0

0
0

文字

分享

0
0
0

幾萬年前就是好朋友?在北極發現狗的可能始祖

afore
・2015/06/09 ・1003字 ・閱讀時間約 2 分鐘 ・SR值 493 ・六年級

狗是由狼演化而來的。 source:Flicker
狗是由狼演化而來的。 source:Flicker

我們的祖先到底是在多久以前就將狗馴化的呢?最早將狗馴化的人類是位於哪一洲呢?針對這兩個問題,各派的科學家都有不同的答案,他們所預估的年份大概介於距今一萬至三萬年前,地理位置則遍佈歐、亞兩大洲。

不過,近日一份公布於科學期刊Current Biology的研究可能有辦法協助解開這個謎團,該研究結果顯示,人與狗之間的友誼大概在距今四萬前就存在了,比之前所預估的都還要再早個幾千年。

其實這個發現純屬意外。在2010年,一群科學家到北極的泰梅爾半島(Taymyr Peninsula)尋找原本被凍在永凍層中的動物標本,隨著永凍層逐漸融化,這些標本也得以重見天日。在考察的過程中,瑞典國家自然歷史博物館(Swedish Museum of Natural History)的遺傳學家Love Dalén發現了一根動物的肋骨,但他並不是很確定這是什麼動物的肋骨。Dalén說:「我當時只在(裝有肋骨的)袋子上寫著『馴鹿?』」

在測定了該肋骨的基因組序列後,研究團隊發現這是一根屬於公狼的肋骨,這隻狼大概生活在距今三萬五千年前。令人驚訝的是這隻狼的基因,與不論是生活在古代或是現今的狗和狼都有極高的相似處;也就是說,這隻狼所處的時間點可能就是一部份的狼逐漸演化成狗的年代。研究人員將這個發現再加入基因突變率等因素,並藉此推論,演化成狗的狼種在大概兩萬七千年至四萬年前就存在了。

「人類剛好是在那個時候初次來到歐洲,並與之後演化成狗的狼產生互動,」Robert Wayne說。Wayne本身是加州大學洛杉磯分校(University of California, Los Angeles)的遺傳學家,他的研究團隊曾根據有限的狼和狗的DNA,推估狼大概是在兩萬至三萬年前演化成狗的。

這項研究的發現使我們對於狗的始祖有更進一步的瞭解,不過,仍然有幾點問題是有待釐清的。Wayne和另一位遺傳學家Peter Savolainen都認為這項研究仍然無法證明狼在演化成狗的過程中,是不是有經過多次的馴化過程。

另一個有待釐清的問題是,西伯利亞雪橇犬和格陵蘭雪橇犬是不是狗的始祖。Dalén和他的研究團隊發現這兩種犬種的DNA和泰梅爾半島所發現的狼非常相似,但這並不能百分之百證明這兩種犬種就是狗的始祖,因為牠們也有可能是和泰梅爾半島的狼的後代交配後,才會有如此相近的DNA。

不論結果如何,我們可以肯定的是,狗真的是人類最好的朋友,從幾萬年前就是如此了。

資料來源:

  1. Arctic find confirms ancient origin of dogs Science Now [May 21, 2015]
  2. Ancient wolf genome pushes back dawn of the dog nature.com  [May 21, 2015]
文章難易度
afore
24 篇文章 ・ 0 位粉絲
泛科學特約編譯作者。一個很容易臉紅的女生,最想去的國家是印度。

1

1
0

文字

分享

1
1
0
狗狗小「鼻」立大功?訓練犬隻來檢測 COVID-19 的可行性
森地內拉_96
・2022/07/09 ・3853字 ・閱讀時間約 8 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

狗(Canis lupus familiaris)是人類馴化最悠久、最廣泛的動物,牠們幾乎存在於全世界每個人類社區中,並在不同時代與文化裡扮演著不同的角色,其中包括狩獵、放牧、運輸、守衛、警報、追踪、商品、精神媒介及民俗醫療等等不勝枚舉的功能 [4]

狗狗一直以來都是人類最好的朋友。 圖/ Pixabay

根據目前研究,已成功訓練犬隻來檢測人類的各種代謝狀況及疾病,其中包括低血糖和高血糖 [10, 20]、癲癇發作 [3] 、癌症 [13] 以及細菌和病毒感染 [1]

