠鏡拍下美麗的照片,也瞬間席捲各大科學與科普媒體的版面(圖一)。

圖一:韋伯望遠鏡在波長約 25 微米(μm)的中紅外線拍攝的北落師門影像,首次呈現北落師門殘屑盤中的三層結構。(NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

天文學家選擇北落師門作為目標並非偶然。半個世紀以來,北落師門一直是天文學家研究殘屑盤時的首選目標之一。韋伯望遠鏡的新影像為我們帶來什麼新發現?過去與現在的觀測方式又有什麼差異?本文將帶著大家一起回顧北落師門殘屑盤的觀測史。

行星相互碰撞後的殘屑盤

殘屑盤是環繞在恆星周遭,由顆粒大小不一的塵埃所組成的盤狀結構。如果讀者們聽過行星形成的故事,也知道行星是從恆星四周、由氣體與塵埃組成的「原行星盤」(protoplanetary disk)中誕生,那你或許會認為殘屑盤可能就是行星形成後剩下的塵埃。但實際上並非如此,在恆星形成初期的數百萬年間,原行星盤中的氣體和塵埃會被恆星吸積或是吸收恆星輻射的能量後蒸發,同時也會聚集成小型天體或行星,這些原因都會使原行星盤消散。而殘屑盤則是由盤面上的小行星等天體們互相碰撞後,產生的第二代塵埃組成(圖二)。

圖二:殘屑盤想像圖(NASA/JPL-Caltech)

這些塵埃發光的機制主要有兩種。第一,塵埃本身可以散射來自母恆星的星光,從而讓天文學家能在可見光與近紅外波段看到它們。第二,塵埃在吸收來自恆星的星光之後,以熱輻射的形式將這些能量重新釋放。由於恆星的光強度與距離成平方反比,愈靠近恆星,塵埃的溫度就愈高,因此發出的輻射以近紅外線為主;反之,愈是遠離恆星,塵埃的溫度就愈低,發出的光就以中遠紅外線為主。

-----廣告,請繼續往下閱讀-----

觀測目標:北落師門

北落師門殘屑盤的觀測始於 1983 年。當時,美國國家航空暨太空總署(National Aeronautics and Space Administration, NASA)的紅外線天文衛星(Infrared Astronomical Satellite, IRAS)發現北落師門在紅外線波段的亮度異常高,代表周圍很可能有殘屑盤圍繞。由於北落師門離地球僅約 25 光年,這項發現引起眾多天文學家的關注,並在未來數十年前仆後繼地拿出各波段最好的望遠鏡,希望藉此深入了解殘屑盤的特性。其中,哈伯太空望遠鏡(Hubble Space Telescope, HST,簡稱哈伯望遠鏡)、阿塔卡瑪大型毫米及次毫米波陣列(Atacama Large Millimeter/submillimeter Array, ALMA)與韋伯望遠鏡擁有非常好的空間解析度,因此能夠清楚地觀測殘屑盤的結構。

● 哈伯的觀測

2008 年, NASA 公布哈伯望遠鏡在 2004 與 2006 年對北落師門的觀測結果(圖三),讓天文學家首次清晰地看到北落師門殘屑盤的影像。這張照片是哈伯望遠鏡以日冕儀(coronagraph)在 600 奈米(nm)的可見光波段下拍攝,中間的白點代表北落師門的位置,而周圍的環狀亮帶正是因散射的北落師門星光而發亮的殘屑盤,放射狀的條紋則是日冕儀沒能完全消除的恆星散射光。除此之外,天文學家還發現有一個亮點正圍繞著北落師門運行,並認為此亮點可能是一顆圍繞北落師門的行星,於是將它命名為「北落師門 b 」。很可惜在往後的觀測中,天文學家發現北落師門 b 漸漸膨脹消散,到 2014 年時就已經完全看不見了。因此它很可能只是一團塵埃,而非真正的行星。

圖三:哈伯望遠鏡於 2008 年公布的北落師門。中間白點代表北落師門的位置,周圍環狀亮帶是因散射北落師門的星光而發亮的殘屑盤,放射狀條紋則是沒完全消除的恆星散射光。右下角亮點當時被認為是圍繞北落師門的行星,但很可能只是塵埃。(Ruffnax (Crew of STS-125);NASA, ESA, P. Kalas, J. Graham, E. Chiang, and E. Kite (University of California, Berkeley), M. Clampin (NASA Goddard Space Flight Center, Greenbelt, Md.), M. Fitzgerald (Lawrence Livermore National Laboratory, Livermore, Calif.), and K. Stapelfeldt and J. Krist (NASA Jet Propulsion Laboratory, Pasadena, Calif.)

