0

0
1

文字

分享

0
0
1

重力彈弓效應─《星際效應》

azothbooks_96
・2015/05/22 ・3702字 ・閱讀時間約 7 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

在「巨人」附近駕駛太空船是一件難事,因為航行速度必須非常快。

行星、恆星或太空船要想在這裡存續下來,就必須以同等強大的離心力來抗衡「巨人」的強大重力。這表示它必須以非常高速移動。

螢幕截圖 2015-05-22 13.04.10

事實證明它必須達到近光速才行。在我對《星際效應》相關科學的詮釋中,「永續號」派遣隊員登上米勒的星球時,它是停駐在「巨人」半徑五倍的距離之外,繞行速率為光速的三分之一:c/3(c 代表光速);米勒的行星則以55% 光速運行,即0.55c。

在我的詮釋中(圖7.1),「漫遊者號」要從停駐軌道抵達米勒的星球,必須先減慢它的順行運動,從c/3 降至遠低於此,然後「巨人」的重力才能夠拉它向下。等來到星球附近時,「漫遊者號」又必須從下行轉為順行。而由於下墜時的加速,這時它的航速已經高出太多,因此必須減速c/4(四分之一光速),降低到該星球的速度0.55c,才能前往米勒的星球。「漫遊者號」的駕駛庫柏可能使用哪種機制來執行這種劇烈的速度變化?

-----廣告,請繼續往下閱讀-----

二十一世紀的技術

他必須達成的速度變化約為c/3,相當於每秒十萬公里。(這不是時速,是秒速!)相形之下,今天我們人類推力最強的火箭,秒速可達十五公里,約十萬公里的七千分之一,實在太慢了。

《星際效應》片中的「永續號」從地球航向土星花了兩年時間,平均速度為每秒二十公里,是十萬公里的五千分之一,一樣很慢。人類的航空器在二十一世紀有可能達到的最高速度,我認為是每秒三百公里,而這得先大量投入核能火箭研發作業才能辦到,但這仍只是《星際效應》所需速度的三百分之一左右,還是太慢。

所幸,大自然提供了一種做法來落實《星際效應》片中必須達成的龐大速度變化(c/3):運用重力彈弓效應繞過遠比「巨人」小上許多的黑洞來助推加速。

彈弓助推航向米勒的星球

像「巨人」這麼龐大的黑洞,周遭會聚集許多恆星和小型黑洞(下一節就會深入討論)。

-----廣告,請繼續往下閱讀-----

在我的《星際效應》相關科學詮釋中,我設想:庫柏和他的團隊調查了所有繞行「巨人」的小型黑洞,確定其中有一顆黑洞的所在位置可供「漫遊者號」進行重力轉向作業,推動它從近圓形的軌道,轉向往米勒的星球俯衝而去(圖7.2)。

螢幕截圖 2015-05-22 13.04.54

這種重力助推操控的方法,稱為「重力彈弓效應」(gravitational slingshot),美國航太總署也經常在太陽系內善加運用,但是是借助行星的重力,而非黑洞(見本章末尾)。《星際效應》片中沒有呈現或談到這種助推操控法,只讓庫柏說出下面這段話:「聽著,我可以繞過那顆中子星來減速。」

減速是必要的動作,因為「漫遊者號」受到「巨人」重力的龐大引力而下墜─從「永續號」的軌道降到米勒星球的軌道─它的速度已經拉得太高,行進速度比米勒的星球高出c/4。

螢幕截圖 2015-05-22 13.05.13

圖7.3 所示的中子星,相對於米勒的星球朝左行進,「漫遊者號」就靠它來轉向、減速,然後才能正常接近那顆星球。

-----廣告,請繼續往下閱讀-----

這種彈弓效應有一種特點可能會讓人非常不快,甚至會奪走人的性命,那就是:潮汐力(第四章)。速度變化要達到c/3 或c/4 的幅度,「漫遊者號」必須充分靠近小型黑洞和中子星,才能受到它們強大重力的影響。

在這麼近的距離下, 倘若那顆偏轉天體(deflector)是中子星,或是半徑不到一萬公里的黑洞,則「漫遊者號」和上頭的人類都會被潮汐力撕碎(第四章)。

「漫遊者號」和人類要想存活,這個偏轉天體就必須是至少一萬公里大的黑洞(大小約如地球)。大自然中確實存在這種大小的黑洞,統稱為中等質量黑洞(intermediate-mass black holes, iMBh),這尺寸其實已經很大,但和「巨人」比起來仍顯渺小:只有它的萬分之一。

本來克里斯多福.諾蘭應該用一顆地球大小的中等質量黑洞來幫「漫遊者號」減速,結果他用了一顆中子星。他一開始改寫喬納森的電影劇本時,我就和他討論過這件事。討論過後,他仍然選定中子星。為什麼?因為他希望電影裡面只出現一個黑洞,才不會把廣大觀眾搞糊塗了。一個黑洞,一個蟲洞,還有一顆中子星,加上片中其他的豐富科學素材,全都要在兩小時的快節奏影片中讓觀眾吸收。

