Loading [MathJax]/extensions/MathZoom.js

0

0
0

文字

分享

0
0
0

摔電池也能知道電量

動眼神經
・2015/05/07 ・984字 ・閱讀時間約 2 分鐘 ・SR值 493 ・六年級

-----廣告,請繼續往下閱讀-----

或許你看過一部影片,內容敘述用摔的就能知道電池的電量,這是有可能的嗎?

三號鹼性電池是我們日常生活中最常見的電池種類,想知道電池還有沒有電、還剩多少電量,通常要藉由電子指示器等方式得知。現在,普林斯頓大學的的研究團隊指出, 恢復係數(the coefficient of restitution,簡稱COR,一種反彈的度量)與電池的不同電量有關,並可藉此判定其電量,其精確度竟然接近能量解析式X光繞射(energy-dispersive x-ray diffraction, EDXRD)反應所測得之電量。

當電池反彈的高度變化與電量消耗時所產生的物理的變化直接相關時,這種程度的準確性是有可能存在的。

鹼性電池是由凝膠狀的鋅作為陽極、二氧化錳作為陰極。當電池開始放電時,陽極的鋅開始氧化,於電解液中形成氫氧化鋅離子(Zn(OH)42-) 直到達飽和。這些離子接著在鋅粒子周圍沈澱成為氧化鋅,並在陽極創造出一個滲透網絡(percolation network);約剩五成電量時,原本凝膠態的鋅便會緻密化成具滲透性的固態狀氧化鋅。這些變化顯著地增加了電池的反彈高度,且此反彈高度的增加速率與氧化鋅的形成直接相關 。

-----廣告,請繼續往下閱讀-----

當固態狀的氧化鋅完全形成,也就是電池電量損耗到一半後,恢復係數將趨於穩定,且電池反彈的高度也會維持相同。

COR與電池電量之相關圖示

此研究的主持人,材料科學家Daniel Steingart博士表示,很開心能以一個如此簡單的測驗得知電量訊息 。他提到:「我們需要利用X光繞射分析(x-ray diffraction, XRD)來解釋為何電池的反彈是如此改變;不過,一旦我們確認了這個相關性,國中的物理課實驗便可以推論電池內的反應是如何、在哪裡發生的。」這個方法在其他的鹼性電池也適用,而金鼎電池-也就是他們實驗所使用的電池,亦證實了他們所設計的電池最高可以承受30公分的掉落。

俄亥俄大學一位顯微鏡和先進的檢測儀器專家Yuxuan Wang對於這項技術的便利性感到十分驚艷,認為這對現今的測量工具是一項偉大的助力。這項測量方式並不是要用來取代現有的電量檢測技術,而是作為一項輔助或補充,或許未來可以結合換能器與檢測系統,而在其中電池的特性可以在原地被檢測而不需要中斷電池系統的操作。

下次,當你不確定電池到底有沒有電時,不妨試試這個具科學實證並且便宜簡便測試的方法:摔電池。

-----廣告,請繼續往下閱讀-----

資料來源:

  1. Bounce denotes battery health. [Royal Society of Chemistry, 31 March 2015]
  2. Bhadra, S., Hertzberg, B. J., Hsieh, A. G., Croft, M., Gallaway, J. W., Van Tassell, B. J., … & Steingart, D. A. (2015). The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries. Journal of Materials Chemistry A.
-----廣告,請繼續往下閱讀-----
文章難易度
動眼神經
7 篇文章 ・ 1 位粉絲
曾經的泛科實習生S編,現在的動眼神經。 大叔魂少女心,說走就走的效率姐。喜歡接觸新事物,有一點資訊焦慮症;喜歡把想法化為文字,相信文字的力量能夠讓世界變得更美好。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
全球趨勢下,台灣電動車的在地之路
創新科技專案 X 解密科技寶藏_96
・2014/01/12 ・1609字 ・閱讀時間約 3 分鐘 ・SR值 550 ・八年級

-----廣告,請繼續往下閱讀-----

14_電動車輛系統模組與關鍵技術開發報導/張昱傑

美國TESLA電動車公司跌破眾人眼鏡的大成功,占據了各大媒體版面,使得世人重新開始相信電動車的未來,也開始反思,在科技業發達的台灣,是不是也有可能創造出如同特斯拉一般的成功?工研院的「電動車輛系統模組與關鍵技術開發」計畫指出了一個新方向-台灣的電動車該走出自己的路。