● ALMA 的觀測

ALMA 對北落師門的完整觀測於 2017 年亮相,他們展示出更加清晰漂亮的環狀結構,且位置與哈伯望遠鏡的觀測吻合。正如前面提到,殘屑盤中的塵埃溫度愈低,放出的輻射波長就愈長。因此 ALMA 在 1.3 毫米(mm)波段觀測到的影像,主要來自離殘屑盤中恆星最遠、最冷的部分。

圖四: ALMA 於 2017 年拍攝的北落師門殘屑盤,展示出清晰漂亮的環狀結構。(Sergio Otárola|ALMA (ESO/NAOJ/NRAO);M. MacGregor)

● 韋伯望遠鏡的觀測

最後則要來看去年韋伯望遠鏡所使用中紅外線儀(mid-infrared instrument, MIRI)拍攝的影像(圖五)。與之前的觀測不同,這次的影像顯示北落師門的殘屑盤其實分成幾個部分:

-----廣告,請繼續往下閱讀-----
圖五:韋伯望遠鏡在 25 微米波段觀測到的北落師門殘屑盤。(NASA GSFC/CIL/Adriana Manrique Gutierrez;NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona))

首先,哈伯望遠鏡與 ALMA 之前就已觀測到的塵埃環,它的半徑約 136~150 天文單位(AU)、寬約 20~25 AU,而溫度則落在約 50~60 K,與太陽系的古柏帶(Kuiper belt)十分相似,因此被稱為「類古柏帶環」(KBA ring)。雖然在觀測上的溫度相似,但其實此塵埃環與北落師門的距離是古柏帶到太陽的四倍;不過北落師門光度約為太陽的 16 倍,根據前述提及的平方反比關係,才導致兩者的溫度相近。此外,在更外層名為「暈」(halo)的黯淡結構則對應古柏帶外圍天體密度較低的區域。

再來,韋伯望遠鏡還發現了更多未解的謎團:內側殘屑盤(inner disk)與中間環(intermediate ring)。其實早在本次韋伯望遠鏡的觀測之前,天文學家就已經從北落師門的光譜推測,北落師門的殘屑盤中除了存在前面提過的類古柏帶環之外,應該還有另一批更靠近恆星、溫度更高的塵埃,溫度與大小對應太陽系中的環狀小行星帶。但當韋伯望遠鏡實際觀測後,卻發現與太陽系的環狀小行星帶相比,北落師門有著相當瀰散的內側殘屑盤。為什麼會有這樣的不同呢?目前天文學家也不清楚,仍待進一步研究。

最後,在類古柏帶環與內側殘屑盤之間,還存在著一個半長軸約 104 AU 的「中間環」,在太陽系中則沒有對應的結構,這項新發現也需要進一步的研究來了解它的來源。

此外,雖然北落師門 b 最終被證實並不是一顆行星,但這並不代表北落師門旁沒有行星環繞。最初,殘屑盤的形成原因是由小行星等天體不斷碰撞所產生,經過不斷地碰撞合併,其實就有可能已經產生直徑數百到數千公里的行星。從北落師門的殘屑盤還可以推論,在內側殘屑盤與中間環之間可能有一顆海王星質量以上的行星,它就像鏟雪車般清除軌道上的塵埃,從而產生「內側裂縫」(inner gap)的結構。

-----廣告,請繼續往下閱讀-----

另一方面,天文學家也藉由數值模擬發現,如果僅考慮來自北落師門的重力影響,類古柏帶環應該要比觀測到的更寬才對。因此他們推測,很可能在類古柏帶環內外兩側有兩顆行星,像控制羊群的牧羊犬一樣以自身的重力限制塵埃移動,才產生了這麼細的塵埃環。

● 更多的殘屑盤觀測

北落師門雖然是一顆年齡僅4.4億年的年輕恆星,卻已經是一個擁有殘屑盤、形成行星的成熟恆星系統。而來自韋伯望遠鏡的最新觀測結果,無疑讓天文學家更深入地認識殘屑盤中複雜的結構,也更令他們相信北落師門系統中有多個行星環繞。

不過,北落師門系統仍舊有許多未解之謎。例如為什麼太陽系有著環狀的小行星帶,北落師門卻是瀰散的內側殘屑盤?在無數的恆星中,究竟是太陽系還是北落師門的殘屑盤構造比較常見?殘屑盤中是否有行星存在?如果有,在北落師門的演化歷史中又扮演著怎樣的角色呢?這些問題都有待更多的觀測與理論模擬來解答。

在北落師門之後,觀測團隊預計將韋伯望遠鏡指向天琴座的織女星(α Lyr, Vega),以及位於波江座的天苑四(ε Eri),兩者都是離地球非常近且擁有殘屑盤的恆星。其中織女星的溫度與質量比北落師門更大,而天苑四的質量與溫度雖然比太陽小,卻有強烈的磁場活動。藉由觀測不同系統中殘屑盤的性質差異,並與太陽系進行對比,不僅能更加認識殘屑盤的起源、與行星的交互作用,更能理解我們自己的恆星系中,數百萬顆的太陽系小天體從何而來。

-----廣告,請繼續往下閱讀-----

JWST 原始資料的處理過程影片介紹,非常值得一看!