-----廣告,請繼續往下閱讀-----

克里斯多福認為,這些素材是他能處理的極限。既然在「巨人」附近航行必須借助強大的重力彈弓效應,於是克里斯多福將一次彈弓效應放進庫柏的對白,卻也付出了代價,用了不合乎科學原理的偏轉天體:以中子星取代了黑洞。

星系核內的中等質量黑洞

一顆一萬公里的中等質量黑洞,重約一萬顆太陽的質量,相當於「巨人」的萬分之一,但已經是普通黑洞的千倍重量了。這正是庫柏需要的偏轉天體。有些中等質量黑洞據信是在恆星密集的星團─稱為「球狀星團」(globular cluster)─的核心內形成的,當中又有一部份可能循徑進入有巨型黑洞棲身的星系核(Galactic nuclei)內。

螢幕截圖 2015-05-22 13.05.44

仙女座星系就是一個好例子。它是最接近我們銀河系的大型星系(圖7.4),星系核裡潛藏了一顆「巨人」尺寸的黑洞,擁有一億顆太陽的質量。數量龐大的恆星被拉進這種巨型黑洞的鄰近區域;每立方光年多達一千顆。

當一顆中等質量黑洞穿過這種密集區域,它發出的重力會讓恆星偏斜轉向,製造出一道更高密度的尾流,跟在它的身後(圖7.4)。這道尾流以重力拉動中等質量黑洞,使中等質量黑洞減速,這種過程就叫做「動力摩擦」(dynamical friction)。而當中等質量黑洞非常緩慢地減速時,它也漸沉漸深,進入巨型黑洞的鄰近區域。

-----廣告,請繼續往下閱讀-----

在我為《星際效應》相關科學所做的詮釋中,大自然可以用這種方式為庫柏提供一顆中等質量黑洞,滿足他進行彈弓助推的需求。

思考與挑戰:超先進文明的軌道航行

在太陽系中,行星和彗星的軌道全都呈非常準確的橢圓形(圖7.5)。牛頓的重力定律為此提出保證,並且堅持主張這一點。

螢幕截圖 2015-05-22 13.06.31

相對來說,一顆像「巨人」那樣快速自旋且體型巨大的黑洞周遭─這裡是愛因斯坦的相對論定律主宰之地─那些軌道就遠遠更加複雜了。圖7.6 就是一例,任意繞行「巨人」一圈,都需要好幾小時到好幾天,因此圖7.6 中畫出來的軌道大約需要一年時間才能走完;或許幾年之後,它的軌道就會經過幾乎所有你想去的目的地,只是你的速度有可能不符所需,或許會需要來一次彈弓助推來改變速度,才能達成會合的目標。

螢幕截圖 2015-05-22 13.07.42

我就讓各位自行想像一下,超先進文明有可能怎麼利用這種複雜的軌道。在我對這部電影的科學詮釋中,我為了簡單起見,大致上會避開它們,把重點放在圓形的赤道軌道上(例如「永續號」的停駐軌道、「米勒的星球」繞行軌道,以及臨界軌道),以及「永續號」如何從一條圓形的赤道面軌道轉換到另一條之上。當中只有一個例外,那就是曼恩的星球,但這部份我們等第十九章再來討論。

-----廣告,請繼續往下閱讀-----

美國航太總署的太陽系內重力彈弓助推

現在就讓我們從(物理定律所容許的)「可能性」世界,回到鐵面無情的現實中,看看截至二○一四年為止,人類在太陽系的舒適牢籠裡,實際完成了哪些重力彈弓作業。

各位或許對航太總署的「卡西尼號」(cassini)太空船並不陌生(圖7.7)。「卡西尼號」在一九九七年十月十五日從地球發射升空,船上搭載的燃料並不足以讓它飛抵目的地土星。這不足的部份,就是運用幾次彈弓助推來解決:一九九八年四月二十六日繞過金星;一九九九年七月二十四日完成二度繞行金星的彈弓助推,接著在二○○○年十二月三十日繞過木星。二○○四年七月一日,「卡西尼號」終於抵達土星,之前還繞過最貼近土星的衛星「木衛一」(io),借助一次彈弓作業來降低航速。

螢幕截圖 2015-05-22 13.08.56

這一系列的彈弓助推作業,沒有一次和我前面所描述的相同。前面我提到彈弓效應會強力偏轉太空船的行進方向,但金星、地球、木星和木衛一卻只讓太空船稍微轉向。為什麼?

