0

0
0

文字

分享

0
0
0

艾波特誕辰|科學史上的今天:12/20

張瑞棋_96
・2015/12/20 ・1131字 ・閱讀時間約 2 分鐘 ・SR值 522 ・七年級

他的書被科幻與科普作家艾西莫夫讚譽為「最棒的一本介紹如何感受維度概念的書」;天文學家卡爾·薩根在科普的電視節目中拿它來討論;就連電影導演諾蘭都特地將它放在電影《星際效應》中的書架上。這是哪一本經典巨著?作者又是哪一位科學大師?

艾德溫.艾波特.艾波特。圖片來源:wikimedia

其實這本書的作者艾德溫.艾波特.艾波特(是的,沒有筆誤。他姓Abbott,名字又有個 Abbott)並不是科學家或科普作家,他只是英國的一名數學教師。他在一百三十年前出版的這本科幻小說《平面國》(Flatland),原本是為了諷刺當時逕渭分明的社會階層與僵化的繁文縟節。艾波特用高低維度之間難以跨越的鴻溝作為隱喻,沒想到他以豐富的想像力描繪平面人眼中的世界,而成為思考不同次元的先驅,反而才是令這本書流傳至今、影響久遠的真正原因。

平面國第六版封面。圖片來源:wikimedia

艾波特在書中是讓生活在二維平面的正方形遇上三度空間的球體。因為正方形沒有高度的概念,所以他只會看到球體在平面上的切面;穿越平面的球體在他眼中只是忽大忽小的圓形。直到他被球體從平面世界剝離,帶到三度空間,才終於理解還有第三次元,並且興奮地推論出一個點往一維移動會變成一條線,再往二維移動會變成正方形,若再向上移動就成為立方體了。那麼,繼續往第四次元移動呢?

《平面國》就是以如此生動易懂的類比激發後人對更高次元的想像,從中得到靈感的包括數學家、物理學家、作家與藝術家。例如上述四度空間的超立方體會是什麼模樣?用類比的方式,既然立方體在二維平面的展開圖是十字架狀的六個正方形,那麼超立方體在我們這個三度空間的展開就應該是由立方體組成的立體十字架(想像十字架狀的平面展開圖向上下移動)。這就是電影《星際效應》中最後男主角在五次元空間所呈現的樣貌。超現實畫家達利也畫了一幅基督釘在超立方體上的圖。

-----廣告,請繼續往下閱讀-----

物理學家兼科普作家加來道雄在《穿梭超時空》書中除了引述《平面國》的內容,還闡述更多不同維度交會時的神奇例子。就連霍金也來插一腳,在《時間簡史》中評斷二維動物不可能存在,因為從進食到排泄的消化管道就把它分成兩半了!

《平面國》最後正方形先生回到原來的平面世界,呼籲同胞「向上!而非向北」(Upward, not Northward),擺脫一成不變的舊思維。這本書本身也啟發了無數人跳脫框架、展現創意,其影響之深遠已遠遠超過艾波特當初寫書時的初衷了。

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 955 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

7
5

文字

分享

0
7
5
想變年輕?就靠時空旅行!——《高手相對論》
遠流出版_96
・2022/04/29 ・2673字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

孿生子弔詭

這難道不是一個讓人活得年輕的方法嗎?的確是,而且後面講到廣義相對論的時候還會介紹另一個讓時間變慢的機制。科幻作品經常使用這種素材,比如電影《星際效應》(Interstellar)裡,太空人去黑洞附近執行任務,回來的時候還挺年輕的,可是自己的女兒卻已經很老了。

正所謂「山中方七日,世上已千年」。我想提醒你的是,這裡說的時間變慢只是不同座標系對比的結果。對於參加星際旅行的你來說,你實實在在活過的時間還是正常的壽命。在相對性原理之下,你根本感覺不到自己多出來什麼時間,如果你在地面上一輩子能讀一萬本書,在太空船上過這一輩子也只能讀一萬本書;你在山中過的這七天,也是一日三餐,共吃二十一頓飯。