而在 COVID-19 大流行時代當然也不會缺少牠們的位置,因此陸陸續續就有相關的研究團隊開始著手訓練犬隻來檢測 COVID-19 [7, 9, 11],且總體都表現出不錯的準確率,以 Essler 等人的研究為例 [7],其靈敏度(真陽性率)為 71% ;特異度(真陰性率)為 98% 。

本篇文章將從狗狗的嗅覺原理,談到訓練方式與臨床上的可能性與限制。

狗靠什麼原理來聞出疾病?

  • 疾病聞得出來嗎?

早在公元前 1 世紀的古印度醫學典籍《Sushruta Samhita》中就有提及到,確實是有一些疾病是可以改變人類的氣味的,而這些疾病從滲出液中會釋放出特定的揮發性有機化合物 (volatile organic compounds,VOCs),並可用作於診斷參考 [5]。大概 19 世紀開始,西方文化也開始通過嗅覺線索來診斷一些疾病,例如天花及壞血病 [14]

使用嗅覺來判斷疾病,已有近百年的歷史。 圖/ envato
  • 狗聞到的是什麼?

雖然人類的嗅覺沒比想像中差,一定程度上人類確實是可以通過汗液識別出含有細菌衍生內毒素(bacteria-derived endotoxins)的個體 [17] ,但這相比於狗,那可就是小巫見大巫了。因為狗的氣味檢測能力大概至少是普通人的一千至一萬倍 [23] ,牠們除了可以識別具有更細緻氣味變化的人類病原體外,甚至是可以聞出人類在不同情緒狀態下的差異 [5]

這使我們難以得知牠們的「鼻」中世界,即使是使用上複雜的氣相層析質譜法 (Gas chromatography–mass spectrometry)也無法檢測到不同疾病間 VOCs 的差異,因為它甚至會因個體差異而有所不同,所以狗對氣味的反應可能不是單一一種氣味,而更可能是一種獨特的氣味組合模式 [18]

如何有效訓練狗狗檢測疾病?

  • 訓練的方式

基本上訓練流程都與教狗來偵查炸彈及毒品大同小異,首先團隊會將患有特定疾病的人和沒有患有特定疾病的人身上採集生物樣本,例如汗液和尿液。然後會讓狗用嗅聞裝有樣品的容器,如果有做出正確反應了話,狗將會被賦予獎勵(食物),如果沒有了的話則非 [18]

裝填樣本的裝置。圖/ 參考文獻 7
  • 樣本的採集

檢測犬的訓練盡量要使用來自不同個體的許多樣本,因為如果樣本不足了話,狗學會的將是區分個體的氣味,而不是疾病的氣味。所以狗的工作就是尋找這些樣本的共通點,並記住它,即使這些氣味存在個體差異 [18]

此外我們還必須注意樣本中的其他變數,例如如果我們所有陽性樣本都是從醫院採集過來的,而所有陰性樣本又剛好是從社區採集過來的,那狗可能只會分辨誰去過醫院,而不是誰得了病。

總而言之樣本的多樣性越高,狗的類化(generalization)範圍也就會越廣,準確度也就越高 [18]

臨床上的可行性與障礙

  • 環境轉移效應(context shift effect)

因為大部分實驗還是處於實驗室裡的模型,更多實際操作的臨床數據是缺乏的,例如當動物在環境中的刺激下學會執行行為被轉移到新的環境中時,可能會有表現能力下降的情況,而這種現象被稱為環境轉移效應(context shift effect)[2]

並且這種效應曾在經過高度訓練以檢測爆炸物的狗身上發現過[8],以一項針對肺癌患者的檢測犬研究為例,通過從醫院轉移到另一個地點,犬隻的表現會有顯著的降低,其假陽性的發生率也會增加[22]

環境轉移效應也會影響犬隻檢測疾病的準確度。 圖/ envato
  • 人畜共患風險

除了訓練技術及成本方面的問題外,這技術還涉及 SARS-CoV-2 的人畜共患病傳播相關的公共衛生及動物福利問題,根據目前研究,還是無法確定狗在檢測 SARS-CoV-2 變體以及多種病毒感染者上的有效性[5]