因為偏轉天體的重力太弱,沒辦法強力偏轉航向。以金星、地球和木衛一來說,偏轉影響必然都很微弱,因為它們的重力原本就很弱。木星的重力雖然強大得多,但大幅偏轉會把「卡西尼號」送上錯誤航向,因此必須使用較小幅偏轉作業以抵達土星。

-----廣告,請繼續往下閱讀-----

這幾次偏轉幅度雖然都很小,「卡西尼號」仍然從飛掠作業取得充裕的推力,足以彌補燃料的不足。每一次飛掠(木衛一那次除外),「卡西尼號」都是尾隨著偏轉行星前行,但角度得以讓行星的重力以最理想的方式拉著它向前行進並提增飛航速度。《星際效應》片中的「永續號」也曾繞行火星完成一次近似的彈弓作業。

「卡西尼號」在過去十年中探訪了土星和土星的衛星群,傳回了令人稱奇的影像和資訊─蘊涵著美感和科學的寶藏。各位可以上網一瞥端倪:http://www.nasa.gov/mission_P.s/cassini/main/

相對之下,「巨人」的助推就不像太陽系內的彈弓效應那麼弱小。它的重力非常強勁,就算是以超高速行進的物體,它也抓得住,然後還能以大幅偏折的彈弓效應,將它們拋向四面八方,連光線也不能倖免,從而造成重力透鏡效應,這個讓我們得以見到「巨人」身影的關鍵。

0217信任本文摘自泛科學2015五月選書《星際效應:電影幕後的科學事實、推測與想像》,漫遊者文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
azothbooks_96
55 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

0

8
7

文字

分享

0
8
7
想變年輕?就靠時空旅行!——《高手相對論》
遠流出版_96
・2022/04/29 ・2673字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

孿生子弔詭

這難道不是一個讓人活得年輕的方法嗎?的確是,而且後面講到廣義相對論的時候還會介紹另一個讓時間變慢的機制。科幻作品經常使用這種素材,比如電影《星際效應》(Interstellar)裡,太空人去黑洞附近執行任務,回來的時候還挺年輕的,可是自己的女兒卻已經很老了。

正所謂「山中方七日,世上已千年」。我想提醒你的是,這裡說的時間變慢只是不同座標系對比的結果。對於參加星際旅行的你來說,你實實在在活過的時間還是正常的壽命。在相對性原理之下,你根本感覺不到自己多出來什麼時間,如果你在地面上一輩子能讀一萬本書,在太空船上過這一輩子也只能讀一萬本書;你在山中過的這七天,也是一日三餐,共吃二十一頓飯。

在相對性原理之下,你根本感覺不到自己多出來什麼時間。圖/envato elements

但是你的確比地面上的人老得慢。說到這裡,有個著名的問題,叫「孿生子弔詭」。

假設你有一個雙胞胎妹妹,在你們二十歲這一年,你乘坐接近光速的太空船前往遠方執行任務,你的妹妹留在地球上。在你妹妹眼中看來,你這一走就是五十年,你回來的時候她已經七十歲了。可是因為相對論效應,你在太空船座標系下體會到的這段旅程只有三十年,你回來的時候才五十歲。

-----廣告,請繼續往下閱讀-----

你離開的時候,兩人一樣大,回來的時候妹妹比你老了二十年。這個事實是沒問題,但人們會有一個疑問。相對於你的妹妹,你在太空船上是高速運動,所以會有時間變慢的效應,所以你比你妹妹年輕。可是反過來說,相對於你,你妹妹在地球上難道不也是在高速運動嗎?為什麼不是她比你年輕呢?

這個問題的答案是你和你妹妹所在的座標系並不是等價的。你妹妹一直待在地球上,可以近似為一個等速直線運動的座標系。而你離開地球必須首先加速到接近光速,到達目的地要減速、掉頭、再加速,回到地球還要再減速,你經歷的並不是等速直線運動。你在加減速的過程中得使用力量,你會有「貼背感」,而你的妹妹沒有。

相對於從地球出發又折返的星際旅行,一直待在地球上比較像是等速直線運動。圖/envato elements

考慮到這些,精確計算你在每個階段相對於你妹妹是什麼年齡就比較麻煩了,這裡先不講,在本書番外篇會專門進行一點技術性的討論。

確定的是,這個效應是真實的,你真的比你妹妹年輕了二十歲。孿生子的效應已經有實驗證實。

-----廣告,請繼續往下閱讀-----

驗證這個效應不需要真的進行星際旅行,你只需要一種精度非常高的原子鐘。先將兩個原子鐘對時,然後將一個放在地面不動,把另一個帶上一般的民航機的國際航班飛一圈。飛回來後,再把這兩個原子鐘放在一起,就會發現它們的時間有一個極其微小的差異——這個差異是實實在在地存在的。參加了飛行的那個原子鐘,現在確實比留在地面的那個「年輕」一點。

如此說來,那些經常在天上飛的飛行員和空服員都比一般同齡人要年輕一點!但是他們參與飛行的速度不夠快,一輩子也差不了一秒。而如果你能把自己的速度提高到接近光速,那麼你的一天是地面上人的一年,甚至一千年,在理論上都是可能的。你就等於穿越到了未來。

一輩子也比別人年輕不了一秒的飛行員們(?)圖/envato elements

時空是相對的

與時間膨脹相對應的一個效應是「長度收縮」。

還是以太空人為例。同樣一段距離,我們在地面看他應該飛二十五年才能到,在他自己看來,飛十五年就到了。而且請注意,不管是哪一方看來,太空船相對於這段距離的飛行速度是一樣的。