電動車,從來不是新科技,早在二十世紀初就曾試圖與剛起步的汽油車爭霸,電動車輛開發計畫在工研院機械所中也一直是個龐大且重要的計畫。然而,為什麼電動車卻從未在台灣成為主流呢?不如問問看你對電動車的印象是什麼呢?跑不遠?沒地方充電?沒力?其實這一切來自來幾個問題:第一是里程數恐懼,第二便是設計思維的錯誤。

你知道台灣人,一天開車走多遠嗎?一百公里?二百公里?其實台灣人每日平均的里程數,只有30公里,一般市面上的全電動車,都有將近100公里以上的續航力,我們卻仍然無法放心,加上充電時間長與充電站稀少這二個現象,不只在台灣,使全世界都因此出現了里程恐懼現象。然而這樣的擔心,多少是來自多慮呢?再來就是工程師在設計思維上,為了省錢,使用了小一級的馬達,造成了電動車沒力的印象,而且並沒考慮里程恐懼,使用了較少的電池為車輛減重,也使得續航力問題,仍為人詬病,這便是電動車所面臨的困境。其實真正的電動車,不只擁有更好的操控與扭力,在能源效率上更是高人一等,而且比起波動的汽油價格,電價十分穩定而便宜……,但這些優點,卻都被埋沒。

-----廣告,請繼續往下閱讀-----

TESLA成功的原因,便是直接打破以上成見,直接用大容量的電池賦予超強的續航力,用高價位實現對電動車的需求,雖然一鳴驚人,但這卻不會是台灣的成功方程式。台灣的私人汽車數量,只占全球的0.5%,在數量與規模上,不可能實現這種高單價的跑車生產路線,台灣應該走出自己的路!工研院在電動車風潮中,看到的台灣機會,其實在於零組件:工研院的電動車計畫的重點,便是在開發關鍵零組件:馬達、電控設備,並結合工研院研發的STOBA高安全鋰電池,結合上台灣一直以來在生產能力、彈性、品質上在亞洲的領先的地位,因為台灣沒辦法如同大國,有廣大的消費市場支持電動車,但台灣可以放眼世界,電機、電控、電池,台灣都有領導品牌,為轉型帶來基礎,加上台灣電子業的發達,生產出口控制元件與重要零組件,將帶來的附加價值,更是無可限量。

放眼世界後,工研院回到本土的課題,台灣需要的是什麼樣的電動車呢?其實一直以來,台灣在電動機車、電動代步車、電動輪椅上,有著世界前幾名的領導地位,其實從這個現象,台灣電動車未來也可見一斑。工研院電動車計畫,著眼在商用車:公車、貨車、工廠運輸車、宅配用車之上,以商用車路線固定的特性使得充電可以定時定點,個人面則不和汽車業搶市,發展輕型個人代步車,配合台灣行駛距離偏短的特性,現在上下班,一個人坐在空洞的四人座轎車塞在車潮中,或是騎著機車,穿梭在車陣裡險象環生,成了都市民眾的無奈,工研院認為台灣民眾想要的,是一種都市移動新模式:都市電動車,以小型、足夠的續航力來彌補汽機車間的差異,同時,也將讓台灣的都市不再擁擠。

工研院電動車輛系統模組與關鍵技術開發計畫,將繼續著手在電池效率提升、充電站普及與充電規格統一,發現更多商用車與輕型個人車的可能性,為台灣電動車的未來勾勒出無限可能性。

台灣的電動車未來會是什麼樣子?靠著出口關鍵零組件,開始在電動車市場中占有一席之地,來到了都市,公車、貨車,不再噴出濃濃的廢氣,上班的路上,小型電動車讓道路更寬敞、更安全,台灣更成為東亞電動車城市的典範,這可能就是台灣的電動車大未來!

-----廣告,請繼續往下閱讀-----

讓我們一同期許台灣電動車的可能性,不必非得變成TESLA,台灣也可以找到自己的路!

技術專頁:電動車關鍵術 研發顯神通

更多創新技術歡迎瀏覽解密國家寶藏

-----廣告,請繼續往下閱讀-----
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!