0

0
0

文字

分享

0
0
0

太空站將裝備雷射砲 掃除太空垃圾

afore
・2015/06/08 ・1183字 ・閱讀時間約 2 分鐘 ・SR值 535 ・七年級

NASA研究人員估計,現在繞行於低軌道的太空垃圾總量已接近三千噸,而且數量正急遽增加。 source:wiki
現在繞行於低軌道的太空垃圾總量已接近三千噸。
source:wiki

在地球周圍繞行的太空垃圾日益增多,對運行中的太空艙及人造衛星來說都是一大威脅。科學家發現,可以結合偵測宇宙線的望遠鏡及雷射技術,以清除過量的太空垃圾。

NASA研究人員估計,現在繞行於低軌道的太空垃圾總量已接近三千噸,而且數量正急遽增加。這些太空垃圾包括報廢的人造衛星、火箭殘骸等人造廢棄物,它們在太空中能以每小時三萬六千公里的速度高速運動,就算僅是螺絲一般大小的太空垃圾也能對人造衛星造成極大的危害。當大型的太空垃圾遭到撞擊時,所產生的小碎片又可能會與其他物體發生碰撞,進而引發一系列的連鎖反應。

對於運行中的太空艙來說,他們需要特別注意的是尺寸介於一到十公分之間的太空垃圾。大部分太空艙的防護系統都能擋下尺寸小於一公分的太空垃圾,尺寸大於十公分的太空垃圾也因體積較大而較易被發現,唯有中尺寸的太空垃圾,既不易被察覺、又能穿透防護系統,對太空艙造成很大的困擾。

現在,科學家指出,可以利用預計於2017年設立的極限宇宙太空觀測站(Extreme Universe Space Observatory)來協助偵測太空中的太空垃圾,並利用雷射技術將其消滅。極限宇宙太空觀測站原本是用來偵測宇宙線的,科學家卻意外發現它也可以被拿來追蹤高速運動的太空垃圾。一旦極限宇宙太空觀測站感應到太空垃圾的威脅,我們就能以高功率雷射將太空垃圾由原本運行的軌道推向地球的大氣層,使它們在大氣層中自我燃燒、消滅。

-----廣告,請繼續往下閱讀-----

待這個方法的可行性經過證實後,科學家打算打造一個專門用來消滅太空垃圾的人造衛星。這個人造衛星將會繞著地球南北極的軌道不斷運行,以解決地球周圍所有的太空垃圾。科學家會在上面架設一台每秒可發射五萬發雷射光束的紫外光雷射器,這台設備的功率可達五十萬瓦特。他們估計,這個設備每五分鐘可以消滅一件太空垃圾,依照這個速度,他們每年就可以解決十萬件太空垃圾。

大部分的太空垃圾都集中在大概八百公里的高度,科學家會先用這顆人造衛星消滅位於一千公里高度的太空垃圾,之後再以每個月十公里的速度逐漸向下消滅,這樣一來,五十個月後,這顆人造衛星就可以解決大部分高度位於五百至一千公尺之間的太空垃圾了。

研究團隊的負責人Toshikazu Ebisuzaki表示:「這些太空垃圾會危及到許多太空任務的進行,現在我們終於找到可以減緩太空垃圾數量增長的方法了。」Ebisuzaki是位天體物理學家,也是日本獨立行政法人理化學研究所(Rikagaku Kenkyūsho)計算天文物理實驗室(Computational Astrophysics Laboratory)的首席科學家。Ebisuzaki也指出研究團隊現在所面臨的問題,他說:「我們當然也有一些技術上的問題仍有待解決,但我們現在最大的問題還是資金,有足夠的資金後,我們才能進行後續的研發及實際發射。」

資料來源:

-----廣告,請繼續往下閱讀-----

 

文章難易度
afore
24 篇文章 ・ 1 位粉絲
泛科學特約編譯作者。一個很容易臉紅的女生,最想去的國家是印度。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
全焦段散光矯正人工水晶體一次解決白內障、近視、老花和散光問題?一次手術重現良好視力?
careonline_96
・2024/06/21 ・2571字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

「那是一位 50 多歲的女士,原本近視將近一千度,而在出現白內障後,近視的狀況又急速惡化,於是決定接受白內障手術。」花蓮慈濟醫院眼科部視網膜科主任何明山醫師表示,「經過詳細討論後,患者選擇使用全焦段散光矯正人工水晶體,希望解決白內障並同時矯正近視、散光、老花眼。」

手術完成後,患者順利恢復。何明山醫師說,全焦段散光矯正人工水晶體能夠提供遠、中、近連續視力同時矯正散光,讓患者不用再戴近視眼鏡,也不需要戴老花眼鏡,生活與工作都方便許多。

白內障是因為眼睛裡面的水晶體老化,而影響光線進入眼球。何明山醫師指出,水晶體就像照相機的鏡頭,當鏡頭變混濁,進到眼睛的光線便會減少,所以在比較昏暗的狀況下,會覺得視力模糊、顏色改變。由於光線進入白內障後會散射,讓電燈、車燈散開,所以容易出現眩光。

白內障的形成主要與年紀有關,在過去白內障大多出現在 50 歲以上的患者。不過還有許多原因可能導致白內障提早發生,危險因子包括高度近視、糖尿病、眼睛外傷、紫外線曝曬、長期使用類固醇等。

-----廣告,請繼續往下閱讀-----

何明山醫師說,「隨著 3C 產品的普及,長時間使用 3C 產品的人越來越多,臨床上也發現白內障有年輕化的趨勢,有些患者在 40 歲就開始有白內障。大家一定要多關心眼睛的健康!」