-----廣告,請繼續往下閱讀-----

這就意味著,太空人看到的這段距離,比我們看到的要短。

如同時間,長度也是個相對的概念。一個物體的長度在相對於它靜止的座標系中是最大的,如果你和它有一個相對的運動,你會覺得它比靜止的時候短一些。這就是長度收縮。

當我們和某物體有相對運動時,它的長度看起來會短一點。圖/envato elements

我還記得小時候看過一個日本動畫片,裡面用極其誇張的手法描寫了這個現象:幾個孩子騎自行車,其他人感覺他們都變瘦了。

其實嚴格地說,有人透過計算,得出三維物體的長度收縮效應是你「觀察」到的,而不是你「看」到的。考慮到物體各個部分的光到達你眼睛的距離不一樣,你的眼睛實際看到的感覺,只是這個物體旋轉了一個角度而已,在視覺上不會覺得它變短了;但是如果你考慮到光速是有限的,物體不同部分的光線到達你的眼睛有個時間差,你根據這個時間差做一番計算,即會得到長度收縮的結果。

-----廣告,請繼續往下閱讀-----

時間膨脹和長度收縮這兩個效應告訴我們:空間的長短也好,時間的快慢也好,都與座標系有關,不同座標系中的觀測者所看到的時間和空間是不一樣的。時空並不是一個客觀不變的、一視同仁的大舞臺,每個座標系都有自己的時空數字。當不同的座標系要想交流,得先做「座標變換」,把對方的時空數字轉換成自己的。

想跟不同的座標系交流,記得先調整時空數字。圖/envato elements

但是,在每個等速直線運動的座標系內部,你所用的物理公式,都是一模一樣的。

如果永遠不聯繫,你在太空船的生活和我在地面的生活就沒有任何差別。可是一旦要聯繫,我們的數字則會非常不一樣。而這些不一樣,又恰恰是因為光速在所有座標系下都一樣。

相對論是如此讓人不好接受,卻又是如此簡單。

-----廣告,請繼續往下閱讀-----

相對性原理是一個信念,但物理學家從來都沒有把相對論當作「信仰」——科學的精神是實驗結果說了算。物理學家始終對相對論保持開放的態度。二○一一年,物理學家一度以為微中子的速度能超過光速,但是後來發現那是一個烏龍,是實驗設備有問題。

現在,我們只能說愛因斯坦完全正確。

-----廣告,請繼續往下閱讀-----
遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。

1

9
6

文字

分享

1
9
6
光如何被重力彎曲,構成黑洞的獨特景象?——黑洞旅行團,出發!(上)
ntucase_96
・2021/12/18 ・2499字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 撰文/劉詠鯤

本文轉載自 CASE 科學報黑洞旅行團,出發!(上)——彎曲的光與重力透鏡

在嚴峻的疫情下,雖然我們無法親自外出旅遊,但是想像力可不會被輕易束縛。今天讓我們一起前往廣袤的宇宙中,在那裡散布著無數龐大的天體,它們扭曲從旁擦身而過的光線,形成各式獨特的景象。在本篇文章中,我們將帶領各位讀者一起了解光線是如何被彎曲。

電影《星際效應》中,一幅令人印象深刻的畫面是主角們乘著太空梭在黑洞附近時,所看到的黑洞景象(如圖一)。但是以人類目前的太空實力,尚無法脫離太陽系,抵達巨型黑洞附近更是無法實現。那這幅景象只是純粹虛構的嗎?並不是,它是藉由物理理論將我們的認知延伸到遙遠的宇宙彼端,讓我們也有能力推測,遙遠的未來,黑洞旅行團會看到的景象!

圖一、《星際效應》中,「巨人」黑洞附近的景色。版權所有:華納兄弟。

黑洞附近獨特景象的原因,是因為它極為龐大的重力。因此,在討論黑洞景象之前,我們要先來認識描述重力的理論,那便是鼎鼎有名的廣義相對論。廣義相對論使得人們有能力理解宇宙中發生的各種現象,其中一個重要的洞見是:「重力的本質是時空的彎曲」。這句話看起來十分抽象,以下我們舉個例子試著讓各位讀者體會,力與時空彎曲這兩件看來毫無相關的事情是如何扯上關係的。

力與彎曲空間

假設有兩位螞蟻探險家,在他們眼中,地球是一個巨大的平面。有一天,他們相約從赤道上兩個不同的位置出發,拿著指北針,約好一起向正北方,以相同速度前進。在他們心中,地球是一個平面,因此兩人同時向北走,路徑會互相平行,應該永遠不會相遇(圖二a)。但經過了數個月,他們在北極點碰到了彼此,感到驚訝無比。為了解釋此結果,他們推斷:「由於地球是平的,我們會碰在一起,代表我們之間有某種吸引力,將我們越拉越近(圖二b)」。但是我們站在第三人稱的視角便會明白,他們倆最後會碰在一起,並非因為彼此之間有吸引力,而是他們所在的地球是個曲面而非平面。力與空間的彎曲似乎沒有我們想像的那麼毫無關係!