  • 〈本文選自《科學月刊》2024 年 01 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

延伸閱讀

  1. Galicher, R. et al. (2013). Fomalhaut b: Independent analysis of the Hubble space telescope public archive data. The Astrophysical Journal, 769(1), 42.
  2. MacGregor, M. A. et al. (2017). A complete ALMA map of the Fomalhaut debris disk. The Astrophysical Journal, 842(1), 8.
  3. Gáspár, A. et al. (2023). Spatially resolved imaging of the inner Fomalhaut disk using JWST/MIRI. Nature Astronomy, 1–9.
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

11
5

文字

分享

0
11
5
發現最靠近地球的黑洞:Gaia BH1
全國大學天文社聯盟
・2022/11/30 ・2897字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/林彥興|清大天文所碩士生、EASY 天文地科團隊主編、全國大學天文社聯盟監事

本月初 [1],「最靠近地球的黑洞」這個紀錄被刷新了!以天文學家 Kareem El-Badry 為首的團隊,利用蓋亞(Gaia)衛星極度精準的天體位置資料,加上多座望遠鏡聯合進行的徑向速度量測,成功確認了約 1550 光年外位於蛇夫座的一顆恆星,正與黑洞互相繞行,打破離地球最近的黑洞紀錄。

狩獵隱身巨獸的方法

人類搜尋黑洞已經有數十年的歷史。對於正在「進食」,也就是正在吸積物質的黑洞,由於其周遭的吸積盤和噴流等結構會在無線電、X 射線等多個波段發出強烈的電磁輻射,因此相對容易看到;但沒有在進食的黑洞,就要難找許多。

畢竟黑洞之所以被叫做黑洞,就是因為它本身幾乎不會發光。想要尋找這些「沉默」黑洞的方法,通常只能靠著黑洞的重力對其週遭的影響,間接推測黑洞的存在。

其中最常見的方法,就是尋找「繞著看不見的物體旋轉的恆星」。一般來說,恆星在天空中移動的軌跡應只受恆星的視差和自行影響,但如果恆星在與另一個大質量的天體互相繞行,比如我們的目標:沉默的黑洞,那恆星的軌跡就會受到黑洞影響。

因此觀測恆星的移動軌跡,是尋找沉默黑洞的重要方法之一。這個方法最著名的例子,就是 2020 年諾貝爾物理獎得主 Reinhard Genzel 與 Andrea Ghez 藉由長時間觀測銀河系中心的恆星運動(位置與徑向速度),從而確認了銀河系中心超大質量黑洞的存在。

-----廣告,請繼續往下閱讀-----
UCLA 的銀河中心觀測團隊即是以觀測恆星的運動確認銀河系中央超大質量黑洞的存在。圖/UCLA Galactic Center Group – W.M. Keck Observatory Laser Team

但由於方法間接,用這類方式尋找黑洞時往往很難確定那個「看不見的物體」到底是不是黑洞。舉例來說,2020 年歐南天文台的天文學家宣布發現 HR 6819 是一個包含黑洞的三星系統,卻在更多更仔細的研究後遭到推翻。因此從恆星的運動來尋找「黑洞候選者」相對不難,但是想要消滅所有其他的可能性,「確定」黑洞的存在,就不是一件容易的事。

多方聯合|鎖定真身

那麼,這次的新研究是怎麼「確定」黑洞的存在的呢?

第一步,天文學家們先把目標鎖定在「形跡詭異」的恆星。因為當一顆恆星與黑洞互相繞行時,恆星在天上的運行軌跡會因為黑洞的引力而有週期性的擺盪。所以,如果我們看到有個恆星的軌跡歪歪扭扭,這顆恆星很可能就是受到黑洞重力影響的候選者。

而目前,蓋亞衛星(Gaia)提供的天體位置資料是當之無愧的首選。蓋亞是歐洲太空總署(ESA)於 2013 年發射的太空望遠鏡,與著名的韋伯太空望遠鏡一樣運行在日地第二拉格朗日點。

-----廣告,請繼續往下閱讀-----

但與十項全能的韋伯不同,蓋亞是「天體測量學 Astrometry」的專家,專門以微角秒等級的超高精確度測量天體的位置。每隔幾年,蓋亞團隊就會整理並公布他們的觀測結果,稱為資料發布(Data Release)。目前最新的「第三次資料發布 DR3」之中,就包含了超過 18 億顆天體的海量資料。