在相對性原理之下,你根本感覺不到自己多出來什麼時間。圖/envato elements

但是你的確比地面上的人老得慢。說到這裡,有個著名的問題,叫「孿生子弔詭」。

假設你有一個雙胞胎妹妹,在你們二十歲這一年,你乘坐接近光速的太空船前往遠方執行任務,你的妹妹留在地球上。在你妹妹眼中看來,你這一走就是五十年,你回來的時候她已經七十歲了。可是因為相對論效應,你在太空船座標系下體會到的這段旅程只有三十年,你回來的時候才五十歲。

-----廣告,請繼續往下閱讀-----

你離開的時候,兩人一樣大,回來的時候妹妹比你老了二十年。這個事實是沒問題,但人們會有一個疑問。相對於你的妹妹,你在太空船上是高速運動,所以會有時間變慢的效應,所以你比你妹妹年輕。可是反過來說,相對於你,你妹妹在地球上難道不也是在高速運動嗎?為什麼不是她比你年輕呢?

這個問題的答案是你和你妹妹所在的座標系並不是等價的。你妹妹一直待在地球上,可以近似為一個等速直線運動的座標系。而你離開地球必須首先加速到接近光速,到達目的地要減速、掉頭、再加速,回到地球還要再減速,你經歷的並不是等速直線運動。你在加減速的過程中得使用力量,你會有「貼背感」,而你的妹妹沒有。

相對於從地球出發又折返的星際旅行,一直待在地球上比較像是等速直線運動。圖/envato elements

考慮到這些,精確計算你在每個階段相對於你妹妹是什麼年齡就比較麻煩了,這裡先不講,在本書番外篇會專門進行一點技術性的討論。

確定的是,這個效應是真實的,你真的比你妹妹年輕了二十歲。孿生子的效應已經有實驗證實。

-----廣告,請繼續往下閱讀-----

驗證這個效應不需要真的進行星際旅行,你只需要一種精度非常高的原子鐘。先將兩個原子鐘對時,然後將一個放在地面不動,把另一個帶上一般的民航機的國際航班飛一圈。飛回來後,再把這兩個原子鐘放在一起,就會發現它們的時間有一個極其微小的差異——這個差異是實實在在地存在的。參加了飛行的那個原子鐘,現在確實比留在地面的那個「年輕」一點。

如此說來,那些經常在天上飛的飛行員和空服員都比一般同齡人要年輕一點!但是他們參與飛行的速度不夠快,一輩子也差不了一秒。而如果你能把自己的速度提高到接近光速,那麼你的一天是地面上人的一年,甚至一千年,在理論上都是可能的。你就等於穿越到了未來。

一輩子也比別人年輕不了一秒的飛行員們(?)圖/envato elements

時空是相對的

與時間膨脹相對應的一個效應是「長度收縮」。

還是以太空人為例。同樣一段距離,我們在地面看他應該飛二十五年才能到,在他自己看來,飛十五年就到了。而且請注意,不管是哪一方看來,太空船相對於這段距離的飛行速度是一樣的。

-----廣告,請繼續往下閱讀-----

這就意味著,太空人看到的這段距離,比我們看到的要短。

如同時間,長度也是個相對的概念。一個物體的長度在相對於它靜止的座標系中是最大的,如果你和它有一個相對的運動,你會覺得它比靜止的時候短一些。這就是長度收縮。

當我們和某物體有相對運動時,它的長度看起來會短一點。圖/envato elements

我還記得小時候看過一個日本動畫片,裡面用極其誇張的手法描寫了這個現象:幾個孩子騎自行車,其他人感覺他們都變瘦了。

其實嚴格地說,有人透過計算,得出三維物體的長度收縮效應是你「觀察」到的,而不是你「看」到的。考慮到物體各個部分的光到達你眼睛的距離不一樣,你的眼睛實際看到的感覺,只是這個物體旋轉了一個角度而已,在視覺上不會覺得它變短了;但是如果你考慮到光速是有限的,物體不同部分的光線到達你的眼睛有個時間差,你根據這個時間差做一番計算,即會得到長度收縮的結果。

