0

0
0

文字

分享

0
0
0

摔電池也能知道電量

動眼神經
・2015/05/07 ・984字 ・閱讀時間約 2 分鐘 ・SR值 493 ・六年級

或許你看過一部影片,內容敘述用摔的就能知道電池的電量,這是有可能的嗎?

三號鹼性電池是我們日常生活中最常見的電池種類,想知道電池還有沒有電、還剩多少電量,通常要藉由電子指示器等方式得知。現在,普林斯頓大學的的研究團隊指出, 恢復係數(the coefficient of restitution,簡稱COR,一種反彈的度量)與電池的不同電量有關,並可藉此判定其電量,其精確度竟然接近能量解析式X光繞射(energy-dispersive x-ray diffraction, EDXRD)反應所測得之電量。

當電池反彈的高度變化與電量消耗時所產生的物理的變化直接相關時,這種程度的準確性是有可能存在的。

鹼性電池是由凝膠狀的鋅作為陽極、二氧化錳作為陰極。當電池開始放電時,陽極的鋅開始氧化,於電解液中形成氫氧化鋅離子(Zn(OH)42-) 直到達飽和。這些離子接著在鋅粒子周圍沈澱成為氧化鋅,並在陽極創造出一個滲透網絡(percolation network);約剩五成電量時,原本凝膠態的鋅便會緻密化成具滲透性的固態狀氧化鋅。這些變化顯著地增加了電池的反彈高度,且此反彈高度的增加速率與氧化鋅的形成直接相關 。

-----廣告,請繼續往下閱讀-----

當固態狀的氧化鋅完全形成,也就是電池電量損耗到一半後,恢復係數將趨於穩定,且電池反彈的高度也會維持相同。

COR與電池電量之相關圖示

此研究的主持人,材料科學家Daniel Steingart博士表示,很開心能以一個如此簡單的測驗得知電量訊息 。他提到:「我們需要利用X光繞射分析(x-ray diffraction, XRD)來解釋為何電池的反彈是如此改變;不過,一旦我們確認了這個相關性,國中的物理課實驗便可以推論電池內的反應是如何、在哪裡發生的。」這個方法在其他的鹼性電池也適用,而金鼎電池-也就是他們實驗所使用的電池,亦證實了他們所設計的電池最高可以承受30公分的掉落。

俄亥俄大學一位顯微鏡和先進的檢測儀器專家Yuxuan Wang對於這項技術的便利性感到十分驚艷,認為這對現今的測量工具是一項偉大的助力。這項測量方式並不是要用來取代現有的電量檢測技術,而是作為一項輔助或補充,或許未來可以結合換能器與檢測系統,而在其中電池的特性可以在原地被檢測而不需要中斷電池系統的操作。

下次,當你不確定電池到底有沒有電時,不妨試試這個具科學實證並且便宜簡便測試的方法:摔電池。

-----廣告,請繼續往下閱讀-----

資料來源:

  1. Bounce denotes battery health. [Royal Society of Chemistry, 31 March 2015]
  2. Bhadra, S., Hertzberg, B. J., Hsieh, A. G., Croft, M., Gallaway, J. W., Van Tassell, B. J., … & Steingart, D. A. (2015). The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries. Journal of Materials Chemistry A.
-----廣告,請繼續往下閱讀-----
文章難易度
動眼神經
7 篇文章 ・ 1 位粉絲
曾經的泛科實習生S編,現在的動眼神經。 大叔魂少女心,說走就走的效率姐。喜歡接觸新事物,有一點資訊焦慮症;喜歡把想法化為文字,相信文字的力量能夠讓世界變得更美好。

0

1
0

文字

分享

0
1
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
211 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
全球趨勢下,台灣電動車的在地之路
創新科技專案 X 解密科技寶藏_96
・2014/01/12 ・1609字 ・閱讀時間約 3 分鐘 ・SR值 550 ・八年級

14_電動車輛系統模組與關鍵技術開發報導/張昱傑

美國TESLA電動車公司跌破眾人眼鏡的大成功,占據了各大媒體版面,使得世人重新開始相信電動車的未來,也開始反思,在科技業發達的台灣,是不是也有可能創造出如同特斯拉一般的成功?工研院的「電動車輛系統模組與關鍵技術開發」計畫指出了一個新方向-台灣的電動車該走出自己的路。

