1

1
1

文字

分享

1
1
1

電子書包在臺灣: 產品掛帥 專業無奈

洪朝貴
・2011/10/02 ・4926字 ・閱讀時間約 10 分鐘 ・SR值 562 ・九年級

在臺灣,主導 (傳統/筆記/平板) 電腦輔助教學的力量來自電子資訊產業,而不是來自教學專業。在這一波電子書包狂熱當中,專業意見再度缺席, 而這也將造成「科技提升教學效果」機會的再次流失,與國家龐大教育資源的浪費。

sin 函數的定義; 從割線到切線
sin 函數的定義; 從割線到切線

一、微積分教師所需要的數位平等電子書包

數理化教學很可以受惠於互動學習–不論是理化的實驗,或是操作橢圓規動手體驗幾何定義,經常都比黑板上的抽象符號更能讓親手操作的學生「感受」數學/物理/化學。 今日的電腦,提供了過去的教師所沒有、甚至無法想像的教育機會。筆者曾在電腦教室上過一學期的微積分課,部分主題使用電腦輔助教學,包含:

  1. 複習拋物線的幾何定義與代數定義 (使用 drgeo 與 gnuplot)
  2. 複習三角函數的定義 (使用 drgeo 與 gnuplot)
  3. 極限與連續/不連續的定義 (使用 gnuplot)
  4. 曲線的割線與切線 (使用 drgeo)
  5. 徒手繪製 (不需要認識的) 複雜函數的導函數 (並用 gnuplot 驗證)
  6. 徒手繪製 (不需要認識的) 複雜函數的積分 (並用 gnuplot 驗證)
  7. 分部積分的應用 (使用 maxima 驗算)
  8. 二次連續 vs 二重連續 (使用 gnuplot)

從一位數學專業教師的角度來看, 不論是誰出錢, 如果要配發電子書包給學生, 這個電子書包應該至少包含:

  1. drgeo 或 geogebra 或 kig 幾何互動軟體
  2. gnuplot 函數繪圖軟體
  3. maxima 代數符號運算軟體
  4. 自由授權的中英文微積分講義

以最低的硬體需求來說,一片稍加修改的 ezgo DVD或一顆安裝slax的2G可開機隨身碟,再搭配零管理的無硬碟電腦,就可以滿足這樣的需求。當然,國高中數學老師的需求與微積分課程不盡相同;但不論是哪個年級的數學課程,在教學現場真正最有幫助的資源,以上面的配備為基礎再擴充其他數學教學自由軟體,都可以創造出電腦時代之前不曾見過的教學效果。

-----廣告,請繼續往下閱讀-----
聖露西亞 St.Joseph's Convent School 數理化教師驚艷 drgeo 與 ghemical
聖露西亞 St.Joseph's Convent School 數理化教師驚艷 drgeo 與 ghemical

而且這些技術並非新穎的技術。筆者於2003年開始介紹drgeo的數學教育應用、更早介紹gnuplot的數學教育應用;但很遺憾的是:十多年下來, 這一類的科技輔助教學產品似乎一直沒有受到數學教育界的重視。這也並不是僅有數學一個學科才會受益的技術,而是一整個「已有成功示範、有待推廣擴散」的廣大領域。這類技術偶爾會在自由軟體相關研討會上看見;但畢竟研討會的目標通常是提出新穎的議題而不是促成既有創新的普及。然而使用 數位平等 的資訊科技融入教學,最大的挑戰向來就是擴散而不是創新。從Everett Rogers「創新的擴散」 一書的角度看來,”observability”–數理化教師對於創新成效的體會–可以是一個提升擴散效果的施力點。筆者自身的經驗是:只需要半小時到兩小時的時間,數理化教師就可以感受到此類教學的優越。可惜的是,在我國似乎不曾見過任何縣市大規模舉辦此類師研習,更不用說後續的相關教材教案開發與推廣。於是,我國多數的數理化教師對於「資訊融入學科教學」的想像,停留在單向播放Powerpoint或flash動畫;只有少數教師有機會透過部落格、噗浪等等網路資源及研討會,而體認到學生動手操作的可能性與效果。而在高層選擇電子書包決策的過程當中,學科專業真實需求的聲音也就不會出現。

二、教學互動功能貧乏、 行銷聲勢強大的科技產品

但另一方面,校園內卻彌漫著產品掛帥、商品主導教學的氣氛。以強大商業力量作為後盾的實體商品,在未經教學專業人士公開透明評估討論的情形下,就透過媒體及行政力量以海嘯般驚人的聲勢排山倒海攻佔校園; 而教師們對於這些產品的接受度,也因為新鮮感、實體具象,而有熱烈的反應。蘋果電腦的iPad是一個最明顯的例子。

撇開言論管制的爭議不談,單純從休閒娛樂消費性電子產品的角度來看,iPad的確是一項操作介面高度友善的產品,很適合作為一種被動閱聽的休閒工具–例如讓無意深究科技的年長者上網閱覽及欣賞音樂影片等等。此外,以被動閱聽者的單純需求眼光來看,蘋果電腦的iPad政策禁止解譯器之類的應用軟體,確實可以降低病毒及木馬程式入侵的機會。

但從互動學習的角度來看,嚴格控管的環境也扼殺了許多可能性。互動科學教學網站PhET的常問問題集當中回答這個問題:”PhET 可以在平板電腦/iPad/Android 裝置上執行嗎?”

-----廣告,請繼續往下閱讀-----

目前平板電腦/iPad/Android 裝置無法完整支援Java或Flash,而PhET需要這兩者。

  1. iPad不支援Java跟Flash,所以完全無法執行PhET。
  2. Android對Java的支援太差,所以PhET使用Java所撰寫的模擬完全無法使用。PhET使用Flash所撰寫的模擬,Android裝置則可以支援一部分;但這些模擬的效果很差。

要讓這些裝置執行PhET,補足平臺與環境並非唯一需要克服的問題。就算用別的程式語言重寫PhET也無法解決問題,因為PhET的設計裡,假設操作的介面是滑鼠與鍵盤。有些事情用觸控螢幕來做就是不順手–例如「按右鍵」和打字(尤其是虛擬鍵盤會蓋到畫面的時候)–而有些事則是完全不可行 –例如滑鼠移動到物件上方。

如果貴學區正在考慮購買iPad或平板電腦,請注意PhET的模擬會大打折扣甚至完全失效。我們推薦解析度至少1024×768的筆電或小筆電。詳見系統需求。

另一個深具教育意義、由MIT所開發、在 每童一機(OLPC)計畫當中扮演重要角色的互動學習環境 Scratch, 也被排拒在iPad 門外

非常遺憾蘋果電腦 (依據其禁止解譯或執行程式碼應用軟體的政策)決定不允許iPhone或iPad執行 Scratch。在我們看來, 最重要的事情莫過於培力兒童,讓他們可以用新形式的媒體設計、創作、表達自我。 這正是Scratch背後的理念。全世界的孩子們用 Scratch 在設計他們的互動故事、遊戲、動畫、模擬器,並且在線上分享他們的作品。在這個過程當中,孩子們學會創意思考、系統性地推論、合作。

Android並沒有蘋果電腦的「禁止解譯器」政策,而且也確實已有 在 Android 上執行 Scratch 的成功報告,所以比 iPad 更適用於需要互動的教育環境。不過話說回來,既然筆記電腦沒有「欠缺滑鼠」的問題、既然筆記電腦早就已經完整支援 PhET和Scratch以及drgeo、gnuplot、maxima、stellarium、ghemical、…等等其他眾多教育軟體,那麼我們堅持捨筆電就平板的理由又是什麼呢?遺憾的是,面對這波的平板狂熱,過去(追隨微軟)強勢主導國家政策的PC產業節節挫敗,現在卻又似乎不懂得善用學科教師的專業意見來支持自己的產品。