-----廣告,請繼續往下閱讀-----

時間膨脹和長度收縮這兩個效應告訴我們:空間的長短也好,時間的快慢也好,都與座標系有關,不同座標系中的觀測者所看到的時間和空間是不一樣的。時空並不是一個客觀不變的、一視同仁的大舞臺,每個座標系都有自己的時空數字。當不同的座標系要想交流,得先做「座標變換」,把對方的時空數字轉換成自己的。

想跟不同的座標系交流,記得先調整時空數字。圖/envato elements

但是,在每個等速直線運動的座標系內部,你所用的物理公式,都是一模一樣的。

如果永遠不聯繫,你在太空船的生活和我在地面的生活就沒有任何差別。可是一旦要聯繫,我們的數字則會非常不一樣。而這些不一樣,又恰恰是因為光速在所有座標系下都一樣。

相對論是如此讓人不好接受,卻又是如此簡單。

-----廣告,請繼續往下閱讀-----

相對性原理是一個信念,但物理學家從來都沒有把相對論當作「信仰」——科學的精神是實驗結果說了算。物理學家始終對相對論保持開放的態度。二○一一年,物理學家一度以為微中子的速度能超過光速,但是後來發現那是一個烏龍,是實驗設備有問題。

現在,我們只能說愛因斯坦完全正確。

遠流出版_96
59 篇文章 ・ 30 位粉絲
遠流出版公司成立於1975年,致力於台灣本土文化的紮根與出版的工作,向以專業的編輯團隊及嚴謹的製作態度著稱,曾獲日本出版之《台灣百科》評為「台灣最具影響力的民營出版社」。遠流以「建立沒有圍牆的學校」、滿足廣大讀者「一生的讀書計畫」自期,積極引進西方新知,開發作家資源,提供全方位、多元化的閱讀生活,矢志將遠流經營成一個「理想與勇氣的實踐之地」。

1

9
6

文字

分享

1
9
6
光如何被重力彎曲,構成黑洞的獨特景象?——黑洞旅行團,出發!(上)
ntucase_96
・2021/12/18 ・2499字 ・閱讀時間約 5 分鐘

  • 撰文/劉詠鯤

本文轉載自 CASE 科學報黑洞旅行團,出發!(上)——彎曲的光與重力透鏡

在嚴峻的疫情下,雖然我們無法親自外出旅遊,但是想像力可不會被輕易束縛。今天讓我們一起前往廣袤的宇宙中,在那裡散布著無數龐大的天體,它們扭曲從旁擦身而過的光線,形成各式獨特的景象。在本篇文章中,我們將帶領各位讀者一起了解光線是如何被彎曲。

電影《星際效應》中,一幅令人印象深刻的畫面是主角們乘著太空梭在黑洞附近時,所看到的黑洞景象(如圖一)。但是以人類目前的太空實力,尚無法脫離太陽系,抵達巨型黑洞附近更是無法實現。那這幅景象只是純粹虛構的嗎?並不是,它是藉由物理理論將我們的認知延伸到遙遠的宇宙彼端,讓我們也有能力推測,遙遠的未來,黑洞旅行團會看到的景象!

圖一、《星際效應》中,「巨人」黑洞附近的景色。版權所有:華納兄弟。

黑洞附近獨特景象的原因,是因為它極為龐大的重力。因此,在討論黑洞景象之前,我們要先來認識描述重力的理論,那便是鼎鼎有名的廣義相對論。廣義相對論使得人們有能力理解宇宙中發生的各種現象,其中一個重要的洞見是:「重力的本質是時空的彎曲」。這句話看起來十分抽象,以下我們舉個例子試著讓各位讀者體會,力與時空彎曲這兩件看來毫無相關的事情是如何扯上關係的。

力與彎曲空間

假設有兩位螞蟻探險家,在他們眼中,地球是一個巨大的平面。有一天,他們相約從赤道上兩個不同的位置出發,拿著指北針,約好一起向正北方,以相同速度前進。在他們心中,地球是一個平面,因此兩人同時向北走,路徑會互相平行,應該永遠不會相遇(圖二a)。但經過了數個月,他們在北極點碰到了彼此,感到驚訝無比。為了解釋此結果,他們推斷:「由於地球是平的,我們會碰在一起,代表我們之間有某種吸引力,將我們越拉越近(圖二b)」。但是我們站在第三人稱的視角便會明白,他們倆最後會碰在一起,並非因為彼此之間有吸引力,而是他們所在的地球是個曲面而非平面。力與空間的彎曲似乎沒有我們想像的那麼毫無關係!

