0

0
0

文字

分享

0
0
0

天文學家在銀河系邊境發現新生恆星

臺北天文館_96
・2015/03/07 ・1164字 ・閱讀時間約 2 分鐘 ・SR值 529 ・七年級

巴西南大河州聯邦大學(Federal University of Rio Grande do Sul)天文學家Denilso Camargo等人透過廣角紅外尋天探測器(Wide-Field Infrared Survey Explorer,WISE)影像,在銀河系極邊緣處發現新生恆星。發現新生恆星這件事看起來似乎挺普通的,但這些新生恆星所在之處卻非常不普通,因為銀河極邊緣處可以用來製造新恆星的材料非常稀少,要誕生新恆星是非常困難的事。

我們的銀河系是個所謂的棒旋星系,在星系中間有個由大量恆星、氣體與塵埃組成的棒狀結構,之後有數條主要由恆星構成的旋臂自棒狀結構向外成螺旋狀延展。若從側面觀察銀河系,則銀河系顯得相當扁平,絕大部分物質集中在銀河盤面(銀盤)和銀河系中央的銀核區域內。

恆星基本上是從氣體含量豐富且稠密的巨分子雲(giant molecular cloud,GMC)中誕生,而巨分子雲主要分佈在銀盤較內側的範圍。單一巨分子雲中含有許多小團塊,絕大多數恆星就是一起從這些團塊中誕生而形成星團。

Denilso等人檢視WISE的紅外波段觀測影像,結果不僅在銀盤上下方數千光年遠之處發現巨分子雲,而且其中一個巨分子雲裡面居然同時含有2個星團;這是天文學家第一次在銀河系內這麼偏僻的位置發現有新恆星誕生。

f2a
credit: D. Camargo/NASA/WISE

這2個新發現的星團分別編號為Camargo 438和439,位在編號為HRK 81.4-77.8的巨分子雲中。HRK 81.4-77.8估計年齡約有200萬歲,位在銀盤下方約16000光年遠之處的鯨魚座方向,離銀河系一般的恆星誕生區非常遠。上圖就是新發現的Camargo 438星團的WISE衛星W1的負像,影像寬度約相當於24光年,影像中的每個黑點都代表一顆恆星。

Denilso等人相信在銀河系邊境之處居然有新生恆星誕生,可能的解釋有兩種。第一種是「煙囪模型(chimney model)」,即銀盤上發生諸如超新星爆炸等劇烈事件將塵埃和氣體拋出銀盤外,在這些物質落回銀盤的過程中逐漸併攏而形成巨分子雲。另一種解釋是銀河系和大小麥哲倫等衛星星系之間的重力交互作用,可能從而擾亂了落入銀河系的氣體,從而在氣體比較稠密的地方形成巨分子雲和恆星。

這些天文學家目前正努力瞭解這些造星原料是如何抵達這麼遙遠的地方。其中,煙囪模型需要數個世代的數百顆大質量恆星發生超新星爆炸,如此一來所產生的超級風(superwind)才有足夠的威力將HRK 81.4-77.8拋到現在的位置上。在幾百萬年期間,這些超新星爆炸產生的氣泡結構自身會擠壓拋出的物質,形成更多恆星,然後又刺激物質的拋擲,而這些物質最終會如降雨般逐漸落回銀盤,整個景象如同銀河噴泉一樣。

Denilso說明道:這項發現顯示銀河系沒有先前認為的那麼空曠。新發現的星團真的很奇特,或許在數百萬年之後,這些星團中的恆星周圍若有任何居民,那麼他們或許能以俯瞰之姿來觀察銀河系,和我們在地球上看到的景象將完全不同。

 

資料來源:

1. Astronomers find newborn stars at the edge of the Galaxy. [Royal Astronomical Society, 04 March 2015]

2. Camargo, D., Bica, E., Bonatto, C., & Salerno, G. (2015). Discovery of two embedded clusters with WISE in the high Galactic latitude cloud HRK 81.4-77.8. arXiv preprint arXiv:1501.03707.

 

本文轉載自網路天文館

相關標籤: 恆星 銀河系
文章難易度
臺北天文館_96
477 篇文章 ・ 12 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!