三、教育不敵利益

國家政策研究基金會的趙麗雲委員在 「電子書包上路,新教學與學習體系亟須建置」 一文中提到:

根據國外研究機構報告指出,迄2013年前全球電子書的複合成長率將達到124%,其產值將超過25億美元。另據推估,國內電子書產業鏈去(97)年產值為120億元,在行政院擬訂電子書產業行動方案的推波之下,其產值在2013年可望達千億元。

Zdnet的文章則更直接露骨。標題為「電子書包促進會成立 推動數位化學習500億商機」的文章中提到:

-----廣告,請繼續往下閱讀-----

台北市電腦公會、國科會、教育界及掌上型裝置軟硬體製造商等產官學界人士今日組成電子書包促進會,以更具規模及組織的行動促使我國中小學電子書包普及。

根據電子書包促進會表示,依據台灣國小到高中380萬學生,每人一萬元的費用,以及3600所實施學校的無線網路佈建,共90億,加上其他費用, 估計約有500億的產值。

用國家教育資源餵養電子產業利益團體
用國家教育資源餵養電子產業利益團體

於是在未經公開徵求專業教師發表意見的情況下,臺北市決定 推廣電子書包並設計專屬教案

教育局表示,100學年度提供給市內16所國中小,每校70台,共1120台的平板電腦,均由國內業者提供,每台單價約1萬元,所有費用均由經濟部工業局埋單。

101年學年度推廣至30校、102年50校、103年再加70所學校。明年起,所需費用都由市府支付,學生或家長不用出半毛錢。

當然,文中沒有提到的是:哪些專業人士參與推薦這樣的電子書包推廣專案?是第一線的專業教師,還是視國家教育資源為提款機的利益團體?文中也忘記陳述一個簡單的事實:經濟部工業局的經費來自納稅人–全國的納稅人,而非僅有臺北市的納稅人。於是在各縣市不願吃虧的本位主義氣氛之下,後續的輿論呼聲將是電子產業利益團體的最佳推銷員,全國納稅人於是集體將國家整體教育資源送入利益團體手中,換取送至全國每一位學童手上、不一定能夠發揮教育效果的新穎玩具。

身為一位大學數學教師,如果我的學生必須購買電子書包,我最希望看到的是這些電子書包支援哪些互動式幾何與代數教學軟體 (drgeo、 gnuplot、maxima 等等)而不是我學生的家長作為一位被迫中獎的消費者對於國家電子產業的產值有多少貢獻。身為一位家長,如果我家族裡小學年紀的小孩必須購買電子書包,我最希望看到的是這些電子書包支援哪些互動式創作工具 (例如 PhET 與 scratch) 而不是我自己作為一位被迫中獎的消費者對於國家電子產業的產值有多少貢獻。

「以平板電腦作為電子書包」一事,對臺灣社會的意義淪為師生家長的新玩具、縣市長的業績及電子產業的產值。 至於 [數、理、化、…] 學科專業觀點的教育論述,則是近乎靜音,就連在教育界裡面,也很難得聽到。在臺灣,主導電腦輔助教學、電子書包導入校園的聲音,既不是來自MIT的遠見,也不是來自基層學科教師的需求,而是來自「把教育市場視為大餅」的電子產業,以及政治體系當中的代言人。但是,當我們集體決定捨棄 「比較符合數位平等與教學需求」 的技術, 改用 「即將擴大城鄉數位落差且不符教學需求」 的技術時,國家教育資源所滋養的對象到底會是求知的學童,還是求利潤的電子產業? 我們,真的是一個在乎教育的民族嗎?

-----廣告,請繼續往下閱讀-----

四、結論: 誰能阻止反客為主?

平板 vs 桌機筆電: 何者比較適合教育?
平板 vs 桌機筆電: 何者比較適合教育?
MIT每童一機計畫主持人Nicholas Negroponte教授談論今日主流資訊教育淪為 Word/Excel/PowerPoint職業訓練時,大膽地道出許多教師不敢說出口的質疑

我認為那 (教小孩子 Office) 根本就是一種罪行–小孩子應該做的事情是創作、溝通、探索、分享,而不是操作辦公室自動化工具。

至少十多年前開始,商業利益就透過政治力量主導科技教育,而一般民眾及教育界則渾然不覺,甚至透過輿論及教育機構系統性地協助炒作。它所造成的負面影響極為深遠,直到多年後的今天我們還很難走出這個框框。那麼現在如果我們再次盲目地、拒絕思考地追隨商業炒作,未來又將剝奪掉自己的下一代多少的真實教育機會?

這種「產品行銷主導政策;原始公共議題失焦」的現象,在別的產業也層出不窮。比爾蓋茲與美琳達基金會僱用 Trevor Mundel 擔任基金會全球健康計畫總裁。Mundel 現任職於瑞士藥廠Novartis Pharma開發部門國際主席。Novartis藥廠的作為近年來在印度引許多爭議,最近一次的事件是 Novartis 企圖以「永遠的專利」 (evergreening) 手法阻止廉價的普通藥品上市。 Techdirt 網站評論

今日醫療健保問題的主要爭議之一是:藥品議題取代健康議題成為鎂光燈的焦點。沒錯,藥品是健康問題的環節之一,但並非全部。 遺憾的是許多決策者讓藥廠來主導辯論;而過去一長串的事件顯示,藥廠關心的並不是大眾的健康,而是他們自己的利益。藥廠爭取自己的利益並沒有錯;我的問題是:為什麼讓他們主導公共政策、甚至讓他們用不公平及可疑的手段爭取利益,以至於社會大眾無法取得 (或無法以合理價格取得) 藥品?

本文和Techdirt一樣,我們所主張的並不是反對業商業利益,而是商業利益不應該反客為主,不應該將整個社會的教育思考導入精美華麗的牢籠, 不應該將整個社會的健保思考導入藥到病除的想像。電子書包與電腦輔助教學,應該從教育專業人士的真實需求出發;政策的形成,應該透過公開透明的討論。由教育專業人士參與公開討論,找到真正有助於提升學童創作/思考/理解/合作能力、真正最符合成本效益的方案。然後再由 (理想上是 [本地設廠且僱用本地員工的國內自有品牌] 的)電子產業配合教育專業的需求,量產真正有助於教學現場的廉價方案,順便在過程當中創造真實屬於我國產業自身的產值。這才是真正有利於社會整體的政策。至於我們學科專業教師自己也需要更積極地發聲,促成縣市政府教育局舉辦「教學為主, 科技為輔」的學科教師研習,並善用既有的數位平等軟體工具開發教材與教案(例如drgeo的互動圖案),讓早就存在的創新 有機會真正地擴散

-----廣告,請繼續往下閱讀-----

(轉載自 資訊人權貴ㄓ疑)

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
洪朝貴
47 篇文章 ・ 1 位粉絲

0

2
1

文字

分享

0
2
1
「融合蛋白」如何全方位圍剿狡猾癌細胞
鳥苷三磷酸 (PanSci Promo)_96
・2025/11/07 ・5944字 ・閱讀時間約 12 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

我們知道癌症是台灣人健康的頭號公敵。 為此,我們花了很多時間介紹最新、最有效的抗癌方法之一:免疫療法

免疫療法中最重要的技術就是抗體藥物。科學家會人工製造一批抗體去標記癌細胞。它們就像戰場上的偵察無人機,能精準鎖定你體內的敵人——癌細胞,為它們打上標記,然後引導你的免疫系統展開攻擊。

這跟化療、放射線治療那種閉著眼睛拿機槍亂掃不同。免疫療法是重新叫醒你的免疫系統,為身體「上buff (增益) 」來抗癌,副作用較低,因此備受好評。

-----廣告,請繼續往下閱讀-----

但尷尬的是,經過幾年的臨床考驗,科學家發現:光靠抗體對抗癌症,竟然已經不夠用了。

事情是這樣的,臨床上醫生與科學家逐漸發現:這個抗體標記,不是容易損壞,就是癌細胞同時設有多個陷阱關卡,只靠叫醒免疫細胞,還是難以發揮戰力。

但好消息是,我們的生技工程也大幅進步了。科學家開始思考:如果這台偵察無人機只有「標記」這一招不夠用,為什麼不幫它升級,讓它多學幾招呢?