-----廣告,請繼續往下閱讀-----
圖二、兩位相約向正北前進的螞蟻旅行家,兩條軌跡在平面上由於互相平行,應該永遠不會相遇(a)。但在球面上兩位會在北極點相遇(b),由於他們認為自己身處在平面上,會認為相遇是因為彼此之間具有吸引力,將他們的前進軌跡彎曲。

愛因斯坦偉大的洞見,便是他了解到:我們時刻感受到的重力,其實本質上是具有質量的物體造成附近時空的彎曲;我們因為認為時空是平坦的,因此把他詮釋為一種「力」,就如同兩位螞蟻探險家。細心的讀者可能留意到,我們在此使用了「時空」,而非「空間」。相對論中,時間與空間不再互相獨立,而可以互相影響。

讀者可能會疑惑:重力是一種力或是時空的彎曲,這聽起來只是詮釋角度的不同,有實質上的差別嗎?其中一個主要的差別在於對「光」的影響。古典描述重力的理論:牛頓力學,對於光通過一個大質量天體附近時,路徑會如何改變的預測,和廣義相對論的結果並不一致。1919 年,艾丁頓爵士在日蝕發生時,向太陽的方向觀測,發現竟然能夠看到理應被太陽擋住的星光。其原因便是太陽的重力造成附近的時空彎曲,遙遠的星光在通過該區域時發生路徑的偏折,使我們有機會在地球上看到它。

一個物體附近時空彎曲的程度,會和其質量大小有關。因此當光線通過愈大質量的天體附近時,路徑的改變就會越大。這個效果就如同光線通過一個透鏡時會發生偏折(如圖三)。天文學中,人們會使用由透鏡、反射鏡等組成的望遠鏡來觀察遙遠的天體。那我們是否可以使用這些天體形成的「透鏡」,來觀察宇宙呢?答案是肯定的,這便是在當前天文與宇宙學領域中,一個正蓬勃發展的觀測方式:重力透鏡。

圖三、遙遠的星光經過大質量天體時,發出的光線會如同經過透鏡一樣被彎曲,使得在地球上的我們可以看到本該被擋住的星星。

重力透鏡

根據光線彎曲的程度(也代表著透鏡天體的質量大小),重力透鏡可以被分為:微重力透鏡、弱重力透鏡以及強重力透鏡。其中強重力透鏡,由於光線的彎曲程度較大,在地球上的觀察者可以看到十分有趣的圖像。例如愛因斯坦十字、愛因斯坦環。對此議題有興趣的讀者,可以參考[3],該文章有深入淺出的解釋。

-----廣告,請繼續往下閱讀-----

由於光線偏折的程度,與通過的天體質量有關。因此,如果我們對於光源的性質十分了解,重力透鏡可以反過來提供給我們透鏡天體的質量資訊。這特別適合拿來進行暗物質的分布量測。由於暗物質只透過重力和其他物質作用,它並不會放出任何的電磁波,要「看」到它,只能透過重力的效應。若是我們在宇宙中,發現某一個區域具有非常大的質量,造成通過的光軌跡有所偏移,但是我們又無法在該區域中,利用各種電磁波望遠鏡,看到可識別的天體,那很可能那裏有緻密的暗物質;再透過分析光線的彎曲情形,科學家們便可以推測出其中的暗物質質量分布。

在本篇文章中,我們向各位讀者介紹了光是如何受到重力的彎曲,以及相關的應用。這個效應在黑洞附近會更為劇烈,在下一篇文章中,我們將會介紹該如何「模擬」黑洞附近的景象。