-----廣告,請繼續往下閱讀-----
圖二、兩位相約向正北前進的螞蟻旅行家,兩條軌跡在平面上由於互相平行,應該永遠不會相遇(a)。但在球面上兩位會在北極點相遇(b),由於他們認為自己身處在平面上,會認為相遇是因為彼此之間具有吸引力,將他們的前進軌跡彎曲。

愛因斯坦偉大的洞見,便是他了解到:我們時刻感受到的重力,其實本質上是具有質量的物體造成附近時空的彎曲;我們因為認為時空是平坦的,因此把他詮釋為一種「力」,就如同兩位螞蟻探險家。細心的讀者可能留意到,我們在此使用了「時空」,而非「空間」。相對論中,時間與空間不再互相獨立,而可以互相影響。

讀者可能會疑惑:重力是一種力或是時空的彎曲,這聽起來只是詮釋角度的不同,有實質上的差別嗎?其中一個主要的差別在於對「光」的影響。古典描述重力的理論:牛頓力學,對於光通過一個大質量天體附近時,路徑會如何改變的預測,和廣義相對論的結果並不一致。1919 年,艾丁頓爵士在日蝕發生時,向太陽的方向觀測,發現竟然能夠看到理應被太陽擋住的星光。其原因便是太陽的重力造成附近的時空彎曲,遙遠的星光在通過該區域時發生路徑的偏折,使我們有機會在地球上看到它。

一個物體附近時空彎曲的程度,會和其質量大小有關。因此當光線通過愈大質量的天體附近時,路徑的改變就會越大。這個效果就如同光線通過一個透鏡時會發生偏折(如圖三)。天文學中,人們會使用由透鏡、反射鏡等組成的望遠鏡來觀察遙遠的天體。那我們是否可以使用這些天體形成的「透鏡」,來觀察宇宙呢?答案是肯定的,這便是在當前天文與宇宙學領域中,一個正蓬勃發展的觀測方式:重力透鏡。

圖三、遙遠的星光經過大質量天體時,發出的光線會如同經過透鏡一樣被彎曲,使得在地球上的我們可以看到本該被擋住的星星。

重力透鏡

根據光線彎曲的程度(也代表著透鏡天體的質量大小),重力透鏡可以被分為:微重力透鏡、弱重力透鏡以及強重力透鏡。其中強重力透鏡,由於光線的彎曲程度較大,在地球上的觀察者可以看到十分有趣的圖像。例如愛因斯坦十字、愛因斯坦環。對此議題有興趣的讀者,可以參考[3],該文章有深入淺出的解釋。

-----廣告,請繼續往下閱讀-----

由於光線偏折的程度,與通過的天體質量有關。因此,如果我們對於光源的性質十分了解,重力透鏡可以反過來提供給我們透鏡天體的質量資訊。這特別適合拿來進行暗物質的分布量測。由於暗物質只透過重力和其他物質作用,它並不會放出任何的電磁波,要「看」到它,只能透過重力的效應。若是我們在宇宙中,發現某一個區域具有非常大的質量,造成通過的光軌跡有所偏移,但是我們又無法在該區域中,利用各種電磁波望遠鏡,看到可識別的天體,那很可能那裏有緻密的暗物質;再透過分析光線的彎曲情形,科學家們便可以推測出其中的暗物質質量分布。

在本篇文章中,我們向各位讀者介紹了光是如何受到重力的彎曲,以及相關的應用。這個效應在黑洞附近會更為劇烈,在下一篇文章中,我們將會介紹該如何「模擬」黑洞附近的景象。

延伸閱讀

本系列文章:
黑洞為什麼不黑?彎曲的光與重力透鏡——黑洞旅行團,出發!(上)
巨大的黑洞反而不危險?——黑洞旅行團,出發!(中)
怎麼模擬出真實的黑洞樣貌?光線追蹤技術——黑洞旅行團,出發!(下)

-----廣告,請繼續往下閱讀-----
所有討論 1
ntucase_96
30 篇文章 ・ 1480 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

3

3
2

文字

分享

3
3
2
沒看過這十部科學電影,別說你有科青魂!
余海峯 David
・2017/01/25 ・5601字 ・閱讀時間約 11 分鐘 ・SR值 549 ・八年級

-----廣告,請繼續往下閱讀-----

科幻與科學,有時只差一線。回看人類兩千多年科學進程,很多現在我們認為理所當然的科學理論,都曾是天馬行空的科幻概念。透過現代電影技術,我們能夠看見這些科幻概念在銀幕上細訴它們的故事。然而,電影之中,究竟哪些合乎科學、哪些又是科幻呢?

科學家與演員一樣,由同樣的碳水化合物組成。我認為人類文明的可貴之處,在於有了科學、邏輯以後,仍然保有美麗動人的感情。因此,我以科幻、科學、感情三者互相牽動的程度為基礎,選了十部科幻電影(也有科學史實改編的電影)作簡單介紹,希望不至於嚴重劇透雷到你!