這個能讓免疫藥物(偵察無人機)大進化的訓練器,就是今天的主角—融合蛋白(fusion protein)

-----廣告,請繼續往下閱讀-----
融合蛋白(fusion protein)/ 圖片來源:wikipedia

融合蛋白是什麼?

免疫療法遇到的問題,我們可以這樣理解:想像你的身體是一座國家,病毒、細菌、腫瘤就是入侵者;而抗體,就是我們派出的「偵察無人機」。

當我們透過注射放出這支無人機群進到體內,它能迅速辨識敵人、緊抓不放,並呼叫其他免疫單位(友軍)一同解決威脅。過去 20 年,最強的偵查機型叫做「單株抗體」。1998年,生技公司基因泰克(Genentech)推出的藥物赫賽汀(Herceptin),就是一款針對 HER2 蛋白的單株抗體,目標是治療乳癌。

這支無人機群為什麼能對抗癌症?這要歸功於它「Y」字形的小小抗體分子,構造看似簡單,卻蘊藏巧思:

  • 「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」。
  • 「Y」 字形的「尾巴」就是我們說的「標籤」,它能通知免疫系統啟動攻擊,稱為結晶區域片段「Fc 區域」。具體來說,當免疫細胞在體內巡邏,免疫細胞上的 Fc 受體 (FcR) 會和 Fc區域結合,進而認出病原體或感染細胞,接著展開清除。

更厲害的是,這個 Fc 區域標籤還能加裝不同功能。一般來說,人體內多餘的分子,會被定期清除。例如,細胞內會有溶酶體不斷分解多餘的物質,或是血液經過肝臟時會被代謝、分解。那麼,人造抗體對身體來說,屬於外來的東西,自然也會被清除。

-----廣告,請繼續往下閱讀-----

而 Fc區域會與細胞內體上的Fc受體結合,告訴細胞「別分解我」的訊號,阻止溶酶體的作用。又或是單純把標籤做的超大,例如接上一段長長的蛋白質,或是聚乙二醇鏈,讓整個抗體分子的大小,大於腎臟過濾孔的大小,難以被腎臟過濾,進而延長抗體在體內的存活時間。

偵測器(Fab)加上標籤(Fc)的結構,使抗體成為最早、也最成功的「天然設計藥物」。然而,當抗體在臨床上逐漸普及,一個又一個的問題開始浮現。抗體的強項在於「精準鎖定」,但這同時也是它的限制。

「Y」 字形上面的兩隻「叉叉」是敵人偵測器,能找到敵人身上的抗原特徵,並黏上去,稱為抗體結合區「Fab 區域」/ 圖片來源:shutterstock

第一個問題:抗體只能打「魔王」,無法毀掉「魔窟」。 

抗體一定要有一個明確的「標的物」才能發揮作用。這讓它在針對「腫瘤」或「癌細胞本身」時非常有效,因為敵人身上有明顯標記。但癌細胞的形成與惡化,是細胞在「生長、分裂、死亡、免疫逃脫」這些訊號通路上被長期誤導的結果。抗體雖然勇猛,卻只能針對已經帶有特定分子的癌細胞魔王,無法摧毀那個孕育魔王的系統魔窟。這時,我們真正欠缺的是能「調整」、「模擬」或「干擾」這些錯誤訊號的藥物。

-----廣告,請繼續往下閱讀-----

第二個問題:開發產線的限制。

抗體的開發,得經過複雜的細胞培養與純化程序。每次改變結構或目標,幾乎都要重新開發整個系統。這就像你無法要求一台偵測紅外線的無人機,明天立刻改去偵測核輻射。高昂的成本與漫長的開發時間,讓新產線難以靈活創新。

為了讓免疫藥物能走向多功能與容易快速製造、測試的道路,科學家急需一個更工業化的藥物設計方式。雖然我們追求的是工業化的設計,巧合的是,真正的突破靈感,仍然來自大自然。

在自然界中,基因有時會彼此「融合」成全新的組合,讓生物獲得額外功能。例如細菌,它們常仰賴一連串的酶來完成代謝,中間產物要在細胞裡來回傳遞。但後來,其中幾個酶的基因彼此融合,而且不只是基因層級的合併,產出的酶本身也變成同一條長長的蛋白質。

-----廣告,請繼續往下閱讀-----

結果,反應效率大幅提升。因為中間產物不必再「跑出去找下一個酶」,而是直接在同一條生產線上完成。對細菌來說,能更快處理養分、用更少能量維持生存,自然形成適應上的優勢,這樣的融合基因也就被演化保留下來。

科學家從中得到關鍵啟發:如果我們也能把兩種有用的蛋白質,「人工融合」在一起,是否就能創造出更強大的新分子?於是,融合蛋白(fusion protein)就出現了。

以假亂真:融合蛋白的HIV反制戰

融合蛋白的概念其實很直覺:把兩種以上、功能不同的蛋白質,用基因工程的方式「接起來」,讓它們成為同一個分子。 

1990 年,融合蛋白 CD4 免疫黏附素(CD4 immunoadhesin)誕生。這項設計,是為了對付令人類聞風喪膽的 HIV 病毒。

-----廣告,請繼續往下閱讀-----

我們知道 T 細胞是人體中一種非常重要的白血球。在這些 T 細胞中,大約有六到七成表面帶有一個叫做「CD4」的輔助受體。CD4 會和另一個受體 TCR 一起合作,幫助 T 細胞辨識其他細胞表面的抗原片段,等於是 T 細胞用來辨認壞人的「探測器」。表面擁有 CD4 受體的淋巴球,就稱為 CD4 淋巴球。

麻煩的來了。 HIV 病毒反將一軍,竟然把 T 細胞的 CD4 探測器,當成了自己辨識獵物的「標記」。沒錯,對 HIV 病毒來說,免疫細胞就是它的獵物。HIV 的表面有一種叫做 gp120 的蛋白,會主動去抓住 T 細胞上的 CD4 受體。

一旦成功結合,就會啟動一連串反應,讓病毒外殼與細胞膜融合。HIV 進入細胞內後會不斷複製並破壞免疫細胞,導致免疫系統逐漸崩潰。

為了逆轉這場悲劇,融合蛋白 CD4 免疫黏附素登場了。它的結構跟抗體類似,由由兩個不同段落所組成:一端是 CD4 假受體,另一端則是剛才提到、抗體上常見的 Fc 區域。當 CD4 免疫黏附素進入體內,它表面的 CD4 假受體會主動和 HIV 的 gp120 結合。

-----廣告,請繼續往下閱讀-----

厲害了吧。 病毒以為自己抓到了目標細胞,其實只是被騙去抓了一個假的 CD4。這樣 gp120 抓不到 CD4 淋巴球上的真 CD4,自然就無法傷害身體。

而另一端的 Fc 區域則有兩個重要作用:一是延長融合蛋白在體內的存活時間;二是理論上能掛上「這裡有敵人!」的標籤,這種機制稱為抗體依賴性細胞毒殺(ADCC)或免疫吞噬作用(ADCP)。當免疫細胞的 Fc 受體與 Fc 區域結合,就能促使免疫細胞清除被黏住的病毒顆粒。

不過,這裡有個關鍵細節。

在實際設計中,CD4免疫黏附素的 Fc 片段通常會關閉「吸引免疫細胞」的這個技能。原因是:HIV 專門攻擊的就是免疫細胞本身,許多病毒甚至已經藏在 CD4 細胞裡。若 Fc 區域過於活躍,反而可能引發強烈的發炎反應,甚至讓免疫系統錯把帶有病毒碎片的健康細胞也一併攻擊,這樣副作用太大。因此,CD4 免疫黏附素的 Fc 區域會加入特定突變,讓它只保留延長藥物壽命的功能,而不會與淋巴球的 Fc 受體結合,以避免誘發免疫反應。