延伸閱讀

本系列文章:
黑洞為什麼不黑?彎曲的光與重力透鏡——黑洞旅行團,出發!(上)
巨大的黑洞反而不危險?——黑洞旅行團,出發!(中)
怎麼模擬出真實的黑洞樣貌?光線追蹤技術——黑洞旅行團,出發!(下)

參考資料

所有討論 1
ntucase_96
30 篇文章 ・ 1354 位粉絲
CASE的全名是 Center for the Advancement of Science Education,也就是台灣大學科學教育發展中心。創立於2008年10月,成立的宗旨是透過台大的自然科學學術資源,奠立全國基礎科學教育的優質文化與環境。

0

0
0

文字

分享

0
0
0
【GENE思書軒】從剎那到永恆,來談談時間的奧秘吧!
Gene Ng_96
・2019/01/19 ・4570字 ・閱讀時間約 9 分鐘 ・SR值 542 ・八年級

光陰似箭,快樂的日子總是過得比較快的,沒一會兒,春節假期就過完了,還沒補夠眠就要上班了 Orz

「一個男人與美女對坐一小時,會覺得似乎只過了一分鐘;但如果讓他坐在熱火爐上一分鐘,會覺得似乎過了不只一小時,這就是相對論。」是愛因斯坦的名句。

即使不快樂的時光,也能夠過得飛快,尤其是當人年紀愈來愈大,就越來越有時間過太快不夠用的感覺。

年紀愈來愈大,就越來越有時間過太快不夠用的感覺。
圖/pixabay

來談談時間吧!

時間客觀上是一種尺度,根據維基百科,時間在物理定義是純量,藉著時間,事件發生之先後可以按過去/現在/未來之序列得以確定(時間點),也可以衡量事件持續的期間以及事件之間之間隔長短(時間段)。時間是除了空間三個維度以外的第四維度。

-----廣告,請繼續往下閱讀-----

我們平時經歷的時間,在有鐘錶的情況下是小時、分鐘和秒。我們人類一生也不過幾十年,了不起百年,我們能輕易理解年月的意思。就算有讀書,人類文明頂多也只有上萬年歷史,因此要我們理解超過萬年的事物,如動輒幾百萬、幾千萬、幾億、幾十億年老的地質年代和古生物,我們演化來面對現實生活的腦袋就失靈了。因此有時候在解說一些演化史的時間概念時,我們要打個比方,比如說如果把寒武紀大爆發的五億四千萬年壓縮成一天,我們廿萬年前出現非洲草原的智人祖先不過是在最後卅秒才現身地球。如果算上地球的歷史 45 億年和銀河系的 132 億年歷史,那更難理解了。

圖/wikipedia

我們不僅不容易理解超長的時間,也不易理解極短暫的時間,除了禪修者之外。人類的歷史中,精準地計時,才幾百年的歷史,過去絕大多數人只是粗略地計時,不像現代人分秒必爭,一秒幾十萬上下。現在人類可以測量的時間,已經到了阿秒的地步,這也是人類難以想像的短暫時間!

極大時間 & 極短時間

儘管一再強調難以想像,可是科學家就能用理性的分法去理解並且設計測量的方法,但是這些極大和極短的時間究竟有何科學上的意義呢?有本稀有的好書《時間之冪:從極短暫到永恆,囊括各種時間尺度的祕密》(Time in Powers of Ten: Natural Phenomena and Their Timescales),就有兩位荷蘭烏德勒支大學 (Utrecht University) 的理論物理學家特胡夫特 (Gerard’t Hooft) 和范都仁 (Stefan Vandoren) 來告訴大家時間的秘密。

-----廣告,請繼續往下閱讀-----

他們以 10 為倍數,從 1 秒、10 秒、100 秒、1,000 秒開始至到 1032秒,然後倒過來從 10-25  秒、1 攸秒、10 攸秒、100 攸秒⋯⋯談回到 1 秒。全書有 48 章,每章談的有衰變、星球軌道、週期及頻率、宇宙學、光,層次分明。極長的時間中,我們進入宇宙學的領域;而極短的時間中,我們進入了量子力學和粒子物理的領域。《時間之冪》探討的尺度不僅是時間,也跨到了空間。