1

4
0

文字

分享

1
4
0

解析「福衛七號」的觀測原理——它發射升空後,如何讓天氣預報更準確?

科技大觀園_96
・2021/10/25 ・2915字 ・閱讀時間約 6 分鐘

2019 年 6 月 25 日,福爾摩沙衛星七號(簡稱福衛七號)在國人的引頸期盼下升空。一年多來(編按:以原文文章發佈時間計算),儘管衛星還沒有全部轉換到預定的軌道,但已經回傳許多資料,這些資料對於天氣預報的精進,帶來很大的助益。中央大學大氣系特聘教授黃清勇及團隊成員楊舒芝教授、陳舒雅博士最近的研究主題,就是福衛七號傳回的資料,對天氣預報能有哪些改善。

掩星觀測的原理

要介紹福衛七號帶來的貢獻,得先從它的上一代──福衛三號說起。福衛三號包含了 6 顆氣象衛星,軌道高度 700~800 公里,以 72 度的傾角繞著地球運轉(繞行軌道與赤道夾角為 72 度)。這些衛星提供氣象資訊的方式,是接收更高軌道(約 20,200 公里)的 GPS 衛星所放出的電波,這些電波在行進到氣象衛星的路程中,會從太空進入大氣,並產生偏折,再由氣象衛星接收。換句話說,氣象衛星接收到的電波並不是走直線傳遞來的,而是因為大氣的折射,產生了偏折,藉由偏折角可推得大氣資訊。

▲低軌道衛星(如福衛三號)持續接收 GPS 衛星訊號,直到接收不到為止,整個過程會轉換成一次掩星事件,讓科學家取得大氣溫濕度垂直分佈。圖/黃清勇教授提供

氣象衛星會一邊移動,一邊持續接收電波,直到接收不到為止,在這段過程中,電波穿過的大氣從最高層、較稀薄的大氣,逐漸變為最底層、最接近地面的大氣,科學家能將這段過程中每一層大氣所造成的偏折角,通過計算回推出折射率,而折射率又和大氣溫度、水氣、壓力有關  ,因此可再藉由每個高度的大氣折射率,得出溫濕度垂直分布,這種觀測方式稱為「掩星觀測」。掩星觀測所得到的資料,可以納入數值預報模式,進一步做各種預報分析。 

資料同化──觀測與模式的最佳結合

在將掩星觀測資料納入數值預報模式時,必須先經過「資料同化」的過程。數值預報模式內含動力方程式,可以模擬任何一個位置的氣塊的運動,但是因為大氣環境非常複雜,模擬時不可能納入全部的動力條件,因此模擬結果不一定正確。而另一方面,掩星觀測資料提供的是真實觀測資訊,楊舒芝形容:「觀測就像拿著照相機拍照,不管什麼動力方程式,拍到什麼就是什麼。」但是,觀測的分布是不均勻的—唯有觀測過的位置,我們才會有觀測資料。

所以,我們一手擁有分布不均勻但很真實的觀測資料,另一手擁有很全面但可能不太正確的模式模擬。資料同化就是結合這兩者,找到一個最具代表性的大氣初始分析場,再以這個分析場為起點,去做後續的預報。資料同化正是楊舒芝和陳舒雅的重點工作之一。 

中央大學分別模擬 2010 年梅姬颱風和 2013 年海燕颱風的路徑,發現加入福三掩星觀測資料之後,可以降低颱風模擬路徑的誤差。圖/黃清勇教授提供

由於掩星觀測取得的資料與大氣的溫度、濕度、壓力有密切關係,因此在預報颱風、梅雨或豪大雨等與水氣量息息相關的天氣時,帶來重要的幫助。黃清勇的團隊針對福衛三號的掩星觀測資料對天氣預報的影響,做了許多模擬與研究,發現在預測颱風或氣旋生成、預報颱風路徑,以及豪大雨的降雨區域及雨量等,納入福衛三號的掩星觀測資料,都能有效提升預報的準確度。