從 DNA 藍圖到生物積木:融合蛋白的設計巧思

融合蛋白雖然潛力強大,但要製造出來可一點都不簡單。它並不是用膠水把兩段蛋白質黏在一起就好。「融合」這件事,得從最根本的設計圖,也就是 DNA 序列就開始規劃。

我們體內的大部分蛋白質,都是細胞照著 DNA 上的指令一步步合成的。所以,如果科學家想把蛋白 A 和蛋白 B 接在一起,就得先把這兩段基因找出來,然後再「拼」成一段新的 DNA。

不過,如果你只是單純把兩段基因硬接起來,那失敗就是必然的。因為兩個蛋白會互相「打架」,導致摺疊錯亂、功能全毀。

這時就需要一個小幫手:連接子(linker)。它的作用就像中間的彈性膠帶,讓兩邊的蛋白質能自由轉動、互不干擾。最常見的設計,是用多個甘胺酸(G)和絲胺酸(S)組成的柔性小蛋白鏈。

設計好這段 DNA 之後,就能把它放進細胞裡,讓細胞幫忙「代工」製造出這個融合蛋白。接著,科學家會用層析、電泳等方法把它純化出來,再一一檢查它有沒有摺疊正確、功能是否完整。

如果一切順利,這個人工設計的融合分子,就能像自然界的蛋白一樣穩定運作,一個全新的「人造分子兵器」就此誕生。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一。而且現在的融合蛋白,早就不只是「假受體+Fc 區域」這麼單純。它已經跳脫模仿抗體,成為真正能自由組裝、自由設計的生物積木。

CD4免疫黏附素問世之後,融合蛋白逐漸成為生物製藥的重要平台之一 / 圖片來源:wikipedia

融合蛋白的強項,就在於它能「自由組裝」。

以抗體為骨架,科學家可以接上任何想要的功能模組,創造出全新的藥物型態。一般的抗體只能「抓」(標記特定靶點);但融合蛋白不只會抓,還能「阻斷」、「傳遞」、甚至「調控」訊號。在功能模組的加持下,它在藥物設計上,幾乎像是一個分子級的鋼鐵蜘蛛人裝甲。

一般來說,當我們選擇使用融合蛋白時,通常會期待它能發揮幾種關鍵效果:

  1. 療效協同: 一款藥上面就能同時針對多個靶點作用,有機會提升治療反應率與持續時間,達到「一藥多效」的臨床價值。
  2. 減少用藥: 原本需要兩到三種單株抗體聯合使用的療法,也許只要一種融合蛋白就能搞定。這不僅能減少給藥次數,對病人來說,也有機會因為用藥減少而降低治療成本。
  3. 降低毒性風險: 經過良好設計的融合蛋白,可以做到更精準的「局部活化」,讓藥物只在目標區域發揮作用,減少副作用。

到目前為止,我們了解了融合蛋白是如何製造的,也知道它的潛力有多大。

那麼,目前實際成效到底如何呢?

一箭雙鵰:拆解癌細胞的「偽裝」與「內奸」

2016 年,德國默克(Merck KGaA)展開了一項全新的臨床試驗。 主角是一款突破性的雙功能融合蛋白──Bintrafusp Alfa。這款藥物的厲害之處在於,它能同時封鎖 PD-L1 和 TGF-β 兩條免疫抑制路徑。等於一邊拆掉癌細胞的偽裝,一邊解除它的防護罩。

PD-L1,我們或許不陌生,它就像是癌細胞身上的「偽裝良民證」。當 PD-L1 和免疫細胞上的 PD-1 受體結合時,就會讓免疫系統誤以為「這細胞是自己人」,於是放過它。我們的策略,就是用一個抗體或抗體樣蛋白黏上去,把這張「偽裝良民證」封住,讓免疫系統能重新啟動。

但光拆掉偽裝還不夠,因為癌細胞還有另一位強大的盟友—一個起初是我軍,後來卻被癌細胞收買、滲透的「內奸」。它就是,轉化生長因子-β,縮寫 TGF-β。

先說清楚,TGF-β 原本是體內的秩序管理者,掌管著細胞的生長、分化、凋亡,還負責調節免疫反應。在正常細胞或癌症早期,它會和細胞表面的 TGFBR2 受體結合,啟動一連串訊號,抑制細胞分裂、減緩腫瘤生長。

但當癌症發展到後期,TGF-β 跟 TGFBR2 受體之間的合作開始出問題。癌細胞表面的 TGFBR2 受體可能突變或消失,導致 TGF-β 不但失去了原本的抑制作用,反而轉向幫癌細胞做事

它會讓細胞骨架(actin cytoskeleton)重新排列,讓細胞變長、變軟、更有彈性,還能長出像觸手的「偽足」(lamellipodia、filopodia),一步步往外移動、鑽進組織,甚至進入血管、展開全身轉移。

更糟的是,這時「黑化」的 TGF-β 還會壓抑免疫系統,讓 T 細胞和自然殺手細胞變得不再有攻擊力,同時刺激新血管生成,幫腫瘤打通營養補給線。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」。就像 1989 年的 CD4 免疫黏附素用「假受體」去騙 HIV 一樣,這個融合蛋白在體內循環時,會用它身上的「陷阱」去捕捉並中和游離的 TGF-β。這讓 TGF-β 無法再跟腫瘤細胞或免疫細胞表面的天然受體結合,從而鬆開了那副壓抑免疫系統的腳鐐。

為了對抗這個內奸,默克在 Bintrafusp Alfa 的結構裡,加上了一個「TGF-β 陷阱(trap)」/ 情境圖來源:shutterstock

告別單一解方:融合蛋白的「全方位圍剿」戰

但,故事還沒完。我們之前提過,癌細胞之所以難纏,在於它會發展出各種「免疫逃脫」策略。

而近年我們發現,癌細胞的「偽良民證」至少就有兩張:一張是 PD-L1;另一張是 CD-47。CD47 是癌細胞向巨噬細胞展示的「別吃我」訊號,當它與免疫細胞上的 SIRPα 結合時,就會抑制吞噬反應。

為此,總部位於台北的漢康生技,決定打造能同時對付 PD-L1、CD-47,乃至 TGF-β 的三功能生物藥 HCB301。

雖然三功能融合蛋白聽起來只是「再接一段蛋白」而已,但實際上極不簡單。截至目前,全球都還沒有任何三功能抗體或融合蛋白批准上市,在臨床階段的生物候選藥,也只佔了整個生物藥市場的 1.6%。

漢康生技透過自己開發的 FBDB 平台技術,製作出了三功能的生物藥 HCB301,目前第一期臨床試驗已經在美國、中國批准執行。

免疫療法絕對是幫我們突破癌症的關鍵。但我們也知道癌症非常頑強,還有好幾道關卡我們無法攻克。既然單株抗體在戰場上顯得單薄,我們就透過融合蛋白,創造出擁有多種功能模組的「升級版無人機」。

融合蛋白強的不是個別的偵查或阻敵能力,而是一組可以「客製化組裝」的平台,用以應付癌細胞所有的逃脫策略。

Catch Me If You Can?融合蛋白的回答是:「We Can.」

未來癌症的治療戰場,也將從尋找「唯一解」,轉變成如何「全方位圍剿」癌細胞,避免任何的逃脫。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
解密機器人如何學會思考、觸摸與變形
鳥苷三磷酸 (PanSci Promo)_96
・2025/09/09 ・6820字 ・閱讀時間約 14 分鐘

本文與 Perplexity 合作,泛科學企劃執行

「Hello. I am… a robot.」

在我們的記憶裡,機器人的聲音就該是冰冷、單調,不帶一絲情感 。它們的動作僵硬,肢體不協調,像一個沒有靈魂的傀儡,甚至啟發我們創造了機械舞來模仿那獨特的笨拙可愛。但是,現今的機器人發展不再只會跳舞或模仿人聲,而是已經能獨立完成一場膽囊切除手術。