雖然談的是時空,但這本書的內容極為多樣,真佩服作者能收集到這麼豐富的材料,而且還深入淺出地解說,是不可多得的科普好書。他們用樓高 508 公尺的台北 101 大樓解說忽略空氣阻力的自由落體著地需要 10.18 秒。雖然我是物理白痴,但也能讀得趣味盎然。

他們坦承,這樣的寫法並非原創的,並指出一位住在比爾托芬 (Bilthoven) 小鎮的老師伯克 (Kees Bokes) 先生,在 1957 年出版了《宇宙觀:穿越宇宙的四十步》(Cosmic View: The Universe in 40 Jumps),是短片《十的乘冪》(Powers of Ten) 的前身,不過他們談的是超過半個世紀的科學成就,不僅主要是物理,還包括化學、生物和地質的現象。

時間之冪》提到,理論上,普朗克時間 (Planck time) 是最小的可測時間間隔。普朗克時間是光波在真空裡傳播一個普朗克長度的距離所需的時間。它的數值大約為 5 × 10-44 秒。現行的物理定律預測,在這短暫時間間隔裏所發生的任何變化,是無法測量或探測求得。到 2010 年 5 月為止,直接測量的時間不確定性最小為 12 阿秒 (1.2 × 10-17秒),約為 3.7 × 1026 個普朗克時間。

-----廣告,請繼續往下閱讀-----

神岡探測器

時間之冪》有許多彩圖,有些篇章雖然超出我專業所以不見得都讀懂,但是仍舊被物理學家極強的毅力和智慧設計出測量極長和極短時間的儀器給折服到想跪下。質子衰變成 K 介子的生命期上限為 5.9 × 1033 年,為了探測極為罕見的質子衰變,科學家建造了令人印象深刻的大型微中子探測器超級——日本的神岡探測器 (Super-KamiokaNDE,可縮寫為Super-K或SK;スーパーカミオカンデ),是東京大學在岐阜縣飛驒市神岡町的茂住礦山一個深達 1000 公尺的廢棄砷礦建造的。神岡探測器之所以蓋在如此深的地層中是因為要阻隔其他的宇宙射線訊號。

圖/google地圖

神岡探測器主要部分是一個高 41.4 公尺、直徑 39.3 公尺的不鏽鋼圓柱形的容器,盛有 5 萬噸高純度的水。水箱容量被分成由一個直徑為 33.8 公尺和高度為 36.2 公尺的不鏽鋼上層結構的內部探測器 (ID) 區,和包括其餘結構的外部探測器 (OD) 區。容器的內壁上安裝有 11,200 個光電倍增管,用於探測高速微中子在水中通過時產生的契忍可夫輻射 (Cherenkov radiation),那是是介質中運動的電荷速度超過該介質中光速時發出的一種以短波長為主的電磁輻射,其特徵是藍色輝光。

2015 年日本物理學家梶田隆章就是因神岡探測器的研究「發現了微中子震盪,證明了微中子具有質量」而榮獲諾貝爾物理學獎。梶田的老師小柴昌俊用超級神岡探測器證實反應爐中產生的微中子發生了振盪,因「在天體物理學領域做出的先驅性貢獻,其中包括在探測宇宙微中子和發現宇宙X射線源方面的成就」在 2002 年獲得諾貝爾物理學獎。《時間之冪》提到的許許多多時間的測量,在基礎研究過程中,科學家為了突破測量極限,也都推升了科技的大幅進展,可見基礎研究實力才是先進國家科技發展最重要助力。

-----廣告,請繼續往下閱讀-----

描寫時間的那些詞彙

雖然不容易想像,但中文裡還是有許多描寫極長和極短時間的詞彙,除了書中提到,還有如須臾、瞬息、彈指、剎那⋯⋯,以及恆河沙、阿僧祇、那由他⋯⋯從這些名詞不像中文來看,它們應該是外來的。沒錯,這些詞彙都來自印度,熟讀佛典的朋友更不陌生。印度人有很強的邏輯數學能力,我們現在通用的所謂阿拉伯數字,發明者其實就是印度人。以下是佛典的記載,非常長,有興趣可以研究一下:

極短的時間,在《摩訶僧祇律》就記載:「須臾者。二十念名一瞬頃。二十瞬名一彈指。二十彈指名一羅豫。二十羅豫名一須臾。日極長時有十八須臾,夜極短時有十二須臾。夜極長時有十八須臾,日極短時有十二須臾」。意思是 24 小時有 30 個須臾,1.2 萬個彈指,24 萬個「瞬間」,480 萬個「剎那」。推知「一剎那」是 0.018 秒;又據《大毘婆沙論》記載:「百二十剎那成一怛剎那。六十怛剎那成一臘縛,此有七千二百剎那。三十臘縛成一牟呼栗多,此有二百一十六千剎那。三十牟呼栗多成一晝夜」。一日一夜有 30 牟呼栗多,900 臘縛,54,000 怛剎那,6,480,000 剎那、一剎那的時間長度是 1/75 秒(約為 0.013 秒);《仁王護國般若波羅蜜多經觀如來品第二》中提到:「一念中有九十剎那,一剎那經九百生滅」。
而極長的時間,《妙法蓮華經》:「我成佛已來。復過於此百千萬億那由他阿僧祇劫。自從是來。我常在此娑婆世界說法教化。」;《大方廣佛華嚴經卷第四十五》:「佛言:『善男子!一百洛叉為一俱胝 (100 × 10^5 = 10^7),俱胝俱胝為一阿庾多 (10^7 × 10^7 = 10^14),阿庾多阿庾多為一那由他 (10^28),那由他那由他為一頻婆羅 (10^56),頻婆羅頻婆羅為一矜羯羅 (10^102),矜羯羅矜羯羅為一阿伽羅 (10^204),阿伽羅阿伽羅為一最勝 (10^408),最勝最勝為一摩婆(上聲呼)羅 (10^816),摩婆羅摩婆羅為一阿婆(上)羅,阿婆羅阿婆羅為一多婆(上)羅,多婆羅多婆羅為一界分,界分界分為一普摩,普摩普摩為一禰摩,禰摩禰摩為一阿婆(上)鈐,阿婆鈐阿婆鈐為一彌伽(上)婆,彌伽婆彌伽婆為一毘攞伽,毘攞伽毘攞伽為一毘伽(上)婆,毘伽婆毘伽婆為一僧羯邏摩,僧羯邏摩僧羯邏摩為一毘薩羅,毘薩羅毘薩羅為一毘贍婆,毘贍婆毘贍婆為一毘盛(上)伽,毘盛伽毘盛伽為一毘素陀,毘素陀毘素陀為一毘婆訶,毘婆訶毘婆訶為一毘薄底,毘薄底毘薄底為一毘佉擔,毘佉擔毘佉擔為一稱量,稱量稱量為一一持,一持一持為一異路,異路異路為一顛倒,顛倒顛倒為一三末耶,三末耶三末耶為一毘覩羅,毘覩羅毘覩羅為一奚婆(上)羅,奚婆羅奚婆羅為一伺察,伺察伺察為一周廣,周廣周廣為一高出,高出高出為一最妙,最妙最妙為一泥羅婆,泥羅婆泥羅婆為一訶理婆,訶理婆訶理婆為一一動,一動一動為一訶理蒲,訶理蒲訶理蒲為一訶理三,訶理三訶理三為一奚魯伽,奚魯伽奚魯伽為一達攞步陀,達攞步陀達攞步陀為一訶魯那,訶魯那訶魯那為一摩魯陀,摩魯陀摩魯陀為一懺慕陀,懺慕陀懺慕陀為一瑿攞陀,瑿攞陀瑿攞陀為一摩魯摩,摩魯摩摩魯摩為一調伏,調伏調伏為一離憍慢,離憍慢離憍慢為一不動,不動不動為一極量,極量極量為一阿麼怛羅,阿麼怛羅阿麼怛羅為一勃麼怛羅,勃麼怛羅勃麼怛羅為一伽麼怛羅,伽麼怛羅伽麼