電動車,從來不是新科技,早在二十世紀初就曾試圖與剛起步的汽油車爭霸,電動車輛開發計畫在工研院機械所中也一直是個龐大且重要的計畫。然而,為什麼電動車卻從未在台灣成為主流呢?不如問問看你對電動車的印象是什麼呢?跑不遠?沒地方充電?沒力?其實這一切來自來幾個問題:第一是里程數恐懼,第二便是設計思維的錯誤。

你知道台灣人,一天開車走多遠嗎?一百公里?二百公里?其實台灣人每日平均的里程數,只有30公里,一般市面上的全電動車,都有將近100公里以上的續航力,我們卻仍然無法放心,加上充電時間長與充電站稀少這二個現象,不只在台灣,使全世界都因此出現了里程恐懼現象。然而這樣的擔心,多少是來自多慮呢?再來就是工程師在設計思維上,為了省錢,使用了小一級的馬達,造成了電動車沒力的印象,而且並沒考慮里程恐懼,使用了較少的電池為車輛減重,也使得續航力問題,仍為人詬病,這便是電動車所面臨的困境。其實真正的電動車,不只擁有更好的操控與扭力,在能源效率上更是高人一等,而且比起波動的汽油價格,電價十分穩定而便宜……,但這些優點,卻都被埋沒。

-----廣告,請繼續往下閱讀-----

TESLA成功的原因,便是直接打破以上成見,直接用大容量的電池賦予超強的續航力,用高價位實現對電動車的需求,雖然一鳴驚人,但這卻不會是台灣的成功方程式。台灣的私人汽車數量,只占全球的0.5%,在數量與規模上,不可能實現這種高單價的跑車生產路線,台灣應該走出自己的路!工研院在電動車風潮中,看到的台灣機會,其實在於零組件:工研院的電動車計畫的重點,便是在開發關鍵零組件:馬達、電控設備,並結合工研院研發的STOBA高安全鋰電池,結合上台灣一直以來在生產能力、彈性、品質上在亞洲的領先的地位,因為台灣沒辦法如同大國,有廣大的消費市場支持電動車,但台灣可以放眼世界,電機、電控、電池,台灣都有領導品牌,為轉型帶來基礎,加上台灣電子業的發達,生產出口控制元件與重要零組件,將帶來的附加價值,更是無可限量。

放眼世界後,工研院回到本土的課題,台灣需要的是什麼樣的電動車呢?其實一直以來,台灣在電動機車、電動代步車、電動輪椅上,有著世界前幾名的領導地位,其實從這個現象,台灣電動車未來也可見一斑。工研院電動車計畫,著眼在商用車:公車、貨車、工廠運輸車、宅配用車之上,以商用車路線固定的特性使得充電可以定時定點,個人面則不和汽車業搶市,發展輕型個人代步車,配合台灣行駛距離偏短的特性,現在上下班,一個人坐在空洞的四人座轎車塞在車潮中,或是騎著機車,穿梭在車陣裡險象環生,成了都市民眾的無奈,工研院認為台灣民眾想要的,是一種都市移動新模式:都市電動車,以小型、足夠的續航力來彌補汽機車間的差異,同時,也將讓台灣的都市不再擁擠。

工研院電動車輛系統模組與關鍵技術開發計畫,將繼續著手在電池效率提升、充電站普及與充電規格統一,發現更多商用車與輕型個人車的可能性,為台灣電動車的未來勾勒出無限可能性。

台灣的電動車未來會是什麼樣子?靠著出口關鍵零組件,開始在電動車市場中占有一席之地,來到了都市,公車、貨車,不再噴出濃濃的廢氣,上班的路上,小型電動車讓道路更寬敞、更安全,台灣更成為東亞電動車城市的典範,這可能就是台灣的電動車大未來!

-----廣告,請繼續往下閱讀-----

讓我們一同期許台灣電動車的可能性,不必非得變成TESLA,台灣也可以找到自己的路!