就在2025年,美國一間實驗室發表了一項成果:一台名為「SRT-H」的機器人(階層式手術機器人Transformer),在沒有人類醫師介入的情況下,成功自主完成了一場完整的豬膽囊切除手術。SRT-H 正是靠著從錯誤中學習的能力,最終在八個不同的離體膽囊上,達成了 100% 的自主手術成功率。

-----廣告,請繼續往下閱讀-----

這項成就的意義重大,因為過去機器人手術的自動化,大多集中在像是縫合這樣的單一「任務」上。然而,這一場完整的手術,是一個包含數十個步驟、需要連貫策略與動態調整的複雜「程序」。這是機器人首次在包含 17 個步驟的完整膽囊切除術中,實現了「步驟層次的自主性」。

這就引出了一個讓我們既興奮又不安的核心問題:我們究竟錯過了什麼?機器人是如何在我們看不見的角落,悄悄完成了從「機械傀儡」到「外科醫生」的驚人演化?

這趟思想探險,將為你解密 SRT-H 以及其他五款同樣具備革命性突破的機器人。你將看到,它們正以前所未有的方式,發展出生物般的觸覺、理解複雜指令、學會團隊合作,甚至開始自我修復與演化,成為一種真正的「準生命體」 。

所以,你準備好迎接這個機器人的新紀元了嗎?

-----廣告,請繼續往下閱讀-----

只靠模仿還不夠?手術機器人還需要學會「犯錯」與「糾正」

那麼,SRT-H 這位機器人的外科大腦,究竟藏著什麼秘密?答案就在它創新的「階層式框架」設計裡 。

你可以想像,SRT-H 的腦中,住著一個分工明確的兩人團隊,就像是漫畫界的傳奇師徒—黑傑克與皮諾可 。

  • 第一位,是動口不動手的總指揮「黑傑克」: 它不下達具體的動作指令,而是在更高維度的「語言空間」中進行策略規劃 。它發出的命令,是像「抓住膽管」或「放置止血夾」這樣的高層次任務指令 。
  • 第二位,是靈巧的助手「皮諾可」: 它負責接收黑傑克的語言指令,並將這些抽象的命令,轉化為機器手臂毫釐不差的精準運動軌跡 。

但最厲害的還不是這個分工,而是它們的學習方式。SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。但這還只是開始,研究人員在訓練過程中,會刻意讓它犯錯,並向它示範如何從抓取失敗、角度不佳等糟糕的狀態中恢復過來 。這種獨特的訓練方法,被稱為「糾正性示範」 。

SRT-H 研究團隊收集了 17 個小時、共 16,000 條由人類專家操作示範的軌跡數據來訓練它 。 / 圖片來源:shutterstock

這項訓練,讓 SRT-H 學會了一項外科手術中最關鍵的技能:當它發現執行搞砸了,它能即時識別偏差,並發出如「重試抓取」或「向左調整」等「糾正性指令」 。這套內建的錯誤恢復機制至關重要。當研究人員拿掉這個糾正能力後,機器人在遇到困難時,要不是完全失敗,就是陷入無效的重複行為中 。

-----廣告,請繼續往下閱讀-----

正是靠著這種從錯誤中學習、自我修正的能力,SRT-H 最終在八次不同的手術中,達成了 100% 的自主手術成功率 。

SRT-H 證明了機器人開始學會「思考」與「糾錯」。但一個聰明的大腦,足以應付更混亂、更無法預測的真實世界嗎?例如在亞馬遜的倉庫裡,機器人不只需要思考,更需要實際「會做事」。

要能精準地與環境互動,光靠視覺或聽覺是不夠的。為了讓機器人能直接接觸並處理日常生活中各式各樣的物體,它就必須擁有生物般的「觸覺」能力。

解密 Vulcan 如何學會「觸摸」

讓我們把場景切換到亞馬遜的物流中心。過去,這裡的倉儲機器人(如 Kiva 系統)就像放大版的掃地機器人,核心行動邏輯是極力「避免」與周遭環境發生任何物理接觸,只負責搬運整個貨架,再由人類員工挑出包裹。

-----廣告,請繼續往下閱讀-----

但 2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan。在亞馬遜的物流中心裡,商品被存放在由彈性帶固定的織物儲物格中,而 Vulcan 的任務是必須主動接觸、甚至「撥開」彈性織網,再從堆放雜亂的儲物格中,精準取出單一包裹,且不能造成任何損壞。

2025 年5月,亞馬遜展示了他們最新的觸覺機器人 Vulcan / 圖片引用:https://www.aboutamazon.com/news

Vulcan 的核心突破,就在於它在「拿取」這個動作上,學會了生物般的「觸覺」。它靈活的機械手臂末端工具(EOAT, End-Of-Arm Tool),不僅配備了攝影機,還搭載了能測量六個自由度的力與力矩感測器。六個自由度包含上下、左右、前後的推力,和三個維度的旋轉力矩。這就像你的手指,裡頭分布著非常多的受器,不只能感測壓力、還能感受物體橫向拉扯、運動等感觸。

EOAT 也擁有相同精確的「觸覺」,能夠在用力過大之前即時調整力道。這讓 Vulcan 能感知推動一個枕頭和一個硬紙盒所需的力量不同,從而動態調整行為,避免損壞貨物。

其實,這更接近我們人類與世界互動的真實方式。當你想拿起桌上的一枚硬幣時,你的大腦並不會先計算出精準的空間座標。實際上,你會先把手伸到大概的位置,讓指尖輕觸桌面,再沿著桌面滑動,直到「感覺」到硬幣的邊緣,最後才根據觸覺決定何時彎曲手指、要用多大的力量抓起這枚硬幣。Vulcan 正是在學習這種「視覺+觸覺」的混合策略,先用攝影機判斷大致的空間,再用觸覺回饋完成最後精細的操作。

-----廣告,請繼續往下閱讀-----

靠著這項能力,Vulcan 已經能處理亞馬遜倉庫中約 75% 的品項,並被優先部署來處理最高和最低層的貨架——這些位置是最容易導致人類員工職業傷害的位置。這也讓自動化的意義,從單純的「替代人力」,轉向了更具建設性的「增強人力」。

SRT-H 在手術室中展現了「專家級的腦」,Vulcan 在倉庫中演化出「專家級的手」。但你發現了嗎?它們都還是「專家」,一個只會開刀,一個只會揀貨。雖然這種「專家型」設計能有效規模化、解決痛點並降低成本,但機器人的終極目標,是像人類一樣成為「通才」,讓單一機器人,能在人類環境中執行多種不同任務。

如何教一台機器人「舉一反三」?