有鑑於 SARS-CoV-2 起源於蝙蝠一說,仍然是形成人類大流行的最可能原因[24],並且目前已發現幾種野生及圈養動物物種被感染,其中包括貓、狗及水鼬(minks) [6, 16]

D’Aniello 等人認為 [5] ,在沒有足夠的報告來確定狗能不能成為宿主物種,或甚至是與人類交叉感染之前,故意將狗暴露於 SARS-CoV-2 之前都是是草率的。在面對這議題時我們必須更加謹慎,限制大流行最重要的策略之一,就是預防潛在病毒宿主的任何溢出感染(spillover infection)。

教機器人辨識 COVID-19 ,可能比教狗狗更實際

教狗狗檢測疾病,執行上可能比想像困難。 圖/ envato

如果配合正確的部屬策略了話,那相比於一次性的檢測試劑,訓練犬隻來檢測 COVID-19 確實還是一種高機動性、自主性及非侵入性的篩檢方法,並可一次篩檢一定範圍內的大量人員或樣本 [15]

可惜的是,儘管訓練有素的個體具有臨床應用價值,但學界仍未詳細了解不同品系及個體的狗的反應差異以及將這些訓練廣泛推廣的可能性 [5]

如獸醫師Otto在《nature》的採訪 [18] 中表示:「狗將在早期診斷中發揮作用,但我們還沒有找到最好的方法去實踐,這需要從科學和動物福利的角度繼續探索,但最大的問題是資金」。

如果要考慮到訓練成本(包含檢測犬的育種、培育和安置等等)、人畜共患風險及動物福利了話,與其「教狗辨識 COVID-19 」,不如「讓機器學會辨識 COVID-19 」。

一份令人振奮的據報導指出 [21] ,由物理學家 Johnson 和 Abella 醫生等人領導的團隊已經獲得了美國國家衛生院 (NIH)為期兩年 200 萬美元的資助,該項目將結合納米感測器陣列與機器學習的技術,以支持開發一種可以檢測到 COVID-19 患者 VOCs 的手持設備,並宣稱其初步測試靈敏度可超過 90% ,預計會在 2023 年初向食品藥物管理局提出申請。

參考資料

1. Angle, C., Waggoner, L. P., Ferrando, A., Haney, P., & Passler, T. (2016). Canine Detection of the Volatilome: A Review of Implications for Pathogen and Disease Detection. Frontiers in Veterinary Science, 3. https://doi.org/10.3389/fvets.2016.00047

2. Balsam, P., & Tomie, A. (1984). Context and Learning (1st ed.). Psychology Press.

3. Catala, A., Grandgeorge, M., Schaff, J. L., Cousillas, H., Hausberger, M., & Cattet, J. (2019). Dogs demonstrate the existence of an epileptic seizure odour in humans. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40721-4

4. Chambers, J., Quinlan, M. B., Evans, A., & Quinlan, R. J. (2020). Dog-Human Coevolution: Cross-Cultural Analysis of Multiple Hypotheses. Journal of Ethnobiology, 40(4). https://doi.org/10.2993/0278-0771-40.4.414

5. D’Aniello, B., Pinelli, C., Varcamonti, M., Rendine, M., Lombardi, P., & Scandurra, A. (2021). COVID Sniffer Dogs: Technical and Ethical Concerns. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.669712

6. Deng, J., Jin, Y., Liu, Y., Sun, J., Hao, L., Bai, J., Huang, T., Lin, D., Jin, Y., & Tian, K. (2020). Serological survey of SARS‐CoV‐2 for experimental, domestic, companion and wild animals excludes intermediate hosts of 35 different species of animals. Transboundary and Emerging Diseases, 67(4), 1745–1749. https://doi.org/10.1111/tbed.13577

7. Essler, J. L., Kane, S. A., Nolan, P., Akaho, E. H., Berna, A. Z., DeAngelo, A., Berk, R. A., Kaynaroglu, P., Plymouth, V. L., Frank, I. D., Weiss, S. R., Odom John, A. R., & Otto, C. M. (2021). Discrimination of SARS-CoV-2 infected patient samples by detection dogs: A proof of concept study. PLOS ONE, 16(4), e0250158. https://doi.org/10.1371/journal.pone.0250158