黃清勇進一步說明,由於颱風都是在海面上生成的,而掩星觀測技術仰賴的是繞著地球運行的衛星來收集資料,相較於一般位於陸地上的觀測站,更能夠取得海上大氣資料,因此對於預測颱風的生成有很好的幫助。另一方面,這些資料也能幫助科學家掌握大氣環境,例如對於太平洋高壓的範圍抓得很準確,那麼對颱風路徑的預測自然也會更準。根據團隊的研究,加入福衛三號的掩星觀測資料,平均能將 72 小時颱風路徑預報的誤差減少約 12 公里,相當於改進了 5%。

豪大雨的預測則不只溫濕度等資訊,還需要風場資訊的協助,楊舒芝以 2008 年 6 月 16 日臺灣南部降下豪大雨的事件做為舉例,一般來說豪大雨都發生在山區,但這次的豪大雨卻集中在海岸邊,而且持續時間很久。為了找出合理的預測模式,楊舒芝探討了如何利用掩星觀測資料來修正風場。 

從 2008 年 6 月 16 日的個案發現,掩星資料有助於研究團隊掌握西南氣流的水氣分佈。上圖 CNTL 是未使用掩星資料的控制組,而 REF 和 BANGLE 皆有加入掩星資料(同化算子不一樣),有掩星資料可明顯改善模擬,更接近觀測值(Observation)。圖/黃清勇教授提供

福衛七號接棒觀測

隨著福衛三號的退休,福衛七號傳承了氣象觀測的重責大任。福衛七號也包含了 6 顆氣象衛星,不過它和福衛三號有些不同之處。

福衛三號是以高達 72 度的傾角繞著地球運轉,取得的資料點分布比較均勻,高緯度地區會比低緯度地區密集一些。相較之下,福衛七號的傾角只有 24 度,它所觀測的點集中在南北緯 50 度之間,對臺灣所在的副熱帶及熱帶地區來說,密集度更高;加上福衛七號收集的電波來源除了美國的 GPS 衛星,還增加了俄國的 GLONASS 衛星,這些因素使得在低緯度地區,福衛七號所提供的掩星觀測資料將比福衛三號多出約四倍,每天可達 4,000 筆。

福衛三號與福衛七號比較表。圖/fatcat 11 繪

另一方面,福衛七號的軟硬體比起福衛三號更加先進,可以獲得更低層的大氣資料,而因為水氣主要都集中在低層,所以福衛七號對水氣掌握會比福衛三號更具優勢。

從福衛三號到福衛七號,其實模式也在逐漸演進。早期的模式都是納入「折射率」進行同化,而折射率又是從掩星觀測資料測得的偏折角計算出來的。「偏折角」是衛星在做觀測時,最直接觀測到的數據,相較之下,折射率是計算出來的,就像加工過的產品,一定有誤差。因此,近來各國學者在做數值模擬時,愈來愈多都是直接納入偏折角,而不採用折射率。黃清勇解釋:「直接納入偏折角會增加模式計算的複雜度,也會增加運算所需的時間,而預報又是得追著時間跑的工作,因此早期才會以折射率為主。」不過現在由於電腦的運算能力與模式都已經有了進步,因此偏折角逐漸成為主流的選擇。 

由左至右依序為,楊舒芝教授、黃清勇特聘教授、陳舒雅助理研究員。圖/簡克志攝

福衛七號其實還沒有全部轉換到預定的軌道,不過這一年多來的掩星觀測資料,已經讓中央氣象局對熱帶地區的天氣預報,準確度提升了 4~10%;陳舒雅也以今年 8 月的哈格比颱風為案例,成功地利用福衛七號的掩星觀測資料,模擬出哈格比颱風的生成。

除了福衛七號,還有一顆稱為「獵風者」的實驗型衛星,預計 2022 年將會升空。獵風者的任務是接收從地表反射的 GPS 衛星電波,然後推估風速。可以想見,一旦有了獵風者的加入,我們對大氣環境的掌握度勢必更好,對於颱風等天氣現象的預報也能更加準確。就讓我們一起期待吧!

科技大觀園_96
952 篇文章 ・ 247 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。
網站更新隱私權聲明
本網站使用 cookie 及其他相關技術分析以確保使用者獲得最佳體驗,通過我們的網站,您確認並同意本網站的隱私權政策更新,了解最新隱私權政策