你問,機器人能成為像我們一樣的「通才」嗎?過去不行,但現在,這個目標可能很快就會實現了。這正是 NVIDIA 的 GR00T 和 Google DeepMind 的 RT-X 等專案的核心目標。

過去,我們教機器人只會一個指令、一個動作。但現在,科學家們換了一種全新的教學思路:停止教機器人完整的「任務」,而是開始教它們基礎的「技能基元」(skill primitives),這就像是動作的模組。

-----廣告,請繼續往下閱讀-----

例如,有負責走路的「移動」(Locomotion) 基元,和負責抓取的「操作」(Manipulation) 基元。AI 模型會透過強化學習 (Reinforcement Learning) 等方法,學習如何組合這些「技能基元」來達成新目標。

舉個例子,當 AI 接收到「從冰箱拿一罐汽水給我」這個新任務時,它會自動將其拆解為一系列已知技能的組合:首先「移動」到冰箱前、接著「操作」抓住把手、拉開門、掃描罐子、抓住罐子、取出罐子。AI T 正在學會如何將這些單一的技能「融合」在一起。有了這樣的基礎後,就可以開始來大量訓練。

當多重宇宙的機器人合體練功:通用 AI 的誕生

好,既然要學,那就要練習。但這些機器人要去哪裡獲得足夠的練習機會?總不能直接去你家廚房實習吧。答案是:它們在數位世界裡練習

NVIDIA 的 Isaac Sim 等平台,能創造出照片級真實感、物理上精確的模擬環境,讓 AI 可以在一天之內,進行相當於數千小時的練習,獨自刷副本升級。這種從「模擬到現實」(sim-to-real)的訓練管線,正是讓訓練這些複雜的通用模型變得可行的關鍵。

-----廣告,請繼續往下閱讀-----

DeepMind 的 RT-X 計畫還發現了一個驚人的現象:用來自多種「不同類型」機器人的數據,去訓練一個單一的 AI 模型,會讓這個模型在「所有」機器人上表現得更好。這被稱為「正向轉移」(positive transfer)。當 RT-1-X 模型用混合數據訓練後,它在任何單一機器人上的成功率,比只用該機器人自身數據訓練的模型平均提高了 50%。

這就像是多重宇宙的自己各自練功後,經驗值合併,讓本體瞬間變強了。這意味著 AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。

AI 正在學習關於物理、物體特性和任務結構的抽象概念,這些概念獨立於它所控制的特定身體。/ 圖片來源:shutterstock

不再是工程師,而是「父母」: AI 的新學習模式

這也導向了一個科幻的未來:或許未來可能存在一個中央「機器人大腦」,它可以下載到各種不同的身體裡,並即時適應新硬體。

這種學習方式,也從根本上改變了我們與機器人的互動模式。我們不再是逐行編寫程式碼的工程師,而是更像透過「示範」與「糾正」來教導孩子的父母。

NVIDIA 的 GR00T 模型,正是透過一個「數據金字塔」來進行訓練的:

  • 金字塔底層: 是大量的人類影片。
  • 金字塔中層: 是海量的模擬數據(即我們提過的「數位世界」練習)。
  • 金字塔頂層: 才是最珍貴、真實的機器人操作數據。

這種模式,大大降低了「教導」機器人新技能的門檻,讓機器人技術變得更容易規模化與客製化。

當機器人不再是「一個」物體,而是「任何」物體?

我們一路看到了機器人如何學會思考、觸摸,甚至舉一反三。但這一切,都建立在一個前提上:它們的物理形態是固定的。

但,如果連這個前提都可以被打破呢?這代表機器人的定義不再是固定的形態,而是可變的功能:它能改變身體來適應任何挑戰,不再是一台單一的機器,而是一個能根據任務隨選變化的物理有機體。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院特別具有代表性,該學院的仿生機器人實驗室(Bioinspired Robotics Group, BIRG)2007 年就打造模組化自重構機器人 Roombots。

有不少團隊在爭奪這個機器人領域的聖杯,其中瑞士洛桑聯邦理工學院(EPFL)特別具有代表性。該學院的仿生機器人實驗室(BIRG)在 2007 年就已打造出模組化自重構機器人 Roombots。而 2023 年,來自 EPFL 的另一個實驗室——可重組機器人工程實驗室(RRL),更進一步推出了 Mori3,這是一套把摺紙藝術和電腦圖學巧妙融合的模組化機器人系統。

2023 年來自 EPFL 的另一個實驗室—可重組機器人工程實驗室(RRL)推出了 Mori3 © 2023 Christoph Belke, EPFL RRL

Mori3 的核心,是一個個小小的三角形模組。別看它簡單,每個模組都是一個獨立的機器人,有自己的電源、馬達、感測器和處理器,能獨立行動,也能和其他模組合作。最厲害的是,它的三條邊可以自由伸縮,讓這個小模組本身就具備「變形」能力。

當許多 Mori3 模組連接在一起時,就能像一群活的拼圖一樣,從平面展開,組合成各種三維結構。研究團隊將這種設計稱為「物理多邊形網格化」。在電腦圖學裡,我們熟悉的 3D 模型,其實就是由許多多邊形(通常是三角形)拼湊成的網格。Mori3 的創新之處,就是把這種純粹的數位抽象,真正搬到了現實世界,讓模組們化身成能活動的「實體網格」。

這代表什麼?團隊已經展示了三種能力:

  • 移動:他們用十個模組能組合成一個四足結構,它能從平坦的二維狀態站立起來,並開始行走。這不只是結構變形,而是真正的協調運動。
  • 操縱: 五個模組組合成一條機械臂,撿起物體,甚至透過末端模組的伸縮來擴大工作範圍。
  • 互動: 模組們能形成一個可隨時變形的三維曲面,即時追蹤使用者的手勢,把手的動作轉換成實體表面的起伏,等於做出了一個會「活」的觸控介面。

這些展示,不只是實驗室裡的炫技,而是真實證明了「物理多邊形網格化」的潛力:它不僅能構建靜態的結構,還能創造具備複雜動作的動態系統。而且,同一批模組就能在不同情境下切換角色。

想像一個地震後的救援場景:救援隊帶來的不是一台笨重的挖土機,而是一群這樣的模組。它們首先組合成一條長長的「蛇」形機器人,鑽入瓦礫縫隙;一旦進入開闊地後,再重組成一隻多足的「蜘蛛」,以便在不平的地面上穩定行走;發現受困者時,一部分模組分離出來形成「支架」撐住搖搖欲墜的橫樑,另一部分則組合成「夾爪」遞送飲水。這就是以任務為導向的自我演化。

這項技術的終極願景,正是科幻中的概念:可程式化物質(Programmable Matter),或稱「黏土電子學」(Claytronics)。想像一桶「東西」,你可以命令它變成任何你需要的工具:一支扳手、一張椅子,或是一座臨時的橋樑。

未來,我們只需設計一個通用的、可重構的「系統」,它就能即時創造出任務所需的特定機器人。這將複雜性從實體硬體轉移到了規劃重構的軟體上,是一個從硬體定義的世界,走向軟體定義的物理世界的轉變。

更重要的是,因為模組可以隨意分開與聚集,損壞時也只要替換掉部分零件就好。足以展現出未來機器人的適應性、自我修復與集體行為。當一群模組協作時,它就像一個超個體,如同蟻群築橋。至此,「機器」與「有機體」的定義,也將開始動搖。

從「實體探索」到「數位代理」

我們一路見證了機器人如何從單一的傀儡,演化為學會思考的外科醫生 (SRT-H)、學會觸摸的倉儲專家 (Vulcan)、學會舉一反三的通才 (GR00T),甚至是能自我重構成任何形態的「可程式化物質」(Mori3)。

但隨著機器人技術的飛速發展,一個全新的挑戰也隨之而來:在一個 AI 也能生成影像的時代,我們如何分辨「真實的突破」與「虛假的奇觀」?