技術專頁:電動車關鍵術 研發顯神通

更多創新技術歡迎瀏覽解密國家寶藏

-----廣告,請繼續往下閱讀-----
創新科技專案 X 解密科技寶藏_96
81 篇文章 ・ 3 位粉絲
由 19 個國家級產業科技研發機構,聯手發表「創新科技專案」超過 80 項研發成果。手法結合狂想與探索,包括高度感官互動的主題式「奇想樂園」區,以及分享科技新知與願景的「解密寶藏」區。驚奇、專業與創新,激發您對未來的想像與憧憬!

0

0
0

文字

分享

0
0
0
摔電池也能知道電量
動眼神經
・2015/05/07 ・984字 ・閱讀時間約 2 分鐘 ・SR值 493 ・六年級

或許你看過一部影片,內容敘述用摔的就能知道電池的電量,這是有可能的嗎?

三號鹼性電池是我們日常生活中最常見的電池種類,想知道電池還有沒有電、還剩多少電量,通常要藉由電子指示器等方式得知。現在,普林斯頓大學的的研究團隊指出, 恢復係數(the coefficient of restitution,簡稱COR,一種反彈的度量)與電池的不同電量有關,並可藉此判定其電量,其精確度竟然接近能量解析式X光繞射(energy-dispersive x-ray diffraction, EDXRD)反應所測得之電量。

當電池反彈的高度變化與電量消耗時所產生的物理的變化直接相關時,這種程度的準確性是有可能存在的。

鹼性電池是由凝膠狀的鋅作為陽極、二氧化錳作為陰極。當電池開始放電時,陽極的鋅開始氧化,於電解液中形成氫氧化鋅離子(Zn(OH)42-) 直到達飽和。這些離子接著在鋅粒子周圍沈澱成為氧化鋅,並在陽極創造出一個滲透網絡(percolation network);約剩五成電量時,原本凝膠態的鋅便會緻密化成具滲透性的固態狀氧化鋅。這些變化顯著地增加了電池的反彈高度,且此反彈高度的增加速率與氧化鋅的形成直接相關 。

-----廣告,請繼續往下閱讀-----

當固態狀的氧化鋅完全形成,也就是電池電量損耗到一半後,恢復係數將趨於穩定,且電池反彈的高度也會維持相同。

COR與電池電量之相關圖示

此研究的主持人,材料科學家Daniel Steingart博士表示,很開心能以一個如此簡單的測驗得知電量訊息 。他提到:「我們需要利用X光繞射分析(x-ray diffraction, XRD)來解釋為何電池的反彈是如此改變;不過,一旦我們確認了這個相關性,國中的物理課實驗便可以推論電池內的反應是如何、在哪裡發生的。」這個方法在其他的鹼性電池也適用,而金鼎電池-也就是他們實驗所使用的電池,亦證實了他們所設計的電池最高可以承受30公分的掉落。

俄亥俄大學一位顯微鏡和先進的檢測儀器專家Yuxuan Wang對於這項技術的便利性感到十分驚艷,認為這對現今的測量工具是一項偉大的助力。這項測量方式並不是要用來取代現有的電量檢測技術,而是作為一項輔助或補充,或許未來可以結合換能器與檢測系統,而在其中電池的特性可以在原地被檢測而不需要中斷電池系統的操作。

-----廣告,請繼續往下閱讀-----

下次,當你不確定電池到底有沒有電時,不妨試試這個具科學實證並且便宜簡便測試的方法:摔電池。

資料來源:

  1. Bounce denotes battery health. [Royal Society of Chemistry, 31 March 2015]
  2. Bhadra, S., Hertzberg, B. J., Hsieh, A. G., Croft, M., Gallaway, J. W., Van Tassell, B. J., … & Steingart, D. A. (2015). The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries. Journal of Materials Chemistry A.
-----廣告,請繼續往下閱讀-----
文章難易度
動眼神經
7 篇文章 ・ 1 位粉絲
曾經的泛科實習生S編,現在的動眼神經。 大叔魂少女心,說走就走的效率姐。喜歡接觸新事物,有一點資訊焦慮症;喜歡把想法化為文字,相信文字的力量能夠讓世界變得更美好。