我們孤單嗎?用無線電是否能《接觸未來》?

mv5bnduwnta3odmwof5bml5banbnxkftztgwnty2otiwmje-_v1_sy1000_cr0015151000_al_
「喂?請問是外星人嗎?」圖/IMDb

《接觸未來》(Contact,又譯為《超時空接觸》、《接觸》)改編自已故著名天文學家卡爾.薩根(Carl Sagan, 1934 – 1996)寫的同名科幻小說。電影講述一位女天文學家尋找外星文明的故事。

-----廣告,請繼續往下閱讀-----

雖說是由天文學家所寫的故事,但情節並不偏重科學,你可以在其中找到對科學、政治、宗教、社會、恐怖主義,以及人與人之間感情的描寫。薩根看到接觸天外文明所需要的科學和數學知識,也預測了當人類發現自己在宇宙中並不孤單時,會對我們的社會造成什麼影響。

相對於巨大的宇宙,人類文明只是剛剛起步。薩根在故事之中,放入了作為科學家、作為人類一份子對我們的文明的願景。這些重大議題,值得我們在電影尾聲欣賞華麗的特效時,細細深思。

不過,看過原著小說的話,就會發現電影刪改了很多情節。例如,電影的第一幕使用了光速恆定概念,離地球越遠的地方就只能接收到越早時代發出的電波訊號,不過實際電影畫面上顯示的距離與聲音顯示的年代並不相符。又,電影中的天文學家竟然無視干擾訊號的可能性,在無線電望遠鏡陣列之中使用無線電對講機!據說薩根曾要求導演修改這一幕,但為什麼最後沒有修改就不得而知了。

手牽手,讓我們來趟《2001 太空漫遊》

mv5bmtmymza2mji1nf5bml5banbnxkftztcwotyyndmznq-_v1_sx1777_cr001777887_al_
這部電影對後世科幻電影有著深遠影響。圖/IMDb

-----廣告,請繼續往下閱讀-----

《2001 太空漫遊》(2001: A Space Odyssey)是上世紀三大科幻小說大師亞瑟.克拉克(Arthur Clarke, 1917 – 2008)的經典著作。電影改編版本使這個故事更廣泛為人認識,而電影本身亦成為經典之作。

電影開始時,一塊石板於三百萬年前教會了人類祖先使用工具。轉眼來到 2001 年,一艘太空船載著五個船員向木星進發。船上的人工智能電腦叫做 HAL 9000,它接到兩道必須執行、但內容卻相互矛盾的指令,它的邏輯下得出的結論是——必須殺死船上所有人。讓我印象深刻的是電影中,描寫電腦害怕「死亡」——關機——的一幕,這裡就不多說,請大家自己去看電影囉!

《2001 太空漫遊》被譽為史上最合乎科學的科幻電影。例如當主角進入沒有空氣的太空時,電影的所有配音都會突然消失;在月球上聯絡地球會有時間延遲;環狀且會自轉的太空船,符合以向心力製造人工重力的物理原理。這一切差不多都成為了日後科幻電影的標準設計。

有趣的是,據說 HAL 的名字是 IBM 的字母變體,而克拉克極力否認這一點,更在其續作小說中寫入這個陰謀論。總之,無論你是科學、科幻或電影迷,你都必不可錯過《2001 太空漫遊》。

-----廣告,請繼續往下閱讀-----

「休士頓,我們有麻煩了!」──快來拯救阿波羅 13 號

mv5bmtq0ndyzmtywnf5bml5banbnxkftztcwmdc5mja0nq-_v1_sy1000_cr0014901000_al_
帥哥飛行員,不救嗎?圖/IMDb

《阿波羅 13 號》(Apollo 13,又譯為《太陽神 13 號》)是根據美國太空總署載人太空任務的史實所拍攝的電影。阿波羅 13 號是美國阿波羅計劃的第三次載人登月任務,載有三名太空人。任務中,太空艙在準備登陸月球前,氧氣罐不幸發生爆炸,太空艙的電力和氧氣量快速下降,任務被迫中斷,折返地球。

由電影前段太空人的一句「休士頓,我們有麻煩了」開始,電影幾乎完美地重現太空人和地球上的休士頓控制中心,合力解決阿波羅 13 號緊急折返所遇到的技術困難,堪稱一部科學紀綠電影。三名太空人必須拋棄控制艙,使用原本用來登月的登月艙,利用月球的引力助推飛回地球。

電影描述了休士頓控制中心使用後備模組,在登月艙裡現場製造出過濾二氧化碳的臨時裝置,若無此裝置,三名太空人將因二氧化碳中毒而死。由於登月艙並非設計用於降落在擁有大氣層的地球,必須準確計算登月艙的返回時機,如果飛行方向和速度稍有不妥,太空人不是被返回大氣時產生的高溫燒成灰燼,就是被地球引力拋向宇宙深處。

-----廣告,請繼續往下閱讀-----

值得我們留意的是,除了一向被大眾媒體廣泛報導的太空人之外,電影亦描述了地面控制中心的技術人員如何分秒必爭地拯救阿波羅 13 號。

用瘋狂又理智的雙眼,看見《美麗境界》

mv5bmtqynje2odmznl5bml5banbnxkftztywoda2nte3-_v1_
用瘋狂的理智去看見數學的美好吧!圖/IMDb

《美麗境界》(A Beautiful Mind,又譯為《有你終身美麗》、《美麗心靈》)講的是諾貝爾經濟學獎得主、數學家約翰.奈許(John Nash, 1928 – 2015)的故事。奈許在 1950 年提出博弈論的一個重要理論,因而在 1994 年獲頒諾貝爾經濟學獎。這一成就是經濟學的一大突破,現被稱為「奈許均衡」(Nash equilibrium)。