怛羅為一那麼怛羅,那麼怛羅那麼怛羅為一奚麼怛羅,奚麼怛羅奚麼怛羅為一鞞麼怛羅,鞞麼怛羅鞞麼怛羅為一鉢羅麼怛羅,鉢羅麼怛羅鉢羅麼怛羅為一尸婆麼怛羅,尸婆麼怛羅尸婆麼怛羅為一翳羅,翳羅翳羅為一薜羅,薜羅薜羅為一諦羅,諦羅諦羅為一偈羅,偈羅偈羅為一窣步羅,窣步羅窣步羅為一泥羅,泥羅泥羅為一計羅,計羅計羅為一細羅,細羅細羅為一睥羅,睥羅睥羅為一謎羅,謎羅謎羅為一娑攞荼,娑攞荼娑攞荼為一謎魯陀,謎魯陀謎魯陀為一契魯陀,契魯陀契魯陀為一摩覩羅,摩覩羅摩覩羅為一娑母羅,娑母羅娑母羅為一阿野娑,阿野娑阿野娑為一迦麼羅,迦麼羅迦麼羅為一摩伽婆,摩伽婆摩伽婆為一阿怛羅,阿怛羅阿怛羅為一醯魯耶,醯魯耶醯魯耶為一薜魯婆,婆薜魯婆為一羯羅波,羯羅波羯羅波為一訶婆婆,訶婆婆訶婆婆為一毘婆(上)羅,毘婆羅毘婆羅為一那婆(上)羅,那婆羅那婆羅為一摩攞羅,摩攞羅摩攞羅為一娑婆(上)羅,娑婆羅娑婆羅為一迷攞普,迷攞普迷攞普為一者麼羅,者麼羅者麼羅為一馱麼羅,馱麼羅馱麼羅為一鉢攞麼陀,鉢攞麼陀鉢攞麼陀為一毘伽摩,毘伽摩毘伽摩為一烏波跋多,烏波跋多烏波跋多為一演說,演說演說為一無盡,無盡無盡為一出生,出生出生為一無我,無我無我為一阿畔多,阿畔多阿畔多為一青蓮華,青蓮華青蓮華為一鉢頭摩,鉢頭摩鉢頭摩為一僧祇,僧祇僧祇為一趣,趣趣為一至,至至為一阿僧祇,阿僧祇阿僧祇為一阿僧祇轉,阿僧祇轉阿僧祇轉為一無量,無量無量為一無量轉,無量轉無量轉為一無邊,無邊無邊為一無邊轉,無邊轉無邊轉為一無等,無等無等為一無等轉,無等轉無等轉為一不可數,不可數不可數為一不可數轉,不可數轉不可數轉為一不可稱,不可稱不可稱為一不可稱轉,不可稱轉不可稱轉為一不可思,不可思不可思為一不可思轉,不可思轉不可思轉為一不可量,不可量不可量為一不可量轉,不可量轉不可量轉為一不可說,不可說不可說為一不可說轉,不可說轉不可說轉為一不可說不可說,此又不可說不可說為一不可說不可說轉。』」

圖/pixabay

本文原刊登於閱讀‧最前線【GENE思書軒】,並同步刊登於The Sky of Gene

Gene Ng_96
295 篇文章 ・ 30 位粉絲
來自馬來西亞,畢業於台灣國立清華大學生命科學系學士暨碩士班,以及美國加州大學戴維斯分校(University of California at Davis)遺傳學博士班,從事果蠅演化遺傳學研究。曾於台灣中央研究院生物多樣性研究中心擔任博士後研究員,現任教於國立清華大學分子與細胞生物學研究所,從事鳥類的演化遺傳學、基因體學及演化發育生物學研究。過去曾長期擔任中文科學新聞網站「科景」(Sciscape.org)總編輯,現任台大科教中心CASE特約寫手Readmoo部落格【GENE思書軒】關鍵評論網專欄作家;個人部落格:The Sky of Gene;臉書粉絲頁:GENE思書齋