當白內障已經對日常生活造成影響時,便會建議接受治療。何明山醫師指出,放任白內障惡化,除了影響視力之外,還會影響眼睛的健康,因為過熟的白內障可能造成青光眼,嚴重會導致失明,而且當白內障過熟時,也會增加手術的困難度、增加出現併發症的風險。

利用人工水晶體解決近視、老花與散光

在白內障早期,可能會使用眼藥水,幫助延緩白內障惡化。何明山醫師說,待白內障成熟時,便需要利用手術移除混濁的水晶體,然後放入人工水晶體。

人工水晶體的選擇,主要由患者的用眼需求來決定。何明山醫師說,如果有近視、老花眼、散光等狀況,現在也可以一併用人工水晶體來矯正。

-----廣告,請繼續往下閱讀-----

傳統的單焦點人工水晶體可以提供遠距離視力,而中、近距離便需要配戴眼鏡。何明山醫師說,隨著光學技術的進步,人工水晶體持續進化,陸續開發出多焦點人工水晶體、全焦段人工水晶體等。

多焦點人工水晶體能夠看清楚特定焦點處的物體,而全焦段人工水晶體能夠延長視覺景深,提供遠、中、近距離的連續視力,最近視距約 33 公分。何明山醫師說,中距離視力大約 60 公分,對患者非常重要,日常生活中經常使用中距離視力,例如開車看導航、煮飯、打電腦、打牌休閒娛樂等。擁有中、近距離的連續視力,能夠顯著提升便利性。

全焦段人工水晶體也能保有較佳的顏色對比度,減少夜間眩光。何明山醫師說,部分具老花矯正功能的人工水晶體有較明顯的夜間光學干擾,如果常有夜間駕車的需求,可考慮使用全焦段人工水晶體,提升行車安全。何醫師進一步表示,門診有幾位患者植入全焦段人工水晶體後,開長途車回診也都不是問題。

同時矯正散光,提升視覺品質

在台灣散光的盛行率很高,可能有四成至五成的患者有散光。何明山醫師說,散光超過 100 度便會影響視力清晰度,所以在進行白內障手術時,會建議一併矯正散光。

-----廣告,請繼續往下閱讀-----

因為散光具有方向性,所以放入散光矯正人工水晶體時,必須固定在特定角度,才能發揮矯正效果。何明山醫師說,傳統散光人工水晶體需要經過一段時間後才能夠穩定,若在術後出現位移旋轉,便會影響散光矯正的效果。新一代散光矯正技術能夠提升術後穩定度,較不會產生位移,讓術後視力更清晰。

何明山醫師提醒,視力對生活與工作皆很重要,接受白內障手術前,請與醫師詳細討論,選擇合適的人工水晶體!

筆記重點整理

  • 白內障的形成主要與年紀有關,不過還有許多原因可能導致白內障提早發生,危險因子包括高度近視、糖尿病、眼睛外傷、紫外線曝曬、長期使用類固醇等。
  • 當白內障已經對日常生活造成影響時,便會建議接受治療。放任白內障惡化,除了影響視力之外,還會影響眼睛的健康,因為過熟的白內障可能造成青光眼,嚴重會導致失明,而且當白內障過熟時,也會增加手術的困難度、增加出現併發症的風險。
  • 如果有近視、老花眼、散光等狀況,現在可以一併用人工水晶體來矯正。多焦點人工水晶體能夠看清楚特定焦點處的物體,而全焦段人工水晶體能夠延長視覺景深,提供遠、中、近距離的連續視力,顯著提升便利性。
  • 全焦段人工水晶體能保有較佳的顏色對比度,減少夜間眩光,有助提升安全性。
  • 散光超過 100 度便會影響視力清晰度,在進行白內障手術時,建議一併矯正散光。因為散光具有方向性,所以放入散光矯正人工水晶體時,必須固定在特定角度,才能發揮矯正效果。新一代散光矯正技術能夠提升術後穩定度,較不會產生位移,讓術後視力更清晰。

0

1
0

文字

分享

0
1
0
從地球到太空:解密衛星通信的未來
數感實驗室_96
・2024/06/11 ・900字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

衛星的製造和發射成本相當高,普及程度也有限,那麼,你認為「人人都能使用衛星通信」是遙遠的未來,還是即將實現的夢想呢?

如果你近年來有密切關注這個領域,你可能會發現,過去天上的衛星並不多,但最近幾年似乎有了顯著增加。根據 Statista 的數據,2010 年時活躍衛星還不到 1000 顆,2018 年突破了 2000 顆,而到了 2022 年,這個數字已經逼近 7000 顆。

那麼,為什麼我們需要這麼多衛星呢?

-----廣告,請繼續往下閱讀-----

科技的進步當然是主要因素之一,但更重要的是「衛星種類的多樣化」。根據運行高度,衛星可以分為四種類型:高橢圓軌道衛星、同步衛星、中軌道衛星與低軌道衛星。這些不同種類的衛星各有其特定的用途和優勢,使得衛星通信變得更為普及和高效。

摩斯當年靠電報解決了地球上的通信問題,但在宇宙尺度上,我們還有很多需要努力的地方。

隨著衛星技術的發展,衛星通信正逐步走進我們的日常生活,並成為可期待的商業服務。然而,我們還面臨許多挑戰,例如低軌衛星可能影響天文觀測,衛星相撞風險增加,以及太空垃圾的問題。但也許在不久的將來,我們每個人都能輕鬆使用衛星通信。讓我們一起展望這個充滿潛力的未來吧!

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

參考資料

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 49 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/