電影對奈許均衡理論著墨很少,只嘗試在其中一幕以例子去解釋,在我看來這嘗試是失敗的。如同很多關於科學家的電影一樣,本片主要描述奈許生平。奈許患有思覺失調,這無疑對他還是他的妻子亦是一個沉重打擊。電影之中描述了奈許妻子在他患病時不離不棄,不過奈許曾經表示電影劇本與他的真實人生並不一致。儘管如此,各位能從本片看到精神病患與他們家人所承受的巨大壓力。

-----廣告,請繼續往下閱讀-----

奈許均衡理論對博弈論發展影響非常之深,應用於非常多科學分支,包括演化生物學和人工智慧研究。奈許在 2015 年獲頒阿貝爾獎,夫婦倆不幸在領獎回家途中發生車禍雙亡。然而他的貢獻,將會連同他的名字一起,永垂青史。

《天才無限家》:數學,是邏輯、也是直覺

mv5bmjiwmjq0oteznl5bml5banbnxkftztgwndu3mtq3nje-_v1_sx1499_cr001499999_al_
電影描述了拉馬努金與哈代之間的友誼與磨擦。圖/IMDb

《天才無限家》(The Man Who Knew Infinity,又譯為《數造傳奇》)講述天才數學家拉馬努金(Srīṉivāsa Rāmāṉujan Aiyaṅkār, 1887 – 1920)的生平。拉馬努金沒有受過高等教育,習慣以直覺代替嚴謹證明,而他的直覺結果大部分都能被證明是正確的。

數學家哈代(Godfrey Harold Hardy, 1877 – 1947)發現了拉馬努金的天才,並把拉馬努金從印度帶到英國。除了拉馬努金的數學成就,電影把重點放在東西文化衝擊之上,描述拉馬努金與哈代之間的友誼與磨擦,當然還有當年英國上流社會普遍存在的階級觀念和種族歧視等。

-----廣告,請繼續往下閱讀-----

拉馬努金與哈代在英國歷時五年的合作,可謂數學史上其中一個研究結果最豐碩的事件。最後,拉馬努金憑著天才與哈代的支持,贏得劍橋大學三一學院眾教授的尊重,成為三一學院院士和英國皇家學會會員。拉馬努金在 1919 年回到印度,隔年逝世。哈代曾說過:「發現拉馬努金,是我一生中最大的數學發現。

未來版的小木偶:《 A.I. 人工智慧》

mv5bzgy4njfim2utzta3zs00mwexltlhmtmtmdnim2q1zmezndnhxkeyxkfqcgdeqxvyntazotq2odu-_v1_
男孩機器人唯一的願望,就是得到愛。圖/IMDb

《 A.I. 人工智慧》(A.I. Artificial Intelligence,又譯為《人工智能》)是個未來版的《木偶奇遇記》。主角是一個擁有感情的小孩機械人大衛。大衛渴望得到人類「母親」莫妮卡的愛,於是四處找童話故事中的仙子,希望仙子把他變成一個有血有肉的人類。

不論人類是否能夠創造出如電影那樣擁有感情的人工智能,電影希望探討的是,如果機械人有感情,那麼他們懂得愛嗎?或者說,我們的愛,會伸延到金屬造的機械人身上嗎?這是個倫理、道德問題,非科學所能回答。

-----廣告,請繼續往下閱讀-----

受到其他被人類遺棄的機械人的幫助,大衛終於在已被水淹蓋的曼哈頓城水底找到仙子——一個迪士尼仙子像。他向仙子祈求,直到能源用盡。電影尾聲,人類已經絕種,而高度演化的機械人們希望了解自身的存在意義。他們找到被冰封的大衛,了解他希望得到莫妮卡的愛的心願。雖然不可能把大衛變成人類,機械人們用莫妮卡的 DNA 造出了只有一天壽命的莫妮卡,完成了大衛的心願。

《木偶奇遇記》,其實一直是人類內心的反映啊。

《地心引力》抓不住你?

mv5bmmnkngmzotktm2flyi00ogu0lwe0ywqtmjzlotniyta4nzg5l2ltywdlxkeyxkfqcgdeqxvyndaxotexntm-_v1_
在宇宙中漂浮,感覺是否像回到子宮呢?圖/IMDb

《地心引力》(Gravity,又譯為《引力邊緣》)應該是本文中最不科學的電影。雖以文藝片角度這可能是很捧的一部電影,可是其物理情節卻錯漏百出。

除了太空之中太空人感受到的無重狀態,基本上沒有一個情節的物理是正確的。例如,同一軌道上的太空碎片根本不可能追上哈柏望遠鏡——根據克卜勒第三定律,只受重力影響的穩定軌道上,所有東西速度都一樣。當然,引發一連串事件的碎片並不需要在穩定軌道之上,但要在短時間內與其他太空任務相遇並造成致命破壞,除非是經過刻意計算的,否則機率仍非常低。