8. Gazit, I., Goldblatt, A., & Terkel, J. (2004). The role of context specificity in learning: the effects of training context on explosives detection in dogs. Animal Cognition, 8(3), 143–150. https://doi.org/10.1007/s10071-004-0236-9

9. Grandjean, D., Sarkis, R., Lecoq-Julien, C., Benard, A., Roger, V., Levesque, E., Bernes-Luciani, E., Maestracci, B., Morvan, P., Gully, E., Berceau-Falancourt, D., Haufstater, P., Herin, G., Cabrera, J., Muzzin, Q., Gallet, C., Bacqué, H., Broc, J. M., Thomas, L., . . . Desquilbet, L. (2020). Can the detection dog alert on COVID-19 positive persons by sniffing axillary sweat samples? A proof-of-concept study. PLOS ONE, 15(12), e0243122. https://doi.org/10.1371/journal.pone.0243122

10. Hardin, D. S., Anderson, W., & Cattet, J. (2015). Dogs Can Be Successfully Trained to Alert to Hypoglycemia Samples from Patients with Type 1 Diabetes. Diabetes Therapy, 6(4), 509–517. https://doi.org/10.1007/s13300-015-0135-x

11. Jendrny, P., Schulz, C., Twele, F., Meller, S., von Köckritz-Blickwede, M., Osterhaus, A. D. M. E., Ebbers, J., Pilchová, V., Pink, I., Welte, T., Manns, M. P., 12. Fathi, A., Ernst, C., Addo, M. M., Schalke, E., & Volk, H. A. (2020). Scent dog identification of samples from COVID-19 patients – a pilot study. BMC Infectious Diseases, 20(1). https://doi.org/10.1186/s12879-020-05281-3

13. Jezierski, T., Walczak, M., Ligor, T., Rudnicka, J., & Buszewski, B. (2015). Study of the art: canine olfaction used for cancer detection on the basis of breath odour. Perspectives and limitations. Journal of Breath Research, 9(2), 027001. https://doi.org/10.1088/1752-7155/9/2/027001

14. Liddell, K. (1976). Smell as a diagnostic marker. Postgraduate Medical Journal, 52(605), 136–138. https://doi.org/10.1136/pgmj.52.605.136

15. Maughan, M. N., Best, E. M., Gadberry, J. D., Sharpes, C. E., Evans, K. L., Chue, C. C., Nolan, P. L., & Buckley, P. E. (2022). The Use and Potential of Biomedical Detection Dogs During a Disease Outbreak. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.848090

16. Molenaar, R. J., Vreman, S., Hakze-van Der Honing, R. W., Zwart, R., de Rond, J., Weesendorp, E., Smit, L. A. M., Koopmans, M., Bouwstra, R., Stegeman, A., & van der Poel, W. H. M. (2020). Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink (Neovison vison). Veterinary Pathology, 57(5), 653–657. https://doi.org/10.1177/0300985820943535

17. Olsson, M. J., Lundström, J. N., Kimball, B. A., Gordon, A. R., Karshikoff, B., Hosseini, N., Sorjonen, K., Olgart Höglund, C., Solares, C., Soop, A., Axelsson, J., & Lekander, M. (2014). The Scent of Disease. Psychological Science, 25(3), 817–823. https://doi.org/10.1177/0956797613515681

18. Photopoulos, J. (2022). The dogs learning to sniff out disease. Nature, 606(7915), S10–S11. https://doi.org/10.1038/d41586-022-01629-8

20. Reeve, C., Cummings, E., McLaughlin, E., Smith, S., & Gadbois, S. (2020). An Idiographic Investigation of Diabetic Alert Dogs’ Ability to Learn From a Small Sample of Breath Samples From People With Type 1 Diabetes. Canadian Journal of Diabetes, 44(1), 37–43.e1. https://doi.org/10.1016/j.jcjd.2019.04.020

21. Sucar, E. (2021, February 4). An ‘electronic nose’ to sniff out COVID-19. Penn Today. Retrieved July 1, 2022, from https://penntoday.upenn.edu/news/electronic-nose-sniff-out-covid-19