歐洲太空總署(ESA)的蓋亞衛星(Gaia)是當前測量天體位置和距離無庸置疑的首選。圖/ESA/ATG medialab; background: ESO/S. Brunier

經過篩選,團隊發現一顆名為 Gaia DR3 4373465352415301632 的恆星看起來格外可疑。這是一顆視星等 13.77(大概比肉眼可見極限暗 1300 倍,但以天文學的角度來說算是相當亮)、與太陽十分相似的恆星,距離地球約 1550 光年。

畫面中央的明亮恆星即是這次的主角 Gaia BH1。圖/Panstarrs

找到可能的候選者後,團隊一方面翻閱過去觀測這顆恆星的歷史資料,另一方面也申請多座望遠鏡,進行了四個月的光譜觀測。同時使用從蓋亞衛星的位置(赤經、赤緯、視差)以及從光譜獲得的徑向速度資訊,團隊可以精確地計算出這顆恆星應當是正在繞行一個 9.6 倍太陽質量的天體運轉。

這麼大的質量,卻幾乎不發出任何光,黑洞幾乎是唯一可能的解釋。

但以現有的觀測資料,天文學家仍不能確定它到底是一顆黑洞,還是有兩顆黑洞以相當近地軌道互相繞行,然後恆星再以較大的軌道繞著兩顆黑洞運轉。但無論是一顆或兩顆,Gaia BH1 都刷新了離地球最近黑洞的紀錄,距離僅有 1550 光年,比上一個紀錄保持人(LMXB A0620-00)要近了三倍。從銀河系的尺度來看,這幾乎可說是就在自家後院。

-----廣告,請繼續往下閱讀-----
結合蓋亞與其他多座望遠鏡的光譜觀測,天文學家可以計算出 Gaia BH1 在天空中的移動軌跡(左圖黑線)與其軌道形狀(右圖)。注意除了恆星與黑洞互繞所造成的移動外,恆星在天上的位置也受視差和自行影響,兩者在左圖中以藍色虛線表示。圖/El-Badry et al. 2022.
天文學家計算出的 Gaia BH1 徑向速度(RV)變化(黑線)與觀測結果(各顏色的點)。圖/El-Badry et al. 2022.

更多黑洞就在前方

最後讓我們來聊聊,找到「離地球最近的黑洞」有什麼意義呢?

「離地球最近的黑洞」這個紀錄本身是沒有太多意義的。雖然說從銀河系的尺度來說,1550 光年幾乎可說是自家後院,但是這顆黑洞並不會對太陽系、地球或是大家的日常生活產生任何影響。既然如此,為什麼天文學家還會努力尋找這些黑洞呢?

其中一大原因,是因為尋找這些與恆星互相繞行的黑洞,可以幫助天文學家了解恆星演化的過程。在銀河系漫長的演化歷史中,曾有數不清的恆星誕生又死亡。我們看不到這些已經死亡的恆星,但可以藉由這次研究的方法,去尋找這些大質量恆星死亡後留下的黑洞 [2],從而推測雙星過去是如何演化,留下的遺骸才會是如今看到的樣子。

除了 Gaia BH1,天文學家也在持續研究 Gaia DR3 之中其他「形跡可疑」的恆星/黑洞雙星候選系統。而隨著蓋亞衛星的持續觀測,更多這類黑洞候選者將會越來越多。研究這些系統,將幫助天文學家進一步了解雙星系統演化的奧秘。

-----廣告,請繼續往下閱讀-----

註解

[1] 嚴格來說,論文九月中就已經出現在 arXiv 上了。

[2] 嚴格來說,恆星質量黑洞(stellar mass black hole)是大質量恆星的遺骸。超大質量黑洞(supermassive black hole)就不一定了。

延伸閱讀

  1. El-Badry, K., Rix, H. W., Quataert, E., Howard, A. W., Isaacson, H., Fuller, J., … & Wojno, J. (2022). A Sun-like star orbiting a black hole. Monthly Notices of the Royal Astronomical Society518(1), 1057-1085.
  2. [2209.06833] A Sun-like star orbiting a black hole
  3. Astronomers Discover Closest Black Hole to Earth | Center for Astrophysics
  4. The Dormant Stellar-Mass Black Hole that Actually Is | astrobites
  5. Astronomers find a sun-like star orbiting a nearby black hole
  6. 狩獵隱身巨獸:天文學家發現沉默的恆星質量黑洞? – PanSci 泛科學
  7. 「最靠近地球的黑洞」其實不是黑洞
  8. 人們抬頭所遙望的星空是恆定不變嗎? – 科學月刊Science Monthly
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