不過,《地心引力》裡對人性求生本能的心理描寫,仍然值得一看。

史上最科學黑洞!就在《星際效應》

mv5bmmriyte4otqtyzu4my00ztzmltg4mzmtn2jmm2jjmze0ngmwl2ltywdll2ltywdlxkeyxkfqcgdeqxvyntu3njk4ntu-_v1_sy1000_cr0017131000_al_
快來見識史上最科學黑洞!圖/IMDb

《星際效應》(Interstellar,又譯為《星際啟示錄》、《星際穿越》)上映的時候氣勢驚人,全因有著名的理論物理學家、相對論專家基普.索恩(Kip Thorne, 1940 – )坐鎮科學顧問一席。電影講述未來人類能源用盡,地球變得不適宜居住。男主角留下女兒和兒子在地球上,與科學家一起飛越黑洞到銀河系的另一端,尋找另一個適合人類居住的星球。

本片絕對是在銀幕上重現愛因斯坦的廣義相對論效應的最佳嘗試。飛越黑洞附近時,黑洞重力令主角經歷的時間減慢,絕對會令物理迷邊看邊微笑。索恩更利用電腦模擬,把描述時空與質量互動的愛因斯坦場方程式完美展現在電影之中,創造了電影史上最合乎科學的黑洞特寫。

但我個人認為最值得我們深思的是電影中未來政府竟改寫歷史課本,使未來的人以為人類從未上過太空,好讓他們放棄科學,專心耕作。主角的女兒擅長數理,在學校問起從前太空任務的事,竟然因此遭受處罰。在這個越來越不科學的時代,我們應緊記保持誠實、尊重事實,才是通往真理的道路。

當不成睡美人就只能一起做《星際過客》

mv5bmjfkmjrhy2ytzjkzzc00zgq4lthkmzgtndq1ymvjy2jmnda2l2ltywdll2ltywdlxkeyxkfqcgdeqxvynty0mtkxmtg-_v1_sy1000_cr0015001000_al_
茫茫宇宙,只剩你我。圖/IMDb

《星際過客》(Passengers,又譯為《太空潛航者》、《太空旅客》)探討一個人性問題:當你在太空旅程的冬眠中醒來,沒有任何方法再度進入冷凍狀態,而航程仍有 90 多年,這意味著你會在抵達目的地前死去,你會喚醒其他人來陪伴自己嗎?

這部電影大部分時間只有三個演員在互動:男女主角和機器人酒保。戲中提到的物理其實不多:環狀自轉太空船設計、遠離地球時的通訊延遲、使用大角星(牧夫座主星)引力助推加速、核融合引擎等,差不多都是現代科幻片的必備元素。

我認為最值得欣賞的是電影描寫了男主角的心理掙扎。面對絕對的孤獨,明知喚醒女主角等同謀殺一樣,劇本希望探討的是人性及道德。道德問題不像科學,沒有客觀的答案。然而,如果人類有朝一日真能移民外星,那麼這將是我們必須要面對的一個重要問題。

撕下標籤,《關鍵少數》帶你看見 NASA 無名英雌

mv5bzwfkmtnlm2etyziymc00nzg5lwe1zjktowu5mjm1odnmzdk5l2ltywdlxkeyxkfqcgdeqxvyndg2mjuxnjm-_v1_sy1000_cr0014971000_al_
這些非裔美國女性,用實力證明自己。圖/IMDb

《關鍵少數》(Hidden Figures,又譯為《NASA 無名英雌》、《隱藏人物》)講述一個真實的故事:上世紀美蘇太空競賽時,三個美國黑人女人如何在美國太空總署的太空任務中扮演了非常重要的角色。

電影雖以美蘇鬥快登月為背景,戲中對各種太空科技著墨其實不多。難得的是,電影刻畫了在電腦尚未普及的時代,科學家如何用紙筆計算複雜的太空船軌道。

那是個發現的時代,同時也是個充滿歧視與不公的時代。身為黑人女人所受的歧視和屈辱,實非現代人所能想像。電腦的英文 computer,原指一班在幕後為太空總署進行複雜數學運算的女人。他們都擁有高學歷,卻因為膚色與性別,只可以做太空總署的人肉計算機,黑色計算機——colored computer——這個詞竟然真真實實地在全世界最先進的科研機構裡出現過。

電影描述這三個真實個案,算是一個小小的平反。然而,歧視並未在當下消失:性別、種族、年齡、性取向歧視等等,在廿一世紀的今天仍存在於人類社會之中。希望這電影能喚醒更多人去反思自己的行為、希望我們的後代在未來也同樣會為今天的不公義感到驚訝。

-----廣告,請繼續往下閱讀-----
所有討論 3
余海峯 David
18 篇文章 ・ 22 位粉絲
天體物理學家。工作包括科研、教學和科學普及。德國馬克斯・普朗克地外物理研究所博士畢業。現任香港大學理學院助理講師。現為《立場科哲》科學顧問、《物理雙月刊》副總編輯及專欄作者、《泛科學》專欄作者。合著有《星海璇璣》。