22. Walczak, M., Jezierski, T., Górecka-Bruzda, A., Sobczyńska, M., & Ensminger, J. (2012). Impact of individual training parameters and manner of taking breath odor samples on the reliability of canines as cancer screeners. Journal of Veterinary Behavior, 7(5), 283–294. https://doi.org/10.1016/j.jveb.2012.01.001

23. Walker, D. B., Walker, J. C., Cavnar, P. J., Taylor, J. L., Pickel, D. H., Hall, S. B., & Suarez, J. C. (2006). Naturalistic quantification of canine olfactory sensitivity. Applied Animal Behaviour Science, 97(2–4), 241–254. https://doi.org/10.1016/j.applanim.2005.07.009

24. Wong, G., Bi, Y. H., Wang, Q. H., Chen, X. W., Zhang, Z. G., & Yao, Y. G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): why is this work important? Zoological Research, 41(3), 213–219. https://doi.org/10.24272/j.issn.2095-8137.2020.031

所有討論 1
森地內拉_96
4 篇文章 ・ 12 位粉絲
總覺得自己是理組中的文科生,一枚資工念一半就轉去生科的傻白甜。 關注於生態、演化生物學、生物多樣性及動物行為等議題,想要把自己的想法與接受到的新知傳達給大家,所以就開始嘗試寫科普......

1

3
2

文字

分享

1
3
2
口臭去去走!噴的口腔益生菌,強化口腔健康,壞菌走開!
鳥苷三磷酸 (PanSci Promo)_96
・2022/04/26 ・2976字 ・閱讀時間約 6 分鐘

本文由 IN-Plus 全方位專業寵物營養品 委託,泛科學企劃執行。

天天刷牙,確保毛小孩擁有一口好牙

你家有狗狗嗎?除了平時裡的梳毛、餵罐罐、修剪指甲、出門散散步之外,毛小孩的口腔健康,也得密切注意。可是,有些毛小孩非常任性,不僅挑食、還排斥刷牙。(人類要刷牙,狗兒當然也要!)要是不常清潔牙齒,口腔中的食物殘渣被壞菌分解後,就會產生具有難聞氣味的分子,並且衍生各種口腔健康問題,比如口臭、齒垢、牙菌斑、牙齦炎,甚至是牙周病,造成毛小孩沒有健康、強壯的牙齒可以進食。

那麼,該怎麼確保毛小孩有一口健康的牙齒呢?最理想的做法就是天天刷牙!

問題在於刷牙並非易事,因為毛小孩不知道牠們需要刷牙、通常也不喜歡刷牙。試想如果你父母突然抓住你的下顎,將異物塞進嘴裡攪拌,你肯定會感到驚恐萬分,然後拼命掙扎,不肯乖乖就範。為了解決這個問題,IN-Plus 全方位專業寵物營養品推出了一款「用噴的」狗兒專用口腔益生菌「IN-Plus 好好益菌潔牙噴噴」,只要將瓶內熱處理過後的特殊益生菌萃取物噴進毛小孩嘴裡,就可以改變口腔內的微生物組成,達到保健效果。

經實驗證明,口腔益生菌有益口齒健康

讀到這裡,你可能不禁心想:只要噴一噴就能維持口腔健康,真有這麼神奇?沒錯,就是這麼神奇,而且背後還有科學根據喔!

IN-Plus所使用的口腔益生菌,是日本專利研發的益生菌,又稱捲曲乳酸桿菌(Lactobacillus crispatus),主要存在於產道和新生兒的腸道中,是母親傳承給寶寶的珍貴益生菌,也是維持寶寶腸道微生物平衡的主要菌種之一。

2015 年的一項小鼠研究[1]指出:

  • 熱處理後的捲曲乳桿菌作用原理類似疫苗,能刺激免疫系統產生更多抗體,進而強化免疫力。
  • 這種功能性益生菌能在小鼠體內誘發免疫反應,增加唾液中的抗體來對抗口腔內的壞菌。
  • 在唾液中,會出現由捲曲乳桿菌誘發的特異型 IgG 抗體,能有效殺死「牙齦卟(ㄅㄨˇ)啉(ㄌ一ㄣˊ)單胞菌」(Porphyromonas gingivalis),也就是牙周病的主要致病菌。