舉一個近期的案例:2025 年 2 月,一則影片在網路上流傳,顯示一台人形機器人與兩名人類選手進行羽毛球比賽,並且輕鬆擊敗了人類。我的第一反應是懷疑:這太誇張了,一定是 AI 合成的影片吧?但,該怎麼驗證呢?答案是:用魔法打敗魔法。

在眾多 AI 工具中,Perplexity 特別擅長資料驗證。例如這則羽球影片的內容貼給 Perplexity,它馬上就告訴我:該影片已被查證為數位合成或剪輯。但它並未就此打住,而是進一步提供了「真正」在羽球場上有所突破的機器人—來自瑞士 ETH Zurich 團隊的 ANYmal-D

接著,選擇「研究模式」,就能深入了解 ANYmal-D 的詳細原理。原來,真正的羽球機器人根本不是「人形」,而是一台具備三自由度關節的「四足」機器人。

如果你想更深入了解,Perplexity 的「實驗室」功能,還能直接生成一份包含圖表、照片與引用來源的完整圖文報告。它不只介紹了 ANYmal-D 在羽球上的應用,更詳細介紹了瑞士聯邦理工學院發展四足機器人的完整歷史:為何選擇四足?如何精進硬體與感測器結構?以及除了運動領域外,四足機器人如何在關鍵的工業領域中真正創造價值。

AI 代理人:數位世界的新物種

從開刀、揀貨、打球,到虛擬練功,這些都是機器人正在學習「幫我們做」的事。但接下來,機器人將獲得更強的「探索」能力,幫我們做那些我們自己做不到的事。

這就像是,傳統網路瀏覽器與 Perplexity 的 Comet 瀏覽器之間的差別。Comet 瀏覽器擁有自主探索跟決策能力,它就像是數位世界裡的機器人,能成為我們的「代理人」(Agent)

它的核心功能,就是拆解過去需要我們手動完成的多步驟工作流,提供「專業代工」,並直接交付成果。

例如,你可以直接對它說:「閱讀這封會議郵件,檢查我的行事曆跟代辦事項,然後草擬一封回信。」或是直接下達一個複雜的指令:「幫我訂 Blue Origin 的太空旅遊座位,記得要來回票。」

接著,你只要兩手一攤,Perplexity 就會接管你的瀏覽器,分析需求、執行步驟、最後給你結果。你再也不用自己一步步手動搜尋,或是在不同網站上重複操作。

AI 代理人正在幫我們探索險惡的數位網路,而實體機器人,則在幫我們前往真實的物理絕境。

立即點擊專屬連結 https://perplexity.sng.link/A6awk/k74… 試用 Perplexity吧! 現在申辦台灣大哥大月付 599(以上) 方案,還可以獲得 1 年免費 Perplexity Pro plan 喔!(價值 新台幣6,750)

◆Perplexity 使用實驗室功能對 ANYmal-D 與團隊的全面分析 https://drive.google.com/file/d/1NM97…

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

3
0

文字

分享

1
3
0
ADHD 學童在教育現場面臨哪些挑戰?老師、家長又面臨哪些抉擇?——專訪中研院社會學研究中心曾凡慈副研究員
研之有物│中央研究院_96
・2024/03/08 ・5646字 ・閱讀時間約 11 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|田偲妤
  • 美術設計|蔡宛潔

為什麼「特別」=不正常?

回想求學過程中,你是否曾煩惱特立獨行的行為會成為老師和同學眼中的「異類」?當社會慣用同一套標準檢視每個人,你我都可能被貼上「污名標籤」。中央研究院「研之有物」專訪院內社會學研究所曾凡慈副研究員,她長期投入「醫療社會學」研究,探討社會如何建構正常性與異常性,特別在臺灣的教育現場,有一群「注意力不足/過動症」(ADHD)學童,經常被貼上社會加諸的「疾病污名標籤」。一起來認識 ADHD ,聽聽成人患者、家長與老師們的親身經歷,了解他們如何面對污名?怎麼看待正常與異常的界線?

圖|iStock

ADHD 學童與教育者會遇到哪些困境?

就讀小學五年級的小曉,外表與一般小女孩無異,卻經常坐立不安、注意力難集中,甚至瞬間情緒崩潰。在班上不只被同學霸凌孤立,還被其他家長視為問題兒童,責備小曉的父母沒有善盡教養義務。

小曉的父親長年在國外工作,導致養育責任、就醫治療的重擔全落在母親薇芳身上。面對女兒一天到晚闖禍,在家又不按時吃藥,母女兩人經常爆發衝突。龐大的身心壓力讓薇芳不禁心想:「如果沒有妳,我是不是能做自己?」

從香港來的新老師保羅試圖幫助小曉融入學校生活、緩解薇芳的壓力,成為母女兩人的避風港,也背負是否因特殊原因而關照小曉的質疑。

-----廣告,請繼續往下閱讀-----

電影《小曉》道盡「注意力不足/過動症」(Attention Deficit/ Hyperactivity Disorder,簡稱 ADHD )學童在臺灣教育環境經常發生的狀況,以及家長與老師面臨的教養與照護困境。

究竟 ADHD 在兒童間的盛行率有多少?根據美國精神醫學會 2022 年發行的《精神疾病診斷與統計手冊》顯示, ADHD 在全球兒童中的盛行率推估為 7.2 % 。臺灣 2019 年對全國中小學生進行的抽樣調查研究則發現,符合美國精神醫學會 ADHD 診斷準則(DSM-5)的學生比例高達 10 % 。

換言之,每 100 名學生中約有 10 名有明顯的 ADHD 症狀。面對這麼高的比例,社會大眾對 ADHD 的認識卻不夠普及。究竟 ADHD 有什麼樣的表現?如何協助孩子調整身心狀況、應對治療伴隨的疾病污名標籤?家長、老師等照護者需要什麼樣的支持?

容易被污名化的「隱性障礙」!

中研院社會學研究所曾凡慈副研究員
圖|之有物

中研院社會學研究所曾凡慈副研究員長期投入「醫療社會學」研究,試圖理解社會如何建構正常性與異常性。近年來持續探討 ADHD 等「隱性障礙」在教育場域如何被醫療化、標籤化,以及親職角色面臨的各種教養難題。

-----廣告,請繼續往下閱讀-----

所謂「隱性障礙」是指:病況模糊、有爭議或不可見,需要精神藥物、心理與特殊教育介入,從而為家長帶來尋求診斷與治療的複雜挑戰。

ADHD 即是一種隱性障礙,對生活的影響通常反映在人際互動與學習表現上,詳細診斷標準可參考臺大神經部衛教說明,主要症狀整理如下:

圖|之有物(資料來源|臺大神經部衛教說明

由於 ADHD 的行為樣態多元、表現程度不一,而且可能隨著成長過程而改善或惡化,讓位在教學第一線的老師經常面對的難題是:究竟孩子只是不夠努力,還是真的無法控制自己?

這種判斷困難常出現在孩子重新分班、需適應新環境時。大部分老師會先觀察半學期至一學期,如果孩子的行為一直沒有改善,就會試著與家長溝通,評估是否帶孩子就醫檢查。因此,求學階段通常是孩子被診斷出 ADHD 的高峰期。

由於臺灣社會長期缺乏隱性障礙的觀念,孩子在學校表現不好會認為是小孩天性調皮,只要嚴加管教就會慢慢改善,並不會直接想到看醫生,而且民眾普遍對看精神科有不好的觀感。

-----廣告,請繼續往下閱讀-----

因此,當老師提議帶孩子就醫,多數家長一時之間可能難以接受,再加上每個家庭具備的文化與經濟資本不同,對親職角色的焦慮程度不一,也進而影響家長選擇的回應方式。

為了深入了解隱性障礙對親職造成的挑戰,曾凡慈訪談了 50 位家中有隱性障礙學童的家長,分別具備不同教育程度、家庭型態、社經地位等條件,並藉由發展「道德工作」概念來考察這種獨特的親職任務。什麼是「道德工作」呢?

道德工作指的是:人們在日常生活中如何判斷哪些目標值得追求?怎樣的做法比較適當?又應該相信什麼、感受什麼與做什麼,才算善盡職責?

這對一般父母來說絕非易事,應該讓孩子養成乖巧懂事還是自由自在?要努力培養未來競爭力還是享受快樂童年?一道道選擇題已夠令人煩惱,如果孩子的氣質特殊,情緒行為不符合大部分孩子的常態時,將更難仰賴一套明確的價值指引行事,因此需要透過更加複雜的道德工作來幫自己和孩子應付日常難題。

對孩子有隱性障礙的家長來說,道德工作要處理的問題通常包括:該不該用「病」的框架來解釋孩子的違常行為?如果能治療,什麼才是「應該的」目的?要讓孩子擁有公開的障礙身分,還是盡量隱瞞以避免污名?面對孩子持續表現出失序的狀態,該體諒包容還是嚴格要求?