2018 年的另一項人體研究[2]也指出:

  • 每日攝取捲曲乳桿菌可以大幅減少卟啉單胞菌的數量,保持口氣清新,可以提升黏膜組織的保護力,預防牙齦紅腫。

上述兩項研究的臨床實驗結果都證明口腔益生菌可以有效預防並改善慢性牙周病。

捲曲乳酸桿菌(Lactobacillus crispatus主要存在於產道和新生兒的腸道中,是母親傳承給寶寶的珍貴益生菌,也是維持寶寶腸道微生物平衡的主要菌種之一。
動物與人體研究證實,熱處理後的捲曲乳酸桿菌 KT-11,能刺激免疫系統產生更多抗體,進而強化免疫力。

捲曲乳桿菌能消滅「牙齦卟啉單胞菌」

寵物口臭、口水變多、牙齦發炎都是「牙周病」的徵兆,但牙周病的致病菌「牙齦卟啉單胞菌」又是何方神聖?

首先,「牙周」指的是支持牙齒穩固的組織,包括牙齦和齒槽骨,而「牙齦卟啉單胞菌」可以抑制白血球殺壞菌的能力,只要少量感染,就能使口腔內部的細菌無限增長。當牙周組織不堪負荷,長期處在發炎狀態時,將造成牙齦和齒槽骨萎縮,最終使牙齒動搖、脫落,這就是「牙周病」。

可怕的是,卟啉單胞菌不但無法被抗生素殺死,還可以躲進牙齦細胞,分泌牙齦蛋白酶(Gingipain)誤導自體免疫系統,使其不被攻擊。

這種時候,口腔益生菌就能派上用場啦!

雖然大多數益生菌都屬於活菌,無法通過胃酸和膽鹼的考驗,還來不及發揮效果就提前陣亡,可是 IN-Plus 潔牙噴噴所使用的益菌屬於去活菌,透過特殊的熱處理技術鎖住活性因子後,就會變得更耐熱、耐酸鹼,能夠順利抵達腸道,協助免疫系統發揮作用。此外,如上文所說,捲曲乳桿菌所誘發的特異型 IgG 抗體不僅能殺死牙齦卟啉單胞菌,同時也能藉此改變口腔內的菌叢生態,提高生物體內的免疫力!

牙齦卟啉單胞菌存在在口腔中,能抑制白血球殺壞菌的能力。只要少量感染,就能讓口腔壞菌無限增長,造成長期發炎並形成「牙周病」。
牙齦卟啉單胞菌可以躲過免疫系統、抗生素的攻擊,十分難纏。

病從口入!如何輕鬆向狡猾的細菌說掰掰?

說了這麼多,究竟要怎麼簡單做好毛小孩的口腔衛生保健呢?那就是使用含有捲曲乳桿菌的「IN-Plus 好好益菌潔牙噴噴」,讓益生菌成為預防口腔疾病的好夥伴!除了狗狗專用的噴劑,也有貓貓專用的版本,讓不愛刷牙的毛小孩們也能擁有健康的一口牙。

捲曲乳桿菌能殺死牙齦卟啉單胞菌,雖然牙齦卟啉單胞菌近乎無敵,但實驗證實,捲曲乳桿菌所誘發的特異型抗體,是牙齦卟啉單胞菌剋星。

維護毛孩口齒健康,就用毛孩專用的口腔益生菌噴劑

IN-Plus 全方位專業寵物營養品推出「IN-Plus 好好益菌潔牙噴噴」,用自然、溫和的方式呵護毛小孩口齒健康,讓飼主可以更放心、自在地與牠們互動。這款毛孩專用的口腔益生菌噴劑,每 1 毫升就含有 1.2 億個 KT-11口腔益生菌,能夠有效抑制壞菌。

日本專利研發的 KT-11 乳酸菌也通過歐洲食品安全局(EFSA)審查,獲得歐盟安全菌株認可(QPS),在用途、安全性及菌種鑑定等方面都有嚴格保障,可以強化口腔防禦力,有效降低牙菌斑形成機率,並且減少各種口腔及牙齦問題。

與此同時,「IN-Plus 好好益菌潔牙噴噴」也含有天然植萃淨味成分。經日本リリース科学工業株式会社實驗證實,只要短短 30 分鐘,即可降低 99% 的口腔異味,常保口氣清新。此外,「IN-Plus 好好益菌潔牙噴噴」也有針對貓貓用的版本,更添加了貓薄荷精油提升適口性,不用擔心貓主子嫌棄。

哪裡才能買到 IN-Plus 好好益菌潔牙噴噴呢?點擊這裡就能買到喔!

註解

  1. Taguchi, C., Arikawa, K., Saitou, M., Uchiyama, T., Watanabe, I., Tobita, K., … & Nasu, I. (2015). Orally Ingested Lactobacillus crispatus KT-11 Inhibits Porphyromonas gingivalisinfected Alveolar Bone Resorption. International Journal of Oral-Medical Sciences, 13(3), 102-109. https://doi.org/10.5466/ijoms.13.102
  2. Tobita, K., Watanabe, I., Tomokiyo, M., & Saito, M. (2018). Effects of heat-treated Lactobacillus crispatus KT-11 strain consumption on improvement of oral cavity environment: a randomised double-blind clinical trial. Beneficial Microbes, 9(4), 585-592. https://doi.org/10.3920/BM2017.0137

參考資料

所有討論 1
鳥苷三磷酸 (PanSci Promo)_96
146 篇文章 ・ 268 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
狗狗會吃死去的主人嗎?:《科學詭案調查局》導讀——2021 台積電盃 青年尬科學/「科普書籍閱讀寫作競賽」優選導讀文
青年尬科學_96
・2021/12/26 ・2216字 ・閱讀時間約 4 分鐘

國小高年級科普文,素養閱讀就從今天就開始!!

台積電盃青年尬科學」是臺灣大學科學教育發展中心於 2012 年主辦「青年尬科學」競賽,自 2013 年起獲得台積電文教基金會贊助。期望藉由競賽提升 15 至 18 歲、國三到高三青年的科普表達能力。

本文為 2021 台積電盃青年尬科學/「科普書籍閱讀寫作競賽」優選導讀文,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

  • 撰文:陳亭穎|國立屏東女中

具衝擊性的主題

人們通常不愛提比較病態甚至是關乎死亡的話題,因為那是源自於人類內心深處的恐懼,是大多數人視為禁忌的話題,但仍然會有人對不尋常事物抱持著好奇及熱忱。為什麼有人會喜歡臭味?我們都知道器官移植,但你聽過頭部移植嗎?甚至是我們在驚悚電影中看見的變態殺人魔,與現實中真正有心理病態的人又有幾分相似呢?假如你就是對這類奇異話題感興趣的人,那這本書將會滿足你的好奇心。讓我們看看兩個書中的有趣例子。

男人, 电话, 手机, 人, 微笑, 快乐的, 男性, 沟通, 家伙, 技术, 震惊, 惊讶
生死之類的話題被視為禁忌,但也能勾起人們的獵奇心理。圖/Pixabay

你相信狗狗會吃死去的主人嗎?

作者以人們擁有的病態好奇心為首,逐步展示不同領域上的冷知識,甚至有些是人們不會想知道的,但也正因如此才足夠奇特。舉個書中的例子:人們說,狗是人類最忠心不二的夥伴。這在大部分眼裡是對的,包括貓以及不同的寵物,人們都相信只要自己對待牠們足夠好,那牠們也必定不負自己。但在此前,你能想像忠心的狗狗在你死後可能吃了你嗎?這聽起來確實很糟,但這是有根據的。

聽到狗狗吃人這種事確實駭人,通常會認為說是不是主人死後沒人能餵牠,所以為了生存而選擇吃掉主人呢?難道是因為飢餓?根據資料來看或許不是如此。難道是狗狗跟主人之間的感情根本就不深厚、不忠心嗎?如果是那樣的話就太令人難過了。

最凶殘的哺乳類排行榜

提到凶殘的哺乳類會先想到甚麼物種呢?腦中浮現的是不是詭譎多端的人類呢?如果這樣想的話就錯了!排行榜中超過 1000 多種動物,而智人在其中只在第 30 名。那第一名究竟是誰呢?就是常被冠上「可愛」頭銜的動物──狐獴。

狐獴的世界是母系社會,階級嚴格的可以說是殘忍。雄性的地位當然低於雌性,但地位低的雌性可以說是連生育的權利都沒有。至尊的雌性通常會阻止低下雌性生小孩,若生下來了就殺掉並吃了。但僅僅是這樣嗎?那其他動物呢?

一起, 公園, 動物 的 免費圖庫相片
狐獴看起來可愛又團結,實際上對內對外都會展開腥風血雨的殺戮。圖/Pexels

除此之外,動物的攻擊行為可以分為冷型及熱型。熱型是衝動、失控下的行為,但人類的情緒如此多變,我們是怎麼克制自己才讓每天都發生路怒殺人事件的情形不會發生呢?冷型則是經過謀略和深思熟慮,也就是蓄意謀殺。但分為兩者的含意是什麼呢?人類的攻擊行為也能如此容易被二分嗎?

狂刺巫毒娃娃的滿足感

巫毒娃娃總是被人插滿了針,似乎拿針狂刺一個布玩偶能夠讓人擁有報復後的快感,但這是為什麼呢?這個舉動有個最直觀的用途,就是能夠宣洩情緒。人們會把眼前的巫毒娃娃想像成想洩憤的對象,往娃娃上面插針會讓人產生一種「報復」的感覺,心情就會比較舒暢。

事實上,從一個人往巫毒娃娃身上刺針的數量能看出這個人的攻擊性有多強。人的攻擊性是無所不在的,這能幫助我們自我防禦。蹂躪巫毒娃娃的好處就是能使人適時的發洩情緒,因為無法控制的攻擊性是最危險的。

巫毒娃娃, 针脚, 巫术, 巫毒, 玩具娃娃, 仪式, 神秘, 黑暗的, 魔法, 幻想
巫毒娃娃(Voodoo doll),又稱巫蠱娃娃,是用於插針的人偶形道具。雖然形式不同,世界各地許多文化傳統都有這種做法。圖/Pixabay

當然,這些都只是書中提及的冰山一角。以上述兩個例子來說,狗會吃死去的主人,那貓呢?如果許多人對貓的印象是冷漠的話,是不是代表貓更有可能做出此舉?又或是什麼樣性格的狗或貓會這麼做?再說說巫毒娃娃,生理上的因素會不會激化你想要摧殘娃娃的衝動?以及值得探索的是,心理學上有理論能夠說明人為什麼會把巫毒娃娃受到的「苦難」投射到真人上。

《科學詭案調查局》將全書分割為病態的死亡、昆蟲、禁忌、爬行的生物、解剖學以及人類的心智六大主題,逐步探索這些令人驚奇、驚訝或是噁心的話題。一篇一篇的文章中富含的是意想不到的科學知識,激發我的好奇心,再讓我發出「原來如此啊」的驚嘆,這正是本書的迷人之處。如果想來點不一樣的生活樂趣,不妨翻開本書,探究我們鮮少涉足的神秘與科學並存的領域。


作品評語

看似沒有頭的文章其實是有頭的,放到最後一段是一種非典型的手法,成效見人見智,不過文筆是不錯的,具有引導讀者閱讀本書的熱情,排版上也可看到用心,閱讀起來很舒服。稍感可惜的是內容侷限於書中所述。


  • 書名:科學詭案調查局:離奇現象與噁爛實驗的科學研究報告
  • 作者:艾莉卡・恩格豪伯(Erika Engelhaupt)
  • 譯者:姚若潔
  • 出版社:大石國際文化
  • 出版年:2020
青年尬科學_96
9 篇文章 ・ 2 位粉絲
「台積電盃青年尬科學」是為提升高中生科學素養與表達能力的全國性競賽,自2013年起獲得台積電文教基金會贊助。 「科普書籍閱讀寫作競賽」:閱讀科普好書並撰寫導讀文。 「科學創意表達競賽」:撰寫科學影片報告並重新演示影片中的知識。