-----廣告,請繼續往下閱讀-----

一起來看看與 ADHD 孩童朝夕相處的家長與老師們做出什麼樣的抉擇。

家長面對 ADHD 子女時須處理的道德工作
圖|之有物

ADHD 學童與其家長面臨哪些選擇?

曾凡慈發現,從親職的角度考量,家長首先須設法釐清問題屬性:究竟孩子的行為是個性、環境或病理所致?才能決定該往什麼方向努力。

承認孩子可能患有 ADHD 是家長要克服的首要難題,尤其在臺灣想獲得特殊教育資源,或讓學校接受孩子的差異、提供相應的對待,通常得先取得醫療診斷,使得就醫並接受藥物治療成為某些家長維護孩子受教權的策略。

緊接著家長要摸索的是,怎麼教導孩子看待吃藥行為可能帶來的「污名標籤」。例如有孩子因為吃藥而被同學取笑,與同學發生紛爭時也常被問「今天是不是沒吃藥」。如果沒有妥善處理,診斷用藥將增加孩子被歧視的風險,也會降低孩子配合治療的意願。

-----廣告,請繼續往下閱讀-----

某些家長則教孩子以「尋常化」的態度看待用藥。例如告訴孩子「每個人身上都有一點病,像是阿公也每天在吃糖尿病的藥」。或者說吃的是「聰明藥」、「專心藥」,吃藥不代表「有病」,而是能在學校表現的更好。

也有部分家長採取「以醫療模式轉移污名」的策略,讓孩子相信只要「治好」就不會發生污名問題。

例如有的孩子主要是注意力不足( ADHD 的一種次類型),家長引用醫生的說法向孩子強調「你是注意力不足不是過動」。每當孩子接受積極治療、在學校的表現明顯進步時,家長也會藉此培養孩子有自信的應對方式,下次再被同學取笑時可以勇敢回覆:「我只是注意力不足」、「我現在都好了」。

吃藥行為常讓 ADHD 患者被貼上「有病才吃藥」的污名標籤,如何教導孩子正向看待吃藥,是家長面臨的挑戰之一。
圖|iStock

當然也有比較特殊的案例,曾凡慈訪談的家長中,有位媽媽教孩子不要主動挑釁他人,可是一旦別人欺負到你頭上,就一定要捍衛自己。

-----廣告,請繼續往下閱讀-----

例如有人罵孩子吃藥就是神經病,她要孩子大力反擊:「你才有病!又不是你要吃藥,關你什麼事?」雖然這麼做無法改善孩子的人際關係,但曾凡慈指出,我們的社會存在一種奇怪的權力,自以為「正常」的人能隨便對被視為「異常」的人指指點點,這種權力應該被揭露和挑戰:

教養方式沒有絕對好壞,教孩子言語反擊,看似在破壞社會互動秩序,實際上是讓孩子正面回擊污名化背後的權力關係。

環境、家庭、教育現場不同會造成什麼差異?

從事隱性障礙的道德工作時,另一值得注意的是,家長的教養方式可能因不同的文化和經濟資本而產生差異,這將影響家長與老師的溝通,以及孩子可得到的教育與醫療資源。

例如某些家長比較有能力與老師對等討論,一起摸索出適合孩子的學習方式,也比較有能力爭取醫療資源、進行污名管理。課餘時間還會陪孩子完成課業、調整情緒行為,甚至自費取得其他輔助資源。

其中一位有教育學博士學位的家長令曾凡慈印象深刻。這位母親為了讓患有 ADHD 的孩子得到最佳照護,自行創辦了幼兒園,過程中投入的金錢與時間精力,超乎一般家長所能想像!

-----廣告,請繼續往下閱讀-----

然而,並非每位家長都有能力為孩子做那麼多,許多家長可能因工作繁忙、手頭不寬裕,或對 ADHD 等隱性障礙缺乏認知,因而無法長期陪伴孩子、或與老師密切溝通,也沒有餘裕定期請假帶孩子回診。

如果老師跟家長的溝通卡關,又正好遇到老師的教學標準較高,可能會認為只要家長不願帶孩子就醫,就沒有立場對疑似有 ADHD 症狀的學生進行個別調整或導入特教資源,這將導致各方關係陷入惡性循環。

近期曾凡慈也開始訪問教過 ADHD 學生的老師,希望了解他們遇到的教學難題與處理經驗。

老師的壓力之大在於,既要在教學上符合全班學生對「公平性」的期待,又要對有特殊需求的學生進行「彈性調整」。如果家長不願讓學生接受診斷,面對看似 ADHD 的學生,究竟要用平常標準要求還是寬容對待?如何避免其他人抱怨老師沒有一視同仁?都將陷老師於左右為難的境地。

面對教育現場因不同理念而產生的紛爭,老師非常需要家長與專家的支持,也需要額外人力幫忙分擔並改善孩子在學校的狀況,否則老師疲於應付、教學品質也難以維持。

曾凡慈訪談的老師們也分享了有助增進教學知能的資源,例如現在的教師研習會將 ADHD 等隱性障礙的基本知識與教學策略納入課程,參加教學互助社群也有助交流在教學現場可應用的實務技巧。

此外,老師們也希望有彈性的人力調度,能適時支援臨時狀況。例如孩子坐不住、或行為失控需要拉開距離時,可以有行政體系的老師陪孩子出去走走、緩和情緒。如何讓專業資源與輔助人力能及時支援教育現場,是日後值得關注的課題。

曾凡慈認為彈性的教學設計日趨重要,過去會要求孩子都乖乖坐著上課,字都要整齊寫在方格內,讓精力旺盛的孩子備感挫折。比較務實的做法是,透過教室管理技巧吸引孩子注意力,藉由教學設計來滿足探索與運動等需求,並依據孩子不同的能力來調整標準。
圖|iStock

「可不可以讓我們的差異變成獨特?」

未來曾凡慈也將持續訪談成人 ADHD 患者,了解他們怎麼走過求學與治療階段,怎麼看待自己的身心狀態。訪談過程中發現,雖然成長過程有其艱辛之處,但也出現正向看待 ADHD 的社群。

許多在童年時期被診斷出 ADHD 的孩子已長大成人,並開始透過聚會重新思考 ADHD 對自己的意義,致力推動社會大眾以正向心態看待 ADHD,甚至語帶自信地以「A 咖」自稱!

曾凡慈非常樂見創造正向標籤的行動能延續下去。例如「 A 咖」社群中有人認為 ADHD 就是一種個人特質,有天馬行空的創意、勇於跳脫常軌,擅長抓住大方向且不拘小節。此外,「怕無聊」的個性讓他們幾乎終其一生都在尋求新鮮挑戰,過著樂在學習的精彩人生。

然而,曾凡慈也注意到,部分 A 咖仍需要藥物及諮商資源,協助他們應付大學生活,以及工作職場上更加嚴峻的挑戰。有些人很需要心理師擔任一對一的「 ADHD 教練」,訓練人際相處應對、生活安排與工作規畫,或調適因外在刺激而累積的壓力。

然而,目前心理諮商或治療都所費不貲,如果不住在大都市,相關資源將更難取得,導致他們只能靠自助或社群互助,慢慢摸索自我調適策略,比一般同齡人更加辛苦。

因此,有些成年患者會為了使用校內免費的心理諮商服務,選擇延畢或繼續念研究所,導致出社會的時間往後拖延、影響職涯發展。

我們不能否認病症會為患者帶來應付生活的困難,但隨著隱性障礙逐漸被視為人類行為多元光譜的一環,我們也看到了改變的契機。

曾凡慈期許:「我們不該只想著指認孩子的內在缺失,甚至期待醫師將他們治癒,使他們能適應主流環境。」更該轉向思考的是:

如何支持個別差異,發展有利於所有人的教育文化與社會體系。

曾凡慈期許社會大眾能轉向思考:如何支持個別差異,發展有利於所有人的教育文化與社會體系。
圖|之有物
